Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Noriho Kamiya Last modified date:2018.06.08



Graduate School
Undergraduate School
Other Organization


E-Mail
Homepage
http://www.bioeng.cstm.kyushu-u.ac.jp/
Goto Lab Home Page URL .
Phone
092-802-2807
Fax
092-802-2810
Academic Degree
Doctor of Engineering
Field of Specialization
Bioengineering, Biomolecular engineering, Enzyme engineering
Outline Activities
My research interest has been focused on enzyme and protein engineering toward the generation of new protein-based biomaterials. To fully utilize unique protein functions, different strategies including genetic engineering, enzyme engineering, and organic synthesis should be combined and my research is actually directed to that way. Now I am interested in posttranslational, site-specific modification of functional proteins to design new nanobioarchitecture for specific functions. I am also interested in drug delivery system enabling oral and transdermal administration of pharmaceutical peptides and proteins. During the course of research, I have worked with many industrial companies.
On education, after completing my Ph.D, I experienced two Universities, University of Tokyo & MIT, and had two classes for undergraduate students at the former place. I spent one year at MIT as a visiting scientist and worked on the project related to protein drug delivery and protein chip technology. Now I am involved in many types of lectures and works in the university.
Research
Research Interests
  • Basic research and design concept for insect biorefinery with silkworm in Kyushu University and its application
    keyword : biorefinery, insect engineering
    2013.10~2021.03Enzyme-DNA hybrids are unique and powerful bioconjugates for the ultrasensitive detection of target DNA/RNA. Here, we have developed novel enzyme-DNA/RNA hybrids that are potentially useful for a wide variety of biotechnological applications such as in situ hybridization and genomic southern blotting..
  • Design, creation and evaluation of supramolecular protein complexes.
    keyword : scaffold molecule, cellulosome, protein hybrid molecule
    2013.04~2019.03Enzyme-DNA hybrids are unique and powerful bioconjugates for the ultrasensitive detection of target DNA/RNA. Here, we have developed novel enzyme-DNA/RNA hybrids that are potentially useful for a wide variety of biotechnological applications such as in situ hybridization and genomic southern blotting..
  • Development of novel transdermal protein drug delivery systems
    keyword : protein drug delivery, pharmaceutical formulation, oral administration, vaccine
    2012.04~2018.03We have focused on the development of a novel lipid-based drug formulation toward oral delivery of pharmaceutical peptide and protein drugs..
  • Biocatalytic oxidation/reduction system in recombinant E. coli cells for the production of protein-decorated nano particles
    keyword : protein engineering, enzyme engineering, metal nanoparticle
    2011.04~2016.03In the present study, we focused on the coupling of different enzymatic activities towards the monooxygenation of one substrate to create highly efficient E. coli whole cell biocatalysts that facilitates oxygenation of hydrocarbons under mild conditions..
  • Development of novel nucleic acid-enzyme hybrid systems
    keyword : enzyme-DNA hybrid, in situ hybridization, Genomic southern blot
    2007.04~2013.03Enzyme-DNA hybrids are unique and powerful bioconjugates for the ultrasensitive detection of target DNA/RNA. Here, we have developed novel enzyme-DNA/RNA hybrids that are potentially useful for a wide variety of biotechnological applications such as in situ hybridization and genomic southern blotting. .
  • New biocatalytic systems based on the use of ionic liquids
    keyword : enzyme engineering, biocatalysis, ionic liquid, biorefinery
    2006.04~2013.03Ionic liquids are unique solvents that realize high polarity and hydrophobicity simultaneously, and its potential as novel reaction media has been recently recognized. In the present study, a new bioprocess that facilitates bicatalytic reaction in ionic liquids will be developed..
  • Protein engineering with post-translational protein modifying enzymes
    keyword : enzymatic protein engineering, site-specific modification, transglutaminase
    2002.04~2012.03Site-specific modification of proteins is often required to effectively utilize a wide variety of protein function. Recently, I have developed a novel way to conjugate recombinant proteins by combining genetic and enzyme engineering. The present enzymatic-protein-engineering approach can overcome the limit of conventional technique and is applicable to create functional protein hybrids and protein arrays..
  • Biocatalytic oxidation/reduction system in recombinant E. coli cells
    keyword : protein engineering, enzyme engineering, P450, Au nanoparticle
    2005.04~2011.03In the present study, we focused on the coupling of different enzymatic activities towards the monooxygenation of one substrate to create highly efficient E. coli whole cell biocatalysts that facilitates oxygenation of hydrocarbons under mild conditions..
  • Development of new protein drug delivery systems
    keyword : protein drug delivery, pharmaceutical formulation, oral administration, vaccine
    2003.04~2011.03We have focused on the development of a novel lipid-based drug formulation toward oral delivery of pharmaceutical peptide and protein drugs..
Academic Activities
Books
1. 神谷 典穂, 森 裕太郎, Substrate engineering of microbial transglutaminase for site-specific protein modification and bioconjugation, Springer , Transglutaminases -Multiple Functional Modifiers and Targets for New Drug Discovery-
Editors K. Hitomi, L. Fesus, S. Kojima
Springer, Chapter 17, p.373-383 (2015), 2016.01.
2. 神谷 典穂, K. MIyawaki, S. Noji, Transglutaminase-mediated in situ hybridization (TransISH) for mRNA detection in mammalian tissues, Springer Science+Business Media, NY, In Situ Hybridization Methods, vol.99 (G. Hauptmann (ed.))
Neuromethods, Chapter 29, p.549-558 (2015), 2015.04.
3. N. Kamiya, H. Abe, New fluorescent substrates of microbial transglutaminase and its application to covalent protein labeling, Humana Press, NY, Bioconjugation Protocols, Second Edition
Methods in Molecular Biology, Chapter 9, 2011.08.
Reports
1. Momoko Kitaoka, Rie Wakabayashi, Noriho Kamiya, Masahiro Goto, Solid-in-oil nanodispersions for transdermal drug delivery systems, Biotechnol. J., 11(11), 1375-1385 (2016) [Open Access], 2016.11.
2. LOPES GONCALVES GEISA APARECIDA, Noriho Kamiya, Biomolecular assembly strategies to develop potent artificial cellulosomes, Sustainable Chemical Processes, 2:19 (2014), 2014.10.
3. New technoogies for oriented protein immobilization.
4. Cross-linking chemistry and biotechnology by transglutaminase.
Papers
1. Patma, Kosuke Minamihata, T. Tatsuke, Jae Man Lee, Takahiro Kusakabe, Noriho Kamiya, Expression and Activation of Horseradish Peroxidase–Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes, Biotechnology Journal, 10.1002/biot.201700624, 13, 1700624, 2018.06.
2. Safrina Dyah Hardiningtyas, Rie Wakabayashi, Momoko Kitaoka, Yoshiro Tahara, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya, Mechanistic investigation of transcutaneous protein delivery using solid-in-oil nanodispersion
A case study with phycocyanin, European Journal of Pharmaceutics and Biopharmaceutics, https://doi.org/10.1016/j.ejpb.2018.01.020, 127, 44-50, 2018.06, Phycocyanin (PC), a water-soluble protein-chromophore complex composed of hexameric (αβ)6 subunits, has important biological functions in blue-green algae as well as pharmacological activities in biomedicine. We have previously developed a solid-in-oil (S/O) nanodispersion method to deliver biomacromolecules through the skin, although the transcutaneous mechanism has not yet been fully elucidated. To study the mechanism of transcutaneous protein delivery, we therefore enabled S/O nanodispersion by coating PC with hydrophobic surfactants and evaluated how the proteinaceous macromolecules formulated in an oil phase might permeate the skin. The extent of S/O nanodispersion of PC was dependent on the type of surfactant, suggesting that the selection of a suitable surfactant is crucial for encapsulating a large protein having a subunit structure. By measuring the intrinsic fluorescence of PC, we found that S/O nanodispersion facilitated the accumulation of PC in the stratum corneum (SC) of Yucatan micropig skin. Furthermore, after crossing the SC layer, the fluorescent recovery of PC was evident, indicating the release of the biologically active form of PC from the SC into the deeper skin layer..
3. Muhamad Alif Razi, Rie Wakabayashi, Yoshiro Tahara, Masahiro Goto, Noriho Kamiya, Genipin-stabilized caseinatehitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin, Colloids and Surfaces B: Biointerfaces, https://doi.org/10.1016/j.colsurfb.2018.01.041, 164, 308-315, 2018.04, Nanoparticles formed by the assembly of protein and polysaccharides are of great interest for the delivery of hydrophobic molecules. Herein, the formation of genipin-crosslinked nanoparticles from caseinate (CS) and chitosan (CH) is reported for the delivery of curcumin, a polyphenolic compound from turmeric, to cells. Genipin-crosslinked CS-CH nanoparticles (G-CCNPs) having a diameter of ∼250 nm and a low polydispersity index showed excellent stability over a wide pH range, as indicated by dynamic light scattering and transmission electron microscopic measurements. Cellular uptake of curcumin loaded into G-CCNPs by HeLa cells was improved, as measured by confocal laser scanning microscopy (CLSM) and fluorescence-activated cell-sorting analysis. Cell proliferation assays indicated that G-CCNPs were nontoxic and that curcumin's anticancer activity in vitro was also improved by G-CCNPs. Stability of curcumin at neutral pH was enhanced by G-CCNPs. CLSM study revealed that G-CCNPs were poorly internalized by HeLa cells, possibly because of strong cell membrane interactions and a negative zeta potential. Overall, our results suggested that the enhanced curcumin cytotoxicity might be associated with the enhanced stability of curcumin by G-CCNPs and free curcumin released from G-CCNPs into the cell. These biocompatible NPs might be suitable carriers for enhancing curcumin's therapeutic potential..
4. Mari Takahara, Rie Wakabayashi, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya, Primary Amine-Clustered DNA Aptamer for DNA-Protein Conjugation Catalyzed by Microbial Transglutaminase, Bioconjugate Chemistry, https://doi.org/10.1021/acs.bioconjchem.7b00594, 28, 12, 2954-2961, 2017.12, DNA-protein conjugates are promising biomolecules for use in areas ranging from therapeutics to analysis because of the dual functionalities of DNA and protein. Conjugation requires site-specific and efficient covalent bond formation without impairing the activity of both biomolecules. Herein, we have focused on the use of a microbial transglutaminase (MTG) that catalyzes the cross-linking reaction between a glutamine residue and a primary amine. In a model bioconjugation, a highly MTG-reactive Gln (Q)-donor peptide (FYPLQMRG, FQ) was fused to enhanced green fluorescent protein (FQ-EGFP) and a primary amine-clustered DNA aptamer was enzymatically synthesized as a novel acyl-acceptor substrate of MTG, whose combination leads to efficient and convenient preparation of DNA-protein conjugates with high purity. Dual functionality of the obtained DNA-EGFP conjugate was evaluated by discrimination of cancer cells via c-Met receptor recognition ability of the DNA aptamer. The DNA aptamer-EGFP conjugate only showed fluorescence toward cells with c-Met overexpression, indicating the retention of the biochemical properties of the DNA and EGFP in the conjugated form..
5. Lili Jia, Kosuke Minamihata, Hirofumi Ichinose, Kouhei Tsumoto, Noriho Kamiya, Polymeric SpyCatcher Scaffold Enables Bioconjugation in a Ratio-Controllable Manner, Biotechnology Journal, https://doi.org/10.1002/biot.201700195, 12, 12, 2017.12, Conjugating enzymes into a large protein assembly often results in an enhancement of overall catalytic activity, especially when different types of enzymes that work cooperatively are assembled together. However, exploring the proper method to achieve protein assemblies with high stability and also to avoid loss of the function of each component for efficient enzyme clustering is remained challenging. Assembling proteins onto synthetic scaffolds through varied post-translational modification methods is particularly favored since the proteins can be site-specifically conjugated together with less activity loss. Here, a SpyCatcher polymer is prepared through catalytic reaction of horseradish peroxidase (HRP) and serves as a polymeric proteinaceous scaffold for construction of protein assemblies. Taking advantage of the favorable SpyCatcher–SpyTag interaction, SpyTagged proteins can be easily assembled onto the polymeric SpyCatcher scaffold with controllable binding ratio and site specificity. Firstly, the feasibility of construction of ratio-controllable binary artificial hemicellulosomes by assembling endoxylanase and arabinofuranosidase is explored. This construct achieves higher sugar conversion than that of the free enzymes when the proportion of arabinofuranosidase is high, because the close spatial proximity of the enzymes allows them to work in a synergistic manner. Another application for biosensing is developed by conjugating SpyTagged Nanoluc and protein G onto SpyCatcher polymer. Due to the protein clustering effect, an amplified luminescent intensity is achieved by the resulting conjugates than chimera protein of Nanoluc and protein G in ovalbumin detection in ELISA..
6. Mori, Yutaro, Budinova, Geisa Aparecida Lopes Goncalves, Nakazawa, Hikaru, Umetsu, Mitsuo, Kamiya, Noriho, One-dimensional assembly of functional proteins: toward the design of an artificial cellulosome, Mol. Syst. Des. Eng., 10.1039/C6ME90005D, 1, 1, 66-73, 2016.04, In biological systems, proteins can form well-organized, higher-order structures with unique functions that would be difficult to achieve with a single protein. These proteinaceous supramolecular structures form by self-assembly, and the spatial arrangement of the protein building blocks in them is very important. In the present study, an artificial system was developed using recombinant proteins as building blocks, which were assembled in a one-dimensional manner. The assembly of these building blocks was based on the avidin-biotin interaction. A tetrameric biotin ligand unit was designed so that the 1:4 stoichiometry of the avidin-biotin interaction was altered to a 1:2 directional interaction between the streptavidin and tetrabiotinylated protein units. In a proof-of-concept study, site-specifically tetrabiotin-labeled endoglucanase and cellulose-binding module units were prepared, then these components were self-assembled by mixing with streptavidin to mimic a natural cellulosome. The formation of one-dimensional assemblies of the protein units depended on the stoichiometry of the avidin-biotin interaction sites in the system. Interestingly, the saccharification efficiency improved when the component ratio of protein units in the assemblies was changed..
7. Moriyama, Kousuke, Naito, Shono, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya, Enzymatically prepared redox-responsive hydrogels as potent matrices for hepatocellular carcinoma cell spheroid formation, BIOTECHNOLOGY JOURNAL, 10.1002/biot.201600087, 11, 11, 1452-1460, 2016.11.
8. Takahara, Mari, Budinova, Geisa Aparecida Lopes Goncalves, Nakazawa, Hikaru, Mori, Yutaro, Umetsu, Mitsuo, Kamiya, Noriho, Salt-Switchable Artificial Cellulase Regulated by a DNA Aptamer, BIOMACROMOLECULES, 10.1021/acs.biomac.6b01141, 17, 10, 3356-3362, 2016.10.
9. Yukiho HOSOMOMI, Teppei NIIDE, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya, Biocatalytic Formation of Gold Nanoparticles Decorated with Functional Proteins inside Recombinant Escherichia coli Cells, ANALYTICAL SCIENCES, 32, 3, 295-300, Cover page illustration, 2016.03.
10. Hayashi, Kounosuke, JAE MAN LEE, Tomozoe, Yusuke, takahiro kusakabe, 神谷 典穂, Heme precursor injection is effective for Arthromyces ramosus peroxidase fusion protein production by a silkworm expression system, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 10.1016/j.jbiosc.2015.02.013, 120, 4, 384-386, 2015.10.
11. Lili Jia, LOPES GONCALVES GEISA APARECIDA, Yusaku Takasugi, Yutaro Mori, Shuhei Noda, Tsutomu Tanaka, Hirofumi Ichinose, 神谷 典穂, Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse, BIORESOURCE TECHNOLOGY, 10.1016/j.biortech.2015.02.041, 185, 158-164, 2015.06.
12. Kousuke Moriyama, Rie Wakabayashi, Masahiro Goto, 神谷 典穂, Enzyme-mediated preparation of hydrogels composed of poly(ethylene glycol) and gelatin as cell culture platforms, RSC ADVANCES, 10.1039/c4ra12334d, 5, 4, 3070-3073, 2015.03.
13. Kosuke Minamihata, Masahiro Goto, 神谷 典穂, Site-specific conjugation of an antibody-binding protein catalyzed by horseradish peroxidase creates a multivalent protein conjugate with high affinity to IgG, BIOTECHNOLOGY JOURNAL, 10.1002/biot.201400512, 10, 1, 222-226, 2015.01.
14. Kousuke Moriyama, Rie Wakabayashi, Masahiro Goto, 神谷 典穂, Characterization of Enzymatically Gellable, Phenolated Linear Poly(Ethylene Glycol) with Different Molecular Weights for Encapsulating Living Cells, BIOCHEMICAL ENGINEERING JOURNAL, 93, 25-30, 2015.01.
15. Kousuke Moriyama, Kosuke Minamihata, Rie Wakabayashi, Masahiro Goto, 神谷 典穂, Enzymatic preparation of a redox-responsive hydrogel for encapsulating and releasing living cells, CHEMICAL COMMUNICATIONS, 10.1039/c3cc49766f, 50, 44, 5895-5898, 2014.08, Horseradish peroxidase-mediated oxidative cross-linking of a thiolated poly(ethylene glycol) is promoted in the absence of exogenous hydrogen peroxide, by adding a small amount of phenolic compound under physiological conditions. The prepared hydrogel can encapsulate and release living mammalian cells..
16. Teppei Niide, Masahiro Goto, 神谷 典穂, Enzymatic self-sacrificial display of an active protein on gold nanoparticles, RSC ADVANCES, 10.1039/c3ra46384b, 4, 12, 5995-5998, 2014.04.
17. K. Minamihata, M. Goto, N. Kamiya, Protein heteroconjugation by the peroxidase-catalyzed tyrosine coupling reaction, Bioconjugate Chem., 22, 2332-2338, 2011.12.
18. H. Abe, M. Goto, N. Kamiya, Protein lipidation catalyzed by microbial transglutaminase, Chem. Eur. J., 17, 14004-14008, 2011.12.
19. Y. Mori, K. Minamihata, H. Abe, M. Goto, N. Kamiya, Protein assemblies by site-specific avidin-biotin interactions, Org. Biomol. Chem., 9, 5641-5644, 2011.05.
20. Y. Mori, M. Goto, N. Kamiya, Transglutaminase-mediated internal protein labeling with a designed peptide loop, Biochem. Biophys. Res. Commun., 410, 829-833, 2011.05.
21. T. Niide, M. Goto, N. Kamiya, Biocatalytic synthesis of gold nanoparticles with cofactor regeneration in recombinant Escherichia coli cells, Chem. Commun., 47, 7350-7352, 2011.05.
22. K. Moriyama, K. Sung, M. Goto, N. Kamiya, Immobilization of alkaline phosphatase on magnetic particles by site-specific and covalent cross-linking catalyzed by microbial transglutaminase, J. Biosci. Bioeng., 111, 650-653, 2011.04.
23. K. Minamihata, M. Goto, N. Kamiya, Site-specific protein cross-linking by peroxidase-catalyzed activation of a tyrosine-containing peptide tag, Bioconjugate Chem., 22, 74-81, 2011.04.
24. M. Kitaoka, Y. Tsuruda, Y. Tanaka, M. Goto, M. Mitsumori, K. Hayashi, Y. Hiraishi, K. Miyawaki, S. Noji, N. Kamiya, Transglutaminase-mediated synthesis of a novel DNA-(enzyme)n probe for highly sensitive DNA detection, Chem. Eur. J., 19, 5387-5392, 2011.03, 生体内ではほとんどのタンパク質が何らかの翻訳後修飾を受けることに着目し、翻訳後修飾過程で働く酵素の基質特異性を利用すれば、狙った部位でタンパク質を修飾できると考えた。従来の有機化学的手法では、タンパク質の狙った部位を選択的に修飾するのは極めて困難であった。そこでラベル化したい有機分子内に基質となる部位(酵素の認識部位)を設計し、これを糊代として利用することで、糊代選択的な生体分子の連結・修飾法を確立した。
既往の方法ではDNAとタンパク質を1:1で連結することしかできなかったが、DNAを構成する分子を酵素の基質となるように設計し、DNA-(タンパク質)n型の新規ハイブリッド分子を高収率で得る技術を確立し、新たな遺伝子検出システムを提案した。.
25. N. Kamiya,* H. Abe, M. Goto, Y. Tsuji, H. Jikuya, Fluorescent substrates for covalent protein labeling catalyzed by microbial transglutaminase, Org. Biomol. Chem., 7, 3407-3412, 2009.08.
26. N. Kamiya,* Y. Shiotari, M. Tokunaga, H. Matsunaga, H. Yamanouchi, K. Nakano, M. Goto, Stimuli-responsive nanoparticles composed of naturally occurring amphiphilic proteins, Chem. Commun., 5287-5289, 2009.08.
27. K. Minamihata, N. Kamiya,* S. Kiyoyama, H. Sakuraba, T. Ohshima, M. Goto, Development of a novel immobilization method for enzymes from hyperthermophiles, Biotechnol. Lett., 31, 1037-1041, 2009.07.
28. T. Mouri, T. Shimizu, N. Kamiya,* H. Ichinose, M. Goto*, Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase, Biotechnol. Prog., 25, 1372-1378, 2009.10.
29. N. Kamiya, S. Doi, Y. Tanaka, H. Ichinose, M. Goto, Functional immobilization of recombinant alkaline phosphatases bearing a glutamyl donor substrate peptide of microbial transglutaminase, J. Biosci. Bioeng., 104, 195-199, 2007.09.
30. Y. Tanaka, Y. Tsuruda, M. Nishi, N. Kamiya, M. Goto, Exploring enzymatic catalysis at a solid surface: a case study with transglutaminase-mediated protein immobilization, Org. Biomol. Chem., 5, 1764-1770, 2007.05.
31. J. Tominaga, N. Kamiya, M. Goto, An enzyme-labeled protein polymer bearing pendant haptens, Bioconjugate Chem., 18, 860-865, 2007.03.
32. J. Tominaga, Y. Kemori, Y. Tanaka, T. Maruyama, N. Kamiya, M. Goto, An enzymatic method for site-specific labeling of recombinant proteins with oligonucleotides, Chem. Commun., 401-403, 2007.01.
33. T.Mouri, J.Michizoe, H.Ichinose, N.Kamiya, M.Goto, A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration, Appl. Microbiol. Biotechnol., vol.72, 514-520 (2006), 2006.04.
34. T.Mouri, N.Kamiya, M.Goto, Increasing the catalytic performance of a whole cell biocatalyst harboring a cytochrome P450cam system by stabilization of an electron transfer component, Biotechnol. Lett., vol.28, 1509-1513 (2006), 2006.05.
35. H. Piao, N. Kamiya, J. Watanabe, H. Yokoyama, A. Hirata, T. Fujii, I. Shimizu, S. Ito, M. Goto, Oral delivery of diclofenac sodium using a novel solid-in-oil suspension, Int. J. Pharm., vol.313, 159-162 (2006) , 2006.11.
36. K. Nakashima, T. Maruyama, N. Kamiya, M. Goto, Homogeneous Enzymatic Reaction in Ionic Liquids with Poly(ethylene glycol)-Modified Subtilisin, Org. Biomol. Chem., vol.4, 3462-3467 (2006), 2006.10.
37. K. Nakashima, T. Maruyama, N. Kamiya, M. Goto, Activation of lipase in ionic liquids by modification with comb-shaped poly(ethylene glycol), Sci. Technol. Adv. Mater., vol.7, 692-698 (2006), 2007.01.
38. J. Tominaga, N. Kamiya, S. Doi, H. Ichinose, T. Maruyama, M. Goto, Design of a specific peptide tag that affords covalent and site-specific enzyme immobilization catalyzed by microbial transglutaminase, Biomacromolecules, 10.1021/bm050193o, 6, 4, 2299-2304, vol.6, 2299 -2304 (2005), 2005.01.
39. N.Kamiya, S.Doi, J.Tominaga, H.Ichinose, M.Goto, Transglutaminase-mediated protein immobilization to casein nanolayers created on a plastic surface, Biomacromolecules, 10.1021/bm0494895, 6, 1, 35-38, 6, 35-38 (2005), 2005.01.
40. T.Tanaka, N. Kamiya, T.Nagamune, N-terminal glycine-specific protein conjugation catalyzed by microbial transglutaminase, FEBS Letter, 10.1016/j.febslet.2005.02.064, 579, 10, 2092-2096, vol.579, 2092-2096 (2005), 2005.01.
Presentations
1. Noriho Kamiya, Biocatalyst Engineering toward Biomedical Applications, ACB (Asian Congress on Biotechnology) 2017, 2017.07.
2. Noriho Kamiya, Enzyme-mediated Design of Functional Bioconjugates and Biomaterials, 2017 BEST Conference, 2017.06.
3. Noriho Kamiya, Mari Takahara, Rie Wakabayashi, Masahiro Goto, Design of novel biocatalysts by enzymatic biomolecular conjugation, The 9th AFOB Regional Symposium (ARS 2017), 2017.02.
4. 神谷 典穂, 南畑 孝介, Enzymatic Conjugation Strategy for the Design of Artificial Biomolecular Assemblies, 2016 AIChE Annual Meeting, 2016.11.
5. 神谷 典穂, Exploring biological strategies for sustainable utilization of lignocellulosic biomass, The e-ASIA Joint Research Program (e-ASIA JRP) Project Workshop, 2016.09.
6. 神谷 典穂, One-dimensional assembly of functional proteins by avidin-biotin interaction, Asian Congress on Biotechnology (ACB) 2015, 2015.11.
7. 神谷 典穂, Design of biomolecular assemblies by enzymatic protein manipulation, NANO KOREA 2015, 2015.07.
8. 神谷 典穂, Molecular design of biocatalytic assemblies for sustainable biotechnological applications, ARS 2015, 2015.05.
9. 神谷 典穂, Potential use of oxidoreductases for the fabrication of biomaterials, Active Enzyme Molecule 2014, 2014.12.
10. 神谷 典穂, Enzyme as a Catalytic Tool for Fabrication of Biomaterials, The 13th CJK Symposium on Enzyme Engineering, 2014.11.
11. 神谷 典穂, Self-sacrificial display of an active protein on gold nanoparticles, YABEC 2014, 2014.11.
12. 神谷 典穂, ENZYMATIC APPROACHES FOR ACCELERATING CELLULOSIC BIOMASS HYDROLYSIS, 16th International Biotechnology Symposium and Exhibition - IBS 2014, 2014.09.
13. 神谷 典穂, Enzyme as a catalytic tool for designing new bioconjugates, 2014 BEST Conference, 2014.06, Proteins exhibit multiple roles in living systems. In particular, enzymes facilitate metabolic pathways by catalyzing the different types of chemical reactions to sustain our life. A variety of enzyme functions have been exploited in both biochemical studies and biotechnological applications, however, there has still been a room for applying biocatalysis for the design and creation of artificial biomaterials.
In natural biological systems, proteins often form well-organized higher-order structures that associate unique functions, which cannot be accessed by a single protein unit alone. Interestingly, enzymatic post-translational modification of protein building blocks plays an important role in the formation of multi-subunit macromolecular structures.
Inspired by nature’s strategy, we are interested in configuring biocatalysis for creating new functional biomaterials. Herein, I’ll introduce our strategies which will be exemplified by three different types of enzymes (microbial trasnglutaminase, horseradish peroxidase, and glycerol dehydrogenase) to create (nano)biomaterials with distinct functions in line with their possible applications..
14. 神谷 典穂, Biomolecular Assembly by Enzymatic Conjugation and Scaffolding, 2013 KSBB Spring Meeting and International Symposium, 2014.04.
15. 神谷 典穂, Protein assembly design by enzymatic conjugation and scaffolding, 化学工学会第79年会(国際セッション), 2014.03.
16. 神谷 典穂, Assembling enzymes on a DNA scaffold for Biotechnological Applications, Asian Congress on Biotechnology (ACB-2013), 2013.12.
17. 神谷 典穂, Substrate engineering for enzymatic site-specific and covalent modification of functional proteins, Enzyme Engineering XXII: Emerging Topics in Enzyme Engineering, 2013.09.
18. 神谷 典穂, Protein Supramolecular Complex Formation by Site-specific Protein Interactions and Scaffolding, IGER International Symposium on Cell Surface Structures and Functions, 2013.09, Proteins are biomacromolecules exhibiting multiple roles in living systems. A variety of protein functions have proven to be valuable in both biochemical studies and biotechnological applications. In natural biological systems, proteins often form well-organized higher-order structures that associate unique functions, which cannot be accessed by a sole protein unit. In the formation of multi-subunit protein polymers such as cell-surface pili in gram-positive bacteria, self-assembly of protein building blocks plays an important role, and interestingly, post-translational modification also facilitates the growth and stabilization of proteinaceous polymeric structures by introducing covalent bonds at specific sites of protein subunits.
Toward designer protein supramolecular complexes (PSCs), ordered protein assemblies have been designed by either site-specific ligand-receptor interaction or site-specific protein labeling onto a scaffold molecule based on a transglutaminase-catalyzed post-translational, site-specific protein modification technique with artificial substrates. For the former, strong and specific molecular interaction between a natural receptor protein, streptavidin (SA), and its small molecular ligand, biotin, was selected. By using a dimeric Escherichia coli alkaline phosphatase (AP) as a symmetric protein building block, we evaluated how the avidin-biotin interaction sites between protein units affect the formation of PSCs composed of AP and SA.[1] For the latter, we have selected nucleic acid as a polymeric scaffold, and created novel DNA- and RNA-(enzyme)n conjugate, a nucleic acid-enzyme hybrid with 1:n stoichiometry.[2] Our challenge for cellulosomal design with a nucleic acid scaffold will be also presented.[3] .
19. 神谷 典穂, Development of New Biomolecular Conjugation Techniques and Their Applications, YABEC 2013, 2013.08.
20. 森 裕太郎, Rie Wakabayashi, Masahiro Goto, 神谷 典穂, Fabrication of higher-order protein supramolecular complexes, IGER International Symposium on Cell Surface Structures and Functions, 2013.09.
21. 神谷 典穂, Manipulating biomolecules through enzymatic post-translational protein modification, 2013 KMB's 40th Anniversary International Symposium "Recent Breakthroughs in Microbial Biotechnology: From Bench to Industry", 2013.07, Site-specific modification of proteins with a variety of organic molecules represents a valuable approach to obtain biologically active and homogeneous protein formulations. In particular, site-specific and covalent protein manipulation catalyzed by enzymes that function in post-translational modifications is practical because enzymatic transformations offer high substrate specificity under protein-friendly conditions. Recombinant proteins tagged with a short peptide, which can be post-translationally modified by a specific enzyme, have been successfully employed for this purpose.
Our group has focused on the utility of microbial transglutaminase (MTG) from Streptomyces mobaraensis in biotechnology. Transglutaminase is an enzyme that catalyzes covalent bond formation between the side chains of specific Gln and Lys residues of target peptides and proteins in post-translational modification process. By combining simple chemistry and MTG-catalyzed reaction, we have demonstrated site-specific protein conjugation with genetically introduced substrate peptide tags, site-specific protein immobilization to solid surfaces and site-specific protein labeling with new chemical entities. The basic concept has recently been extended to enzymatic conjugation of functional proteins with oligonucleotides, DNA and RNA. We are also interested in the use of oxidoreductases for enzymatic manipulation of biomolecules. Our recent efforts on biofabrication of a range of unique proteinaceous materials will be presented. .
22. 神谷 典穂, Momoko Kitaoka, Kounosuke Hayashi, A novel methodology for multiple enzyme labeling on nucleic acid scaffolds, 12th Japan-China-Korea Joint Symposium on Enzyme Engineering, 2012.05.
23. 神谷 典穂, Hiroki Abe, Masahiro Goto, Controlling protein localization by enzymatic protein lipidation, YABEC 2012, 2012.10.
24. 神谷 典穂, 中元亜耶, Uju, Masahiro Goto, Chiaki Ogino, Nobuhiro Ishida, Potential of pyridinium ionic liquids in a cellulosic biomass pretreatment process, 15th International Biotechnology Symposium and Exhibition, 2012.09.
25. 神谷 典穂, Designing biocatalysis for protein engineering through enzymatic post-translational modification
, The 2nd International Conference on Molecular and Functional Catalysis, 2012.07.
Membership in Academic Society
  • Japanese Society for Biomaterials
Awards
  • Tailing DNA aptamers with a functional protein by two-step enzymatic reaction, J. Biosci. Bioeng., 116 (6), 660 (2013)
  • 機能性タンパク質の部位特異的且つ共有結合的修飾のための酵素基質エンジニアリング
  • New fluorescent substrates designed for covalent protein labeling catalyzed by microbial transglutaminase
  • Functionalization of the cytochrome P450cam monooxygenase system in the cell-like aqueous compartments of water-in-oil emulsions, J. Biosci. Bioeng., 99, 12-17 (2005)
Educational
Other Educational Activities
  • 2017.10.
  • 2017.01.
  • 2016.01.
  • 2015.10.
  • 2015.01.
  • 2014.01.
  • 2013.01.
  • 2012.01.
  • 2011.01.
  • 2010.01.
  • 2009.01.
  • 2008.01.
  • 2007.01.