九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
神谷 典穂(かみや のりほ) データ更新日:2024.04.19



主な研究テーマ
1細胞レベルでの分析を可能にする汎用性の高い水系空間の構築と分析・分離場としての利用
キーワード:1細胞培養、1細胞解析、ハイドロゲルビーズ
2020.04~2027.03.
抗体薬物複合体を含む次世代バイオ医薬品の開発
キーワード:抗体薬物複合体、部位特異的ラベル化、フラグメント抗体
2021.04~2026.03.
汎用性の高い孤立空間の構築と生体分子反応場としての利用
キーワード:分子進化、細胞培養、増殖
2017.04~2026.03.
人工両親媒性タンパク質の設計と応用
キーワード:脂質化タンパク、人工膜タンパク質
2018.04~2027.03.
九大カイコを利用した昆虫バイオリファイナリーに向けた基礎・応用研究
キーワード:バイオリファイナリー、昆虫工学
2013.10~2025.03.
生体分子ハイブリッド化技術に立脚した超分子型機能性タンパク質複合材料の創製
キーワード:足場分子、セルロソーム、タンパク質ハイブリッド、キチナーゼ
2013.04~2021.03.
新規タンパク質経皮デリバリーシステムの開発
キーワード:タンパク質製剤、経口投与、経皮投与、ワクチン
2012.04~2018.03.
細胞触媒中でのバイオ還元プロセスを活用した金属ナノ粒子の調製とその高機能化
キーワード:細胞触媒、金属ナノ粒子合成、バイオ還元
2011.04~2016.03.
革新的核酸ー酵素ハイブリッド化技術の開発
キーワード:核酸ー酵素ハイブリッド、in situ ハイブリダイゼーション、サザンブロット
2007.04~2013.03.
イオン液体を反応場とする生体触媒システムの開発
キーワード:酵素工学、生体触媒、イオン液体、バイオリファイナリー
2006.04~2013.03.
酵素反応を利用する機能性タンパク質の部位特異的修飾法の開発
キーワード:翻訳後修飾酵素、トランスグルタミナーゼ
2002.04~2012.03.
細胞触媒のマニピュレーションによる高効率バイオ酸化還元プロセスの構築
キーワード:細胞触媒、P450、金ナノ粒子合成
2005.04~2011.03.
新規タンパク質製剤の開発
キーワード:タンパク質製剤、経口投与、経皮投与、ワクチン
2003.04~2011.03.
従事しているプロジェクト研究
機能性ハイドロゲルビーズの創製と応用研究
2023.04~2027.03, 代表者:神谷典穂, 九州大学
微小なハイドロゲルビーズが与える空間の生物工学的活用に関する共同研究.
脂質修飾タンパク質の新たな機能開拓
2020.04~2024.03, 代表者:神谷典穂, 九州大学
脂質修飾タンパク質の機能開拓に関するJAISTとの共同研究。.
令和2年度NEDOカーボンリサイクル実現を加速するバイオ由来製品生産技術の開発
2020.04~2026.03, 代表者:近藤昭彦, 神戸大学, 神戸大学
バイオ由来製品生産技術に関わる酵素の開発に関する共同研究。.
脂質修飾酵素の新たな機能開拓
2016.04~2022.03, 代表者:神谷典穂, 九州大学
植物由来キチナーゼを用いた新規抗菌剤の開発に関する琉球大学との共同研究。.
平成27年度大学発新産業創出プログラム(START)(プロジェクト支援型)
2015.12~2018.03, 代表者:日下部宜宏, 九州大学農学研究院, 九州大学(日本)
九州大学のオンリーワンカイコバイオリソースとこれまでのタンパク質発現の豊富な経験を基本シーズとして、再生医療用研究試薬やワクチン、診断薬などの大きな潜在需要がありながら低コスト生産が実現していない難発現性タンパク質を大量生産できる昆虫工場(難生産性有用タンパク質生産システム)を構築する。さらに工学的タンパク質機能化技術、タンパク質デザイン工学との異分野融合によりバイオベターな機能亢進タンパク質を分子設計し、市場に供給できるコストでの大量生産を可能にするプラットフォームを構築する。.
平成23年度戦略的創造研究推進事業 先端的低炭素化技術開発(ALCA)
2011.10~2016.03, 代表者:神谷典穂, 九州大学, 九州大学
再生可能な原料であるセルロース系バイオマスからのバイオリファイナリーを達成するため、セルロース系バイオマスから高品質の糖を得るための新規生体触媒を開発する。.
平成21年度NEDOバイオマスエネルギー先導技術研究開発事業
2009.04~2013.03, 代表者:神谷典穂, 九州大学, 九州大学
再生可能な原料であるセルロース系バイオマスからのバイオ燃料生産の上流技術として、イオン液体 (IL) を用いたセルロースの酵素糖化に関する研究が活発化している。ILは、強固な結晶構造を有し酵素分解が困難なセルロースの構造緩和のための前処理溶媒として有効なことが示されている。例えば親水性ILで前処理した非晶化セルロースをIL-水混合溶媒中で酵素糖化し、還元糖を効率よく得ることができる。そこで本研究では、ILをベースとしたバイオマスの前処理から発酵までを一貫して遂行する新規バイオプロセスの開発を行う。.
革新的核酸―酵素ハイブリッド化技術の開発
2007.04~2009.03, 代表者:神谷典穂, 九州大学
超高感度な核酸検出を可能とする新たな核酸―酵素ハイブリッドの創出に対し、有機化学と酵素工学、タンパク質工学を組み合わせたアプローチで迫っています。.
イオン液体を反応場とする酵素工学
2006.04~2009.03, 代表者:神谷典穂, 九州大学
セルロースからバイオエタノールへの変換の鍵となる、セルロース系バイオマスの前処理技術の開発に対して、化学的、生物工学的なアプローチで迫っています。.
組換え大腸菌を利用するシトクロムP450システムの機能強化
2006.04~2009.03, 代表者:神谷典穂, 九州大学
組換え大腸菌を細胞触媒として利用するための新たな方法論の開拓を行っている。.
平成17年度NEDO第1回産業技術研究助成事業
2005.07~2008.06, 代表者:神谷典穂, 九州大学, 九州大学
 本提案では、固相基盤上におけるタンパク質機能の有効利用を可能にする、(i)適切に表面修飾された物理的・化学的タンパク質固定化用ガラス製固定化担体の開発、ならびに(ii)酵素を利用する新規タンパク質固定化法の確立とこれに適したガラス製固定化担体の開発を行う。前者においては、96/384穴型ガラスプレートならびにガラスマイクロプレートの各ウェルに、タンパク質固定化のための種々の官能基を効果的に提示する技術を開発する。後者においては、酵素トランスグルタミナーゼを利用する部位特異的・共有結合的固定化法とこれに適した固定化基盤を開発する。これらを組み合わせることで、タンパク質機能の高度利用において、汎用性が高く、研究者のニーズに合わせた利用が容易な固相フォーマットを創出する。.
研究業績
主要著書
1. Riko Nishioka, Ryo Sato, Kazuki Uchida, Rie Wakabayashi, Noriho Kamiya, Microbial transglutaminases in drug development, Academic Press, Elsevier, Transglutaminase: Fundamentals and Applications
Editors: Y. Zhang and B.K.Simpson
Chapter 9, pp.169-180 (2024)., 2024.01.
2. 高原茉莉,神谷典穂, 『細胞・生体分子の固定化と機能発現』
第5 章 セルロース結合性アプタマーを用いた人工セルラーゼの設計
, (株)シーエムシー出版, 2018.01.
3. 神谷 典穂, 森 裕太郎, Substrate engineering of microbial transglutaminase for site-specific protein modification and bioconjugation, Springer , Transglutaminases -Multiple Functional Modifiers and Targets for New Drug Discovery-
Editors K. Hitomi, L. Fesus, S. Kojima
Springer, Chapter 17, p.373-383 (2015), 2016.01.
4. 神谷 典穂, K. MIyawaki, S. Noji, Transglutaminase-mediated in situ hybridization (TransISH) for mRNA detection in mammalian tissues, Springer Science+Business Media, NY, In Situ Hybridization Methods, vol.99 (G. Hauptmann (ed.))
Neuromethods, Chapter 29, p.549-558 (2015), 2015.04.
5. N. Kamiya, H. Abe, New fluorescent substrates of microbial transglutaminase and its application to covalent protein labeling, Humana Press, NY, Bioconjugation Protocols, Second Edition
Methods in Molecular Biology, Chapter 9, 2011.08.
6. 神谷典穂, 酵素利用技術体系 ~基礎・解析から改変・高機能化・産業利用まで~(監修 小宮山 眞)
第5編 酵素を操る
第1章 第4節 「翻訳後修飾酵素を利用したタンパク質の架橋」
, NTS, p.414-417, 2010.04.
7. 神谷典穂, セルロース系バイオエタノール製造技術 ~食糧クライシス回避のために~(監修 近藤 昭彦、植田 充美)
第2編 前処理および糖化技術
第6章 「イオン液体を用いるセルロース系バイオマスの前処理法」
, NTS, p.147-154, 2010.03.
主要原著論文
1. Ryutaro Ariyoshi, Takashi Matsuzaki, Ryo Sato, Kosuke Minamihata, Kounosuke Hayashi, Taisei Koga, Kensei Orita, Riko Nishioka, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya, Engineering the Propeptide of Microbial Transglutaminase Zymogen: Enabling Substrate-Dependent Activation for Bioconjugation Applications., Bioconjugate chemistry, 10.1021/acs.bioconjchem.3c00544, 2024.02, Microbial transglutaminase (MTG) from Streptomyces mobaraensis is a powerful biocatalytic glue for site-specific cross-linking of a range of biomolecules and synthetic molecules that have an MTG-reactive moiety. The preparation of active recombinant MTG requires post-translational proteolytic digestion of a propeptide that functions as an intramolecular chaperone to assist the correct folding of the MTG zymogen (MTGz) in the biosynthesis. Herein, we report engineered active zymogen of MTG (EzMTG) that is expressed in soluble form in the host Escherichia coli cytosol and exhibits cross-linking activity without limited proteolysis of the propeptide. We found that the saturation mutagenesis of residues K10 or Y12 in the propeptide domain generated several active MTGz mutants. In particular, the K10D/Y12G mutant exhibited catalytic activity comparable to that of mature MTG. However, the expression level was low, possibly because of decreased chaperone activity and/or the promiscuous substrate specificity of MTG, which is potentially harmful to the host cells. The K10R/Y12A mutant exhibited specific substrate-dependent reactivity toward peptidyl substrates. Quantitative analysis of the binding affinity of the mutated propeptides to the active site of MTG suggested an inverse relationship between the binding affinity and the catalytic activity of EzMTG. Our proof-of-concept study provides insights into the design of a new biocatalyst using the MTGz as a scaffold and a potential route to high-throughput screening of EzMTG mutants for bioconjugation applications..
2. Hendra Saputra, Muhammad Safaat, Pugoh Santoso, Rie Wakabayashi, Masahiro Goto, Toki Taira, Noriho Kamiya, Design of Protease-Responsive Antifungal Liposomal Formulation Decorated with a Lipid-Modified Chitin-Binding Domain, International Journal of Molecular Sciences, 10.3390/ijms25073567, 2024.03.
3. Diah Anggraini Wulandari, Kyosuke Tsuru, Kosuke Minamihata, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya, A Functional Hydrogel Bead-Based High-Throughput Screening System for Mammalian Cells with Enhanced Secretion of Therapeutic Antibodies., ACS Biomaterials Science & Engineering, 10.1021/acsbiomaterials.3c01386, 10, 1, 628-636, 2024.01, Droplet-based high-throughput screening systems are an emerging technology that provides a quick test to screen millions of cells with distinctive characteristics. Biopharmaceuticals, specifically therapeutic proteins, are produced by culturing cells that secrete heterologous recombinant proteins with different populations and expression levels; therefore, a technology to discriminate cells that produce more target proteins is needed. Here, we present a droplet-based microfluidic strategy for encapsulating, screening, and selecting target cells with redox-responsive hydrogel beads (HBs). As a proof-of-concept study, we demonstrate the enrichment of hybridoma cells with enhanced capability of antibody secretion using horseradish peroxidase (HRP)-catalyzed hydrogelation of tetra-thiolate poly(ethylene glycol); hybridoma cells were encapsulated in disulfide-bonded HBs. Recombinant protein G or protein M with a C-terminal cysteine residue was installed in the HBs via disulfide bonding to capture antibodies secreted from the cells. HBs were fluorescently stained by adding the protein L-HRP conjugate using a tyramide signal amplification system. HBs were then separated by fluorescence-activated droplet sorting and degraded by reducing the disulfide bonds to recover the target cells. Finally, we succeeded in the selection of hybridoma cells with enhanced antibody secretion, indicating the potential of this system in the therapeutic protein production..
4. Pugoh Santoso, Takuya Komada, Yugo Ishimine, Hiromasa Taniguchi, Kosuke Minamihata, Masahiro Goto, Toki Taira, Noriho Kamiya , Preparation of amphotericin B-loaded hybrid liposomes and the integration of chitin-binding proteins for enhanced antifungal activity, Journal of Bioscience and Bioengineering, 10.1016/j.jbiosc.2022.06.005, 2022.09.
5. Hiromasa Taniguchi, Yugo Ishimime, Kosuke Minamihata, Pugoh Santoso, Takuya Komada, Hendra Saputra, Kazuki Uchida, Masahiro Goto, Toki Taira, Noriho Kamiya , Liposomal Amphotericin B Formulation Displaying Lipid-Modified Chitin-Binding Domains with Enhanced Antifungal Activity, Molecular Pharmaceutics, 10.1021/acs.molpharmaceut.2c00388, 2022.09.
6. Pugoh Santoso, Kosuke Minamihata, Yugo Ishimine, Hiromasa Taniguchi, Takuya Komada, Ryo Sato, Masahiro Goto, Tomoya Takashima, Toki Taira, Noriho Kamiya , Enhancement of the Antifungal Activity of Chitinase by Palmitoylation and the Synergy of Palmitoylated Chitinase with Amphotericin B, ACS Infectious Diseases, https://doi.org/10.1021/acsinfecdis.2c00052, 8, 5, 1051-1061, 2022.04.
7. Kazuki Uchida, Hiroki Obayashi, Kosuke Minamihata, Rie Wakabayashi, Masahiro Goto, Naofumi Shimokawa, Masahiro Takagi, Noriho Kamiya, Artificial Palmitoylation of Proteins Controls the Lipid Domain-Selective Anchoring on Biomembranes and the Raft-Dependent Cellular Internalization, Langmuir, 10.1021/acs.langmuir.2c01205, 2022.08.
8. Hori, Katsutoshi; Yoshimoto, Shogo; Yoshino, Tomoko; Zako, Tamotsu; Hirao, Gen; Fujita, Satoshi; Nakamura, Chikashi; Yamagishi, Ayana; Kamiya, Noriho, Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces, J. Biosci. Bioeng., 10.1016/j.jbiosc.2021.12.004, 133, 3, 195-207, 2022.03.
9. K. Minamihata, Y. Tanaka, P. Santoso, M. Goto, D. Kozome, T. Taira, N. Kamiya, Orthogonal Enzymatic Conjugation Reactions Create Chitin Binding Domain Grafted Chitinase Polymers with Enhanced Antifungal Activity, Bioconjugate Chem., 10.1021/acs.bioconjchem.1c00235, 32, 8, 1688-1698, 2021.08.
10. Ryo Sato, Kosuke Minamihata, Ryutaro Ariyoshi, Hiromasa Taniguchi, Noriho Kamiya, Recombinant production of active microbial transglutaminase in E. coli by using self-cleavable zymogen with mutated propeptide, Protein Expression and Purification, 10.1016/j.pep.2020.105730, 2020.12, Microbial transglutaminase from Streptomyces mobaraensis (MTG) has been widely used in food industry and also in research and medical applications, since it can site-specifically modify proteins by the cross-linking reaction of glutamine residue and the primary amino group. The recombinant expression system of MTG in E. coli provides better accessibility for the researchers and thus can promote further utilization of MTG. Herein, we report production of active and soluble MTG in E. coli by using a chimeric protein of tobacco etch virus (TEV) protease and MTG zymogen. A chimera of TEV protease and MTG zymogen with native propeptide resulted in active MTG contaminated with cleaved propeptide due to the strong interaction between the propeptide and catalytic domain of MTG. Introduction of mutations of K9R and Y11A to the propeptide facilitated dissociation of the cleaved propeptide from the catalytic domain of MTG and active MTG without any contamination of the propeptide was obtained. The specific activity of the active MTG was 22.7 ± 2.6 U/mg. The successful expression and purification of active MTG by using the chimera protein of TEV protease and MTG zymogen with mutations in the propeptide can advance the use of MTG and the researches using MTG mediated cross-linking reactions..
11. Wahyu Ramadhan, Yuki Ohama, Kosuke Minamihata, Kousuke Moriyama, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya, Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids, Journal of Bioscience and Bioengineering, 10.1016/j.jbiosc.2020.05.010, 130, 4, 416-423, 2020.10, [URL], Liquid marbles (LMs) have recently shown a great promise as microbioreactors to construct self-supported aqueous compartments for chemical and biological reactions. However, the evaporation of the inner aqueous liquid core has limited their application, especially in studying cellular functions. Hydrogels are promising scaffolds that provide a spatial environment suitable for three-dimensional cell culture. Here, we describe the fabrication of redox-responsive hydrogel marbles (HMs) as a three-dimensional cell culture platform. The HMs are prepared by introducing an aqueous mixture of a tetra-thiolated polyethylene glycol (PEG) derivative, thiolated gelatin (Gela-SH), horseradish peroxidase, a small phenolic compound, and human hepatocellular carcinoma cells (HepG2) to the inner aqueous phase of LMs. Eventually, HepG2 cells are encapsulated in the HMs then immersed in culture media, where they proliferate and form cellular spheroids. Experimental results show that the Gela-SH concentration strongly influences the physicochemical and microstructure properties of the HMs. After 6 days in culture, the spheroids were recovered from the HMs by degrading the scaffold, and examination showed that they had reached up to about 180 μm in diameter depending on the Gela-SH concentration, compared with 60 μm in conventional HMs without Gela-SH. After long-term culture (over 12 days), the liver-specific functions (secretion of albumin and urea) and DNA contents of the spheroids cultured in the HMs were elevated compared with those cultured in LMs. These results suggest that the developed HMs can be useful in designing a variety of microbioreactors for tissue engineering applications..
12. K. Minamihata*, Y. Hamada, G. Kagawa, W. Ramadhan, A. Higuchi, K. Moriyama, R. Wakabayashi, M. Goto, N. Kamiya*, Dual-Functionalizable Streptavidin–SpyCatcher-Fused Protein–Polymer Hydrogels as Scaffolds for Cell Culture, ACS Appl. Bio Mater., https://doi.org/10.1021/acsabm.0c00940, 3, 7734-7742, 2020.10.
13. Wahyu Ramadhan, Genki Kagawa, Kousuke Moriyama, Rie Wakabayashi, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya, Construction of higher-order cellular microstructures by a self-wrapping co-culture strategy using a redox-responsive hydrogel, Scientific reports, 10.1038/s41598-020-63362-4, 10, 1, 2020.05, [URL], In this report, a strategy for constructing three-dimensional (3D) cellular architectures comprising viable cells is presented. The strategy uses a redox-responsive hydrogel that degrades under mild reductive conditions, and a confluent monolayer of cells (i.e., cell sheet) cultured on the hydrogel surface peels off and self-folds to wrap other cells. As a proof-of-concept, the self-folding of fibroblast cell sheet was triggered by immersion in aqueous cysteine, and this folding process was controlled by the cysteine concentration. Such folding enabled the wrapping of human hepatocellular carcinoma (HepG2) spheroids, human umbilical vein endothelial cells and collagen beads, and this process improved cell viability, the secretion of metabolites and the proliferation rate of the HepG2 cells when compared with a two-dimensional culture under the same conditions. A key concept of this study is the ability to interact with other neighbouring cells, providing a new, simple and fast method to generate higher-order cellular aggregates wherein different types of cellular components are added. We designated the method of using a cell sheet to wrap another cellular aggregate the ‘cellular Furoshiki’. The simple self-wrapping Furoshiki technique provides an alternative approach to co-culture cells by microplate-based systems, especially for constructing heterogeneous 3D cellular microstructures..
14. Mari Takahara, Noriho Kamiya, Synthetic Strategies for Artificial Lipidation of Functional Proteins, Chemistry - A European Journal, 10.1002/chem.201904568, 26, 21, 4645-4655, 2020.04, [URL], Biosynthesis of natural lipidated proteins is linked to important signal pathways, and therefore analyzing protein lipidation is crucial for understanding cellular functions. Artificial lipidation of proteins has attracted attention in recent decades as it allows modulation of the amphiphilic nature of the protein of interest, and is used in the design of drug-delivery systems containing antibodies anchored on a lipid bilayer carrier. However, the intrinsic hydrophobicity of lipids makes the synthesis of lipid–protein conjugates challenging with respect to the yield and selectivity of the lipidation. In this Minireview, the development of chemical and enzymatic synthetic strategies for the preparation of a range of lipid–protein conjugates that do not compromise the functions of the proteins are discussed as well as applications of the conjugates..
15. Dani Permana, Kosuke Minamihata, Ryo Sato, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya, Linear Polymerization of Protein by Sterically Controlled Enzymatic Cross-Linking with a Tyrosine-Containing Peptide Loop, ACS Omega, 10.1021/acsomega.9b04163, 5, 10, 5160-5169, 2020.03, [URL], The structure of a protein complex needs to be controlled appropriately to maximize its functions. Herein, we report the linear polymerization of bacterial alkaline phosphatase (BAP) through the site-specific cross-linking reaction catalyzed by Trametes sp. laccase (TL). We introduced a peptide loop containing a tyrosine (Y-Loop) to BAP, and the Y-Looped BAP was treated with TL. The Y-Looped BAP formed linear polymers, whereas BAP fused with a C-terminal peptide containing a tyrosine (Y-tag) showed an irregular shape after TL treatment. The sterically confined structure of the Y-Loop could be responsible for the formation of linear BAP polymers. TL-catalyzed copolymerization of Y-Looped BAP and a Y-tagged chimeric antibody-binding protein, pG2pA-Y, resulted in the formation of linear bifunctional protein copolymers that could be employed as protein probes in an enzyme-linked immunosorbent assay (ELISA). Copolymers comprising Y-Looped BAP and pG2pA-Y at a molar ratio of 100:1 exhibited the highest signal in the ELISA with 26- and 20-fold higher than a genetically fused chimeric protein, BAP-pG2pA-Y, and its polymeric form, respectively. This result revealed that the morphology of the copolymers was the most critical feature to improve the functionality of the protein polymers as detection probes, not only for immunoassays but also for other diagnostic applications..
16. Rie Wakabayashi, Wahyu Ramadhan, Kousuke Moriyama, Masahiro Goto, Noriho Kamiya, Poly(ethylene glycol)-based biofunctional hydrogels mediated by peroxidase-catalyzed cross-linking reactions, Polymer Journal, 10.1038/s41428-020-0344-7, 2020.01, [URL], Biofunctional hydrogels prepared by a peroxidase, especially horseradish peroxidase (HRP), serve as an excellent class of materials or platform for the development of cellular scaffolds because their biocompatibility and mild and tunable reaction conditions provide them with desirable properties. In this focus review, we summarize our decade of research into HRP-mediated fabrication of biofunctional hydrogels and their applications, in particular cell culture scaffolds. A brief overview of potential substrates employed in HRP and improvement of the HRP hydrogelation system from the initial step until the hydrogen peroxide removal stage in an effort to meet environmental standards is discussed. We highlight our system and describe its biocompatibility and ability to functionalize molecules to support biofabrication by increasing cellular adhesiveness, retaining growth factor affinity, and finally accelerating the formation of two- and three-dimensional multicellular architectures. In the last section, we outline the adoption of hydrogelation as a self-standing, compartmentalized reaction system, i.e., the use of hydrogel marble to conduct cell-free biosynthesis. We believe that this HRP-mediated hydrogel system offers great potential not only as a cell culture scaffold but also for various biomedical applications..
17. R. Sato, K. Minamihata, R. Wakabayashi, M. Goto, N. Kamiya, PolyTag
A peptide tag that affords scaffold-less covalent protein assembly catalyzed by microbial transglutaminase, Analytical Biochemistry, 10.1016/j.ab.2020.113700, 2020.01, [URL], Assembling proteins in close vicinity to each other provides an opportunity to gain unique function because collaborative and even synergistic functionalities can be expected in an assembled form. There have been a variety of strategies to synthesize functional protein assemblies but site-specific covalent assembly of monomeric protein units without impairing their intrinsic function remains challenging. Herein we report a powerful strategy to design protein assemblies by using microbial transglutaminase (MTG). A serendipitous discovery of self-crosslinking of enhanced green fluorescent protein (EGFP) fused with StrepTag I at the C-terminus revealed that EGFP was assembled through the crosslinking of the Lys (K) residue in the C-terminus of EGFP and the Gln (Q) residue in StrepTag I (AWRHPQFGG). Site-directed mutagenesis of the residues next to the K and Q yielded EGFP assemblies with higher molecular weights. An optimized peptide tag comprised of both K and Q residues (HKRWRHYQRGG) enabled the assembly of different types of proteins of interest (POI) when it was fused to either the N- or C-terminus. The peptide tag that enabled the self-polymerization of the functional POI without a scaffold was designated as a ‘PolyTag’..
18. Wahyu Ramadhan, Genki Kagawa, Yusei Hamada, Kousuke Moriyama, Rie Wakabayashi, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya, Enzymatically Prepared Dual Functionalized Hydrogels with Gelatin and Heparin to Facilitate Cellular Attachment and Proliferation, ACS Applied Bio Materials, 10.1021/acsabm.9b00275, 2, 6, 2600-2609, 2019.06, [URL], Biologically active artificial scaffolds for cell seeding are developed by mimicking extracellular matrices using synthetic materials. Here, we propose a feasible approach employing biocatalysis to integrate natural components, that is, gelatin and heparin, into a synthetic scaffold, namely a polyethylene glycol (PEG)-based hydrogel. Initiation of horseradish peroxidase-mediated redox reaction enabled both hydrogel formation of tetra-thiolated PEG via disulfide linkage and incorporation of chemically thiolated gelatin (Gela-SH) and heparin (Hepa-SH) into the polymeric network. We found that the compatibility of the type of gelatin with heparin was crucial for the hydrogelation process. Alkaline-treated gelatin exhibited superior performance over acid-treated gelatin to generate dual functionality in the resultant hydrogel originating from the two natural biopolymers. The Gela-SH/Hepa-SH dual functionalized PEG-based hydrogel supported both cellular attachment and binding of basic fibroblast growth factor (bFGF) under cell culture conditions, which increased the proliferation and phenotype transformation of NIH3T3 cells cultured on the hydrogel. Inclusion of bFGF and a commercial growth factor cocktail in hydrogel matrices effectively enhanced cell spreading and confluency of both NIH3T3 cells and HUVECs, respectively, suggesting a potential method to design artificial scaffolds containing active growth factors..
19. Mari Takahara, Rie Wakabayashi, Naoki Fujimoto, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya, Enzymatic Cell-Surface Decoration with Proteins using Amphiphilic Lipid-Fused Peptide Substrates, Chemistry - A European Journal, 10.1002/chem.201900370, 25, 30, 7315-7321, 2019.05, [URL], Lipid modification of proteins plays a significant role in the activation of cellular signals such as proliferation. Thus, the demand for lipidated proteins is rising. However, getting a high yield and purity of lipidated proteins has been challenging. We developed a strategy for modifying proteins with a wide variety of synthetic lipids using microbial transglutaminase (MTG), which catalyzes the cross-linking reaction between a specific glutamine (Q) in a protein and lysine (K) in the lipid-fused peptide. The synthesized lipid substrates (lipid: fatty acids, tocopherol, lithocholic acid, cholesterol) was successfully conjugated to a protein fused with LLQG (Q-tagged protein) by an MTG reaction, yielding 90 % conversion of the Q-tagged protein in a lipidated form. The purified lipid–protein conjugates were used for labeling the cell membrane in vitro, resulting in best-anchoring ability of cholesterol modification. Furthermore, in situ cell-surface decoration with the protein was established in a simple manner: subjection of cells to a mixture of cholesterol-fused peptides, Q-tagged proteins and MTG..
20. Muhamad Alif Razi, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya, Self-Assembled Reduced Albumin and Glycol Chitosan Nanoparticles for Paclitaxel Delivery, Langmuir, 10.1021/acs.langmuir.8b02809, 35, 7, 2610-2618, 2019.02, [URL], Cancer continues to pose health problems for people all over the world. Nanoparticles (NPs) have emerged as a promising platform for effective cancer chemotherapy. NPs formed by the assembly of proteins and chitosan (CH) through noncovalent interactions are attracting a great deal of interest. However, the poor water solubility of CH and low stability of this kind of NP limit its practical application. Herein, the formation of reduced bovine serum albumin (rBSA) and glycol chitosan (GC) nanoparticles (rBG-NPs) stabilized by hydrophobic interactions and disulfide bonds was demonstrated for paclitaxel (PTX) delivery. The effects of the rBSA:GC mass ratio and pH on the particle size, polydispersity index (PDI), number of particles, and surface charge were evaluated. The formation mechanism and stability of the NPs were determined by compositional analysis and dynamic light scattering. Hydrophobic and electrostatic interactions were the driving forces for the formation of the rBG-NPs, and the NPs were stable under physiological conditions. PTX was successfully encapsulated into rBG-NPs with a high encapsulation efficiency (90%). PTX-loaded rBG-NPs had a particle size of 400 nm with a low PDI (0.2) and positive charge. rBG-NPs could be internalized by HeLa cells, possibly via endocytosis. An in vitro cytotoxicity study revealed that PTX-loaded rBG-NPs had anticancer activity that was lower than that of a Taxol-like formulation at 24 h but had similar activity at 48 h, possibly because of the slow release of PTX into the cells. Our study suggests that rBG-NPs could be used as a potential nanocarrier for hydrophobic drugs..
21. Rie Wakabayashi, Ayumi Suehiro, Masahiro Goto, Noriho Kamiya, Designer aromatic peptide amphiphiles for self-assembly and enzymatic display of proteins with morphology control, Chemical Communications, 10.1039/C8CC08163H, 55, 5, 640-643, 2019.01, [URL], We herein designed bi-functional aromatic peptide amphiphiles both self-assembling to fibrous nanomaterials and working as a substrate of microbial transglutaminase, leading to peptidyl scaffolds with different morphologies that can be enzymatically post-functionalized with proteins..
22. Noriho Kamiya, Yuki Ohama, Kosuke Minamihata, Rie Wakabayashi, Masahiro Goto, Liquid Marbles as an Easy-to-Handle Compartment for Cell-Free Synthesis and In Situ Immobilization of Recombinant Proteins, Biotechnology Journal, 10.1002/biot.201800085, 13, 12, 2018.12, [URL], Liquid marble (LM), a self-standing micro-scale aqueous droplet, emerges as a micro-bioreactor in biological applications. Herein, the potential of LM as media for cell-free synthesis and simultaneous immobilization of recombinant proteins is explored. Initially, formation of hydrogel marble (HM) by using an enzymatic disulfide-based hydrogelation technique is confirmed by incorporating three components, horseradish peroxidase (HRP), a tetra-thiolated poly(ethylene glycol) derivative, and glycyl-L-tyrosine, in LM. The compatibility of the enzymatic hydrogelation with cell-free protein synthesis in LM is then validated. Although the hydrogelation reduces the level of protein synthesis in LM when compared with that in a test tube, the biosynthesis of enhanced green fluorescent protein (EGFP) is achieved. Interestingly, EGFP synthesized in LM is entrapped in the HM, and the introduction of a cysteine residue to EGFP by genetic engineering further increases the amount of protein immobilization in the hydrogel matrices. These results suggest that the cell-free synthesis and HRP-catalyzed hydrogelation can be conducted in parallel in LM, and the eventual entrapment of the key components in HM is possible. Facile recovery of macromolecular products immobilized in HM by degrading the hydrogel network under reducing conditions should lead to the design of an easy-to-handle system to screen protein functions..
23. Mari Takahara, Rie Wakabayashi, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya, Design of Lipid-Protein Conjugates Using Amphiphilic Peptide Substrates of Microbial Transglutaminase, ACS App. Bio Mater., 10.1021/acsabm.8b00271, 1, 6, 1823-1829, 2018.10, [URL], Lipid modification of proteins plays a significant role in the activation of cellular signals such as proliferation. Thus, the demand for lipidated proteins is rising. However, getting a high yield and purity of lipidated proteins has been challenging. We developed a strategy for modifying proteins with a wide variety of synthetic lipids using microbial transglutaminase (MTG), which catalyzes the cross-linking reaction between a specific glutamine (Q) in a protein and lysine (K) in the lipid-fused peptide. The synthesized lipid-G3S-MRHKGS lipid (lipid: fatty acids, tocopherol, lithocholic acid, cholesterol) was successfully conjugated to a protein fused with LLQG (Q-tagged protein) by an MTG reaction, yielding >90 % conversion of the Q-tagged protein in a lipidated form. The purified lipid–protein conjugates were used for labeling the cell membrane in vitro, resulting in best-anchoring ability of cholesterol modification. Furthermore, in situ cell-surface decoration with the protein was established in a simple manner: subjection of cells to a mixture of cholesterol-fused peptides, Q-tagged proteins and MTG..
24. Safrina Dyah Hardiningtyas, Rie Wakabayashi, Momoko Kitaoka, Yoshiro Tahara, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya, Mechanistic investigation of transcutaneous protein delivery using solid-in-oil nanodispersion
A case study with phycocyanin, European Journal of Pharmaceutics and Biopharmaceutics, 10.1016/j.ejpb.2018.01.020, 127, 44-50, 2018.06, [URL], Phycocyanin (PC), a water-soluble protein-chromophore complex composed of hexameric (αβ)6 subunits, has important biological functions in blue-green algae as well as pharmacological activities in biomedicine. We have previously developed a solid-in-oil (S/O) nanodispersion method to deliver biomacromolecules through the skin, although the transcutaneous mechanism has not yet been fully elucidated. To study the mechanism of transcutaneous protein delivery, we therefore enabled S/O nanodispersion by coating PC with hydrophobic surfactants and evaluated how the proteinaceous macromolecules formulated in an oil phase might permeate the skin. The extent of S/O nanodispersion of PC was dependent on the type of surfactant, suggesting that the selection of a suitable surfactant is crucial for encapsulating a large protein having a subunit structure. By measuring the intrinsic fluorescence of PC, we found that S/O nanodispersion facilitated the accumulation of PC in the stratum corneum (SC) of Yucatan micropig skin. Furthermore, after crossing the SC layer, the fluorescent recovery of PC was evident, indicating the release of the biologically active form of PC from the SC into the deeper skin layer..
25. Patma, Kosuke Minamihata, T. Tatsuke, Jae Man Lee, Takahiro Kusakabe, Noriho Kamiya, Expression and Activation of Horseradish Peroxidase–Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes, Biotechnology Journal, 10.1002/biot.201700624, 13, 1700624, 2018.06.
26. Muhamad Alif Razi, Rie Wakabayashi, Yoshiro Tahara, Masahiro Goto, Noriho Kamiya, Genipin-stabilized caseinatehitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin, Colloids and Surfaces B: Biointerfaces, 10.1016/j.colsurfb.2018.01.041, 164, 308-315, 2018.04, [URL], Nanoparticles formed by the assembly of protein and polysaccharides are of great interest for the delivery of hydrophobic molecules. Herein, the formation of genipin-crosslinked nanoparticles from caseinate (CS) and chitosan (CH) is reported for the delivery of curcumin, a polyphenolic compound from turmeric, to cells. Genipin-crosslinked CS-CH nanoparticles (G-CCNPs) having a diameter of ∼250 nm and a low polydispersity index showed excellent stability over a wide pH range, as indicated by dynamic light scattering and transmission electron microscopic measurements. Cellular uptake of curcumin loaded into G-CCNPs by HeLa cells was improved, as measured by confocal laser scanning microscopy (CLSM) and fluorescence-activated cell-sorting analysis. Cell proliferation assays indicated that G-CCNPs were nontoxic and that curcumin's anticancer activity in vitro was also improved by G-CCNPs. Stability of curcumin at neutral pH was enhanced by G-CCNPs. CLSM study revealed that G-CCNPs were poorly internalized by HeLa cells, possibly because of strong cell membrane interactions and a negative zeta potential. Overall, our results suggested that the enhanced curcumin cytotoxicity might be associated with the enhanced stability of curcumin by G-CCNPs and free curcumin released from G-CCNPs into the cell. These biocompatible NPs might be suitable carriers for enhancing curcumin's therapeutic potential..
27. Lili Jia, Kosuke Minamihata, Hirofumi Ichinose, Kouhei Tsumoto, Noriho Kamiya, Polymeric SpyCatcher Scaffold Enables Bioconjugation in a Ratio-Controllable Manner, Biotechnology Journal, 10.1002/biot.201700195, 12, 12, 2017.12, [URL], Conjugating enzymes into a large protein assembly often results in an enhancement of overall catalytic activity, especially when different types of enzymes that work cooperatively are assembled together. However, exploring the proper method to achieve protein assemblies with high stability and also to avoid loss of the function of each component for efficient enzyme clustering is remained challenging. Assembling proteins onto synthetic scaffolds through varied post-translational modification methods is particularly favored since the proteins can be site-specifically conjugated together with less activity loss. Here, a SpyCatcher polymer is prepared through catalytic reaction of horseradish peroxidase (HRP) and serves as a polymeric proteinaceous scaffold for construction of protein assemblies. Taking advantage of the favorable SpyCatcher–SpyTag interaction, SpyTagged proteins can be easily assembled onto the polymeric SpyCatcher scaffold with controllable binding ratio and site specificity. Firstly, the feasibility of construction of ratio-controllable binary artificial hemicellulosomes by assembling endoxylanase and arabinofuranosidase is explored. This construct achieves higher sugar conversion than that of the free enzymes when the proportion of arabinofuranosidase is high, because the close spatial proximity of the enzymes allows them to work in a synergistic manner. Another application for biosensing is developed by conjugating SpyTagged Nanoluc and protein G onto SpyCatcher polymer. Due to the protein clustering effect, an amplified luminescent intensity is achieved by the resulting conjugates than chimera protein of Nanoluc and protein G in ovalbumin detection in ELISA..
28. Mari Takahara, Rie Wakabayashi, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya, Primary Amine-Clustered DNA Aptamer for DNA-Protein Conjugation Catalyzed by Microbial Transglutaminase, Bioconjugate Chemistry, 10.1021/acs.bioconjchem.7b00594, 28, 12, 2954-2961, 2017.12, [URL], DNA-protein conjugates are promising biomolecules for use in areas ranging from therapeutics to analysis because of the dual functionalities of DNA and protein. Conjugation requires site-specific and efficient covalent bond formation without impairing the activity of both biomolecules. Herein, we have focused on the use of a microbial transglutaminase (MTG) that catalyzes the cross-linking reaction between a glutamine residue and a primary amine. In a model bioconjugation, a highly MTG-reactive Gln (Q)-donor peptide (FYPLQMRG, FQ) was fused to enhanced green fluorescent protein (FQ-EGFP) and a primary amine-clustered DNA aptamer was enzymatically synthesized as a novel acyl-acceptor substrate of MTG, whose combination leads to efficient and convenient preparation of DNA-protein conjugates with high purity. Dual functionality of the obtained DNA-EGFP conjugate was evaluated by discrimination of cancer cells via c-Met receptor recognition ability of the DNA aptamer. The DNA aptamer-EGFP conjugate only showed fluorescence toward cells with c-Met overexpression, indicating the retention of the biochemical properties of the DNA and EGFP in the conjugated form..
29. Moriyama, Kousuke, Naito, Shono, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya, Enzymatically prepared redox-responsive hydrogels as potent matrices for hepatocellular carcinoma cell spheroid formation, BIOTECHNOLOGY JOURNAL, 10.1002/biot.201600087, 11, 11, 1452-1460, 2016.11.
30. Takahara, Mari, Budinova, Geisa Aparecida Lopes Goncalves, Nakazawa, Hikaru, Mori, Yutaro, Umetsu, Mitsuo, Kamiya, Noriho, Salt-Switchable Artificial Cellulase Regulated by a DNA Aptamer, BIOMACROMOLECULES, 10.1021/acs.biomac.6b01141, 17, 10, 3356-3362, 2016.10.
31. Mori, Yutaro, Budinova, Geisa Aparecida Lopes Goncalves, Nakazawa, Hikaru, Umetsu, Mitsuo, Kamiya, Noriho, One-dimensional assembly of functional proteins: toward the design of an artificial cellulosome, Mol. Syst. Des. Eng., 10.1039/C6ME90005D, 1, 1, 66-73, 2016.04, In biological systems, proteins can form well-organized, higher-order structures with unique functions that would be difficult to achieve with a single protein. These proteinaceous supramolecular structures form by self-assembly, and the spatial arrangement of the protein building blocks in them is very important. In the present study, an artificial system was developed using recombinant proteins as building blocks, which were assembled in a one-dimensional manner. The assembly of these building blocks was based on the avidin-biotin interaction. A tetrameric biotin ligand unit was designed so that the 1:4 stoichiometry of the avidin-biotin interaction was altered to a 1:2 directional interaction between the streptavidin and tetrabiotinylated protein units. In a proof-of-concept study, site-specifically tetrabiotin-labeled endoglucanase and cellulose-binding module units were prepared, then these components were self-assembled by mixing with streptavidin to mimic a natural cellulosome. The formation of one-dimensional assemblies of the protein units depended on the stoichiometry of the avidin-biotin interaction sites in the system. Interestingly, the saccharification efficiency improved when the component ratio of protein units in the assemblies was changed..
32. Yukiho HOSOMOMI, Teppei NIIDE, Rie Wakabayashi, Masahiro Goto, Noriho Kamiya, Biocatalytic Formation of Gold Nanoparticles Decorated with Functional Proteins inside Recombinant Escherichia coli Cells, ANALYTICAL SCIENCES, 32, 3, 295-300, Cover page illustration, 2016.03.
33. Hayashi, Kounosuke, JAE MAN LEE, Tomozoe, Yusuke, takahiro kusakabe, 神谷 典穂, Heme precursor injection is effective for Arthromyces ramosus peroxidase fusion protein production by a silkworm expression system, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 10.1016/j.jbiosc.2015.02.013, 120, 4, 384-386, 2015.10.
34. Lili Jia, LOPES GONCALVES GEISA APARECIDA, Yusaku Takasugi, Yutaro Mori, Shuhei Noda, Tsutomu Tanaka, Hirofumi Ichinose, 神谷 典穂, Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse, BIORESOURCE TECHNOLOGY, 10.1016/j.biortech.2015.02.041, 185, 158-164, 2015.06.
35. Kousuke Moriyama, Rie Wakabayashi, Masahiro Goto, 神谷 典穂, Enzyme-mediated preparation of hydrogels composed of poly(ethylene glycol) and gelatin as cell culture platforms, RSC ADVANCES, 10.1039/c4ra12334d, 5, 4, 3070-3073, 2015.03.
36. Kousuke Moriyama, Rie Wakabayashi, Masahiro Goto, 神谷 典穂, Characterization of Enzymatically Gellable, Phenolated Linear Poly(Ethylene Glycol) with Different Molecular Weights for Encapsulating Living Cells, BIOCHEMICAL ENGINEERING JOURNAL, 93, 25-30, 2015.01.
37. Kosuke Minamihata, Masahiro Goto, 神谷 典穂, Site-specific conjugation of an antibody-binding protein catalyzed by horseradish peroxidase creates a multivalent protein conjugate with high affinity to IgG, BIOTECHNOLOGY JOURNAL, 10.1002/biot.201400512, 10, 1, 222-226, 2015.01.
38. Kousuke Moriyama, Kosuke Minamihata, Rie Wakabayashi, Masahiro Goto, 神谷 典穂, Enzymatic preparation of a redox-responsive hydrogel for encapsulating and releasing living cells, CHEMICAL COMMUNICATIONS, 10.1039/c3cc49766f, 50, 44, 5895-5898, 2014.08, Horseradish peroxidase-mediated oxidative cross-linking of a thiolated poly(ethylene glycol) is promoted in the absence of exogenous hydrogen peroxide, by adding a small amount of phenolic compound under physiological conditions. The prepared hydrogel can encapsulate and release living mammalian cells..
39. Teppei Niide, Masahiro Goto, 神谷 典穂, Enzymatic self-sacrificial display of an active protein on gold nanoparticles, RSC ADVANCES, 10.1039/c3ra46384b, 4, 12, 5995-5998, 2014.04.
40. H. Abe, M. Goto, N. Kamiya, Protein lipidation catalyzed by microbial transglutaminase, Chem. Eur. J., 17, 14004-14008, 2011.12.
41. K. Minamihata, M. Goto, N. Kamiya, Protein heteroconjugation by the peroxidase-catalyzed tyrosine coupling reaction, Bioconjugate Chem., 22, 2332-2338, 2011.12.
42. T. Niide, M. Goto, N. Kamiya, Biocatalytic synthesis of gold nanoparticles with cofactor regeneration in recombinant Escherichia coli cells, Chem. Commun., 47, 7350-7352, 2011.05.
43. Y. Mori, M. Goto, N. Kamiya, Transglutaminase-mediated internal protein labeling with a designed peptide loop, Biochem. Biophys. Res. Commun., 410, 829-833, 2011.05.
44. Y. Mori, K. Minamihata, H. Abe, M. Goto, N. Kamiya, Protein assemblies by site-specific avidin-biotin interactions, Org. Biomol. Chem., 9, 5641-5644, 2011.05.
45. K. Minamihata, M. Goto, N. Kamiya, Site-specific protein cross-linking by peroxidase-catalyzed activation of a tyrosine-containing peptide tag, Bioconjugate Chem., 22, 74-81, 2011.04.
46. K. Moriyama, K. Sung, M. Goto, N. Kamiya, Immobilization of alkaline phosphatase on magnetic particles by site-specific and covalent cross-linking catalyzed by microbial transglutaminase, J. Biosci. Bioeng., 111, 650-653, 2011.04.
47. M. Kitaoka, Y. Tsuruda, Y. Tanaka, M. Goto, M. Mitsumori, K. Hayashi, Y. Hiraishi, K. Miyawaki, S. Noji, N. Kamiya, Transglutaminase-mediated synthesis of a novel DNA-(enzyme)n probe for highly sensitive DNA detection, Chem. Eur. J., 19, 5387-5392, 2011.03, 生体内ではほとんどのタンパク質が何らかの翻訳後修飾を受けることに着目し、翻訳後修飾過程で働く酵素の基質特異性を利用すれば、狙った部位でタンパク質を修飾できると考えた。従来の有機化学的手法では、タンパク質の狙った部位を選択的に修飾するのは極めて困難であった。そこでラベル化したい有機分子内に基質となる部位(酵素の認識部位)を設計し、これを糊代として利用することで、糊代選択的な生体分子の連結・修飾法を確立した。
既往の方法ではDNAとタンパク質を1:1で連結することしかできなかったが、DNAを構成する分子を酵素の基質となるように設計し、DNA-(タンパク質)n型の新規ハイブリッド分子を高収率で得る技術を確立し、新たな遺伝子検出システムを提案した。.
48. T. Mouri, T. Shimizu, N. Kamiya,* H. Ichinose, M. Goto*, Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase, Biotechnol. Prog., 25, 1372-1378, 2009.10.
49. N. Kamiya,* Y. Shiotari, M. Tokunaga, H. Matsunaga, H. Yamanouchi, K. Nakano, M. Goto, Stimuli-responsive nanoparticles composed of naturally occurring amphiphilic proteins, Chem. Commun., 5287-5289, 2009.08.
50. N. Kamiya,* H. Abe, M. Goto, Y. Tsuji, H. Jikuya, Fluorescent substrates for covalent protein labeling catalyzed by microbial transglutaminase, Org. Biomol. Chem., 7, 3407-3412, 2009.08.
51. K. Minamihata, N. Kamiya,* S. Kiyoyama, H. Sakuraba, T. Ohshima, M. Goto, Development of a novel immobilization method for enzymes from hyperthermophiles, Biotechnol. Lett., 31, 1037-1041, 2009.07.
52. Y. Tahara, S. Honda, N. Kamiya, H. Piao, A. Hirata, E. Hayakawa, T. Fujii, M. Goto, A solid-in-oil nanodispersion for transcutaneous protein delivery, J. Contrl. Rel., 131, 14-18, 2008.07.
53. N. Kamiya, Y. Matsushita, M. Hanaki, K. Nakashima, M. Narita, M. Goto, H. Takahashi, Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media., Biotechnol. Lett., 30, 1037-1040, 2008.06.
54. M.M.Zaman, K. Nakashima, N. Kamiya, M. Goto, Water-in-Ionic Liquid Microemulsions as a New Medium for Enzymatic Reactions, Green Chem., 10, 497-500, 2008.05.
55. K. Nakashima, N. Kamiya, T. Maruyama, M. Goto, Spectrophotometric assay for protease activity in ionic liquids using chromogenic substrates, Anal. Biochem., 374, 285-290, 2008.03.
56. M.M.Zaman, K. Nakashima, N. Kamiya, M. Goto, Formation of reversed micelles in a room temperature ionic liquid., ChemPhysChem, 9, 689-692, 2008.03.
57. N. Kamiya, S. Doi, Y. Tanaka, H. Ichinose, M. Goto, Functional immobilization of recombinant alkaline phosphatases bearing a glutamyl donor substrate peptide of microbial transglutaminase, J. Biosci. Bioeng., 104, 195-199, 2007.09.
58. H. Hirakawa, N. Kamiya, T. Tanaka, T. Nagamune, Intramolecular electron transfer in a cytochrome P450cam system with a site-specific branched structure, Protein Eng. Des. Sel., 20, 453-459, 2007.09.
59. Y. Tanaka, Y. Tsuruda, M. Nishi, N. Kamiya, M. Goto, Exploring enzymatic catalysis at a solid surface: a case study with transglutaminase-mediated protein immobilization, Org. Biomol. Chem., 5, 1764-1770, 2007.05.
60. J. Tominaga, N. Kamiya, M. Goto, An enzyme-labeled protein polymer bearing pendant haptens, Bioconjugate Chem., 18, 860-865, 2007.03.
61. K. Nakashima, T. Maruyama, N. Kamiya, M. Goto, Activation of lipase in ionic liquids by modification with comb-shaped poly(ethylene glycol), Sci. Technol. Adv. Mater., vol.7, 692-698 (2006), 2007.01.
62. J. Tominaga, Y. Kemori, Y. Tanaka, T. Maruyama, N. Kamiya, M. Goto, An enzymatic method for site-specific labeling of recombinant proteins with oligonucleotides, Chem. Commun., 401-403, 2007.01.
63. H. Piao, N. Kamiya, J. Watanabe, H. Yokoyama, A. Hirata, T. Fujii, I. Shimizu, S. Ito, M. Goto, Oral delivery of diclofenac sodium using a novel solid-in-oil suspension, Int. J. Pharm., vol.313, 159-162 (2006) , 2006.11.
64. K. Nakashima, T. Maruyama, N. Kamiya, M. Goto, Homogeneous Enzymatic Reaction in Ionic Liquids with Poly(ethylene glycol)-Modified Subtilisin, Org. Biomol. Chem., vol.4, 3462-3467 (2006), 2006.10.
65. T.Mouri, N.Kamiya, M.Goto, Increasing the catalytic performance of a whole cell biocatalyst harboring a cytochrome P450cam system by stabilization of an electron transfer component, Biotechnol. Lett., vol.28, 1509-1513 (2006), 2006.05.
66. T.Mouri, J.Michizoe, H.Ichinose, N.Kamiya, M.Goto, A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration, Appl. Microbiol. Biotechnol., vol.72, 514-520 (2006), 2006.04.
67. T.Tanaka, N. Kamiya, T.Nagamune, N-terminal glycine-specific protein conjugation catalyzed by microbial transglutaminase, FEBS Letter, 10.1016/j.febslet.2005.02.064, 579, 10, 2092-2096, vol.579, 2092-2096 (2005), 2005.01.
68. N.Kamiya, S.Doi, J.Tominaga, H.Ichinose, M.Goto, Transglutaminase-mediated protein immobilization to casein nanolayers created on a plastic surface, Biomacromolecules, 10.1021/bm0494895, 6, 1, 35-38, 6, 35-38 (2005), 2005.01.
69. J. Tominaga, N. Kamiya, S. Doi, H. Ichinose, T. Maruyama, M. Goto, Design of a specific peptide tag that affords covalent and site-specific enzyme immobilization catalyzed by microbial transglutaminase, Biomacromolecules, 10.1021/bm050193o, 6, 4, 2299-2304, vol.6, 2299 -2304 (2005), 2005.01.
主要総説, 論評, 解説, 書評, 報告書等
1. 西岡 莉子, 神谷 典穂, 酵素反応を利用したバイオ医薬品の創製 -抗体の狙った部位に酵素を使って薬を導入する方法, 化学, 2024.02.
2. 西岡 莉子, 神谷 典穂, 新規架橋酵素変異体による抗体薬物複合体の創製, BIO INDUSTRY, 2024.03.
3. 内田 和希, 神谷 典穂, 脂質二分子膜へのタンパク質のアンカリング技術, BIO INDUSTRY, 2022.03.
4. 佐藤  崚, Dani Permana, 南畑 孝介, 神谷 典穂, 生体触媒を利用した超高分子量タンパク質集合体の構築, ケミカルエンジニヤリング, 2020.01.
5. 高原 茉莉, 神谷 典穂, 人工脂質化タンパク質の調製法, BIO INDUSTRY, 2020.01, 生体系を構成するタンパク質のなかには、脂質が付加されることで新たな機能を獲得するものがある。本稿では、自然界における脂質化タンパク質の生合成機構と機能を概説した後、その機能を評価・活用するために開発された様々な人工脂質化タンパク質の調製法について、最近の展開を紹介する。.
6. Momoko Kitaoka, Rie Wakabayashi, Noriho Kamiya, Masahiro Goto, Solid-in-oil nanodispersions for transdermal drug delivery systems, Biotechnol. J., 11(11), 1375-1385 (2016) [Open Access], 2016.11.
7. LOPES GONCALVES GEISA APARECIDA, Noriho Kamiya, Biomolecular assembly strategies to develop potent artificial cellulosomes, Sustainable Chemical Processes, 2:19 (2014), 2014.10.
8. 林 浩之輔, 神谷 典穂, 核酸検出試薬 Labelling ONE の開発, 酵素工学ニュース, p.21-25, 2013.10.
9. 北岡 桃子, 神谷 典穂, スズラン型核酸プローブによる高感度遺伝子検出と試薬キット開発, BIO INDUSTRY (月刊バイオインダストリー), 2011.10.
10. 神谷 典穂, イオン液体処理によるセルロース系バイオマスの酵素糖化, 化学と生物, 2011.01.
11. 神谷 典穂、後藤 雅宏, イオン液体存在下で機能する酵素, 化学工学, 2009.07.
12. 中島一紀、神谷 典穂、後藤雅宏, 新たな非水溶媒イオン液体中での酵素反応, バイオインダストリー, 2008.07.
13. 神谷典穂, 化学とバイオを酵素でつなぐ 〜トランスグルタミナーゼ応用研究の最近の展開〜, バイオサイエンスとインダストリー, 2006.12.
14. 神谷典穂、後藤雅宏, タンパク質の向きを揃えて並べる技術, 化学, 2006.05.
主要学会発表等
1. 神谷典穂, 架橋酵素前駆体の活性化と生体分子工学への展開, 第29回生物工学会九州支部大会・九州支部創立30周年記念講演会, 2023.12.
2. Noriho Kamiya, Biocatalysis for Biomolecular and Biomaterials engineering, The 9th International Symposium on Applied Chemistry & The 5th International Conference on Chemical & Material Engineering (ISAC-ICCME 2023), 2023.12.
3. 神谷典穂, 微生物由来トランスグルタミナーゼによる人工タンパク質の創製と応用, 第96回日本生化学会大会(シンポジウム:架橋酵素トランスグルタミナーゼの比較生物学的研究の成果と応用), 2023.10.
4. Noriho Kamiya, Ryutaro Ariyoshi, Takashi Matsuzaki, Ryo Sato, Kosuke Minamihata, Konosuke Hayashi, Rie Wakabayashi, Masahiro Goto, Design of engineered active zymogen of microbial transglutaminase, Enzyme Engineering XXVII, 2023.10.
5. Noriho Kamiya, Riko Nishioka, Ryuya Iida, Kosuke Minamihata, Michio Kimura, Engineered Active Zymogen of Microbial Transglutaminase for Antibody-Drug Conjugation, The 16th Asian Congress on Biotechnology (ACB2023), 2023.10.
6. 神谷典穂, 生命活動と連動して機能する人工バイオ分子の創出, 第75回日本生物工学会大会(シンポジウム:未知の生命情報を獲得するためのバイオ分子ツールの設計と機能創出), 2023.09.
7. 神谷典穂、@長棟輝行, 蛋白質工学から生命化学工学への展開 ~上田 宏 博士の足跡を振り返って~, 化学工学会第54回秋季大会(シンポジウム:蛋白質工学から生命化学工学への展開 ~上田宏先生の先駆的業績が残されたもの~), 2023.09.
8. Noriho Kamiya, Hendra Saputra, Pugoh Santoso, Rie Wakabayashi, Toki Taira, Design of Lipid-based Bioconjugates with Antifungal Activity, Young Asian Biological Engineer’s Community (YABEC) 2023, 2023.07.
9. Noriho Kamiya, Rie Wakabayashi, Toki Taira, Enzymatic Protein Lipidation for Biomolecular Engineering at Biointerfaces, The 14th AFOB Regional Symposium (ARS 2023), 2023.04.
10. @Noriho Kamiya, Wahyu Ramadhan, Kosuke Minamihata, Rie Wakabayashi, Uju and Masahiro Goto, Functional modulation of biopolymers by biocatalysts: from bioconjugation to sustainable bioproduction, The 15th Asian Congress on Biotechnology (ACB 2022), 2022.10.
11. @神谷 典穂, 谷口 雅浩, カイコを使ったモノづくり:持続可能なタンパク質生産と事業創造, 2022年度 開発型企業の会 第3回技術交流会 , 2022.10.
12. @Noriho Kamiya, Artificial Lipidation for Biomolecular Engineering at Biointerfaces, 2022 KSBB (Korean Society for Biotechnology and Bioengineering) Fall Meeting and International Symposium, 2022.09.
13. Pugoh Santoso, Kosuke Minamihata, Yugo Ishimine, Hiromasa Taniguchi, Ryo Sato, Masahiro Goto, Tomoya Takashima, Toki Taira, Noriho Kamiya, Synergistic antifungal activity by combining Amphotericin B with lipidated chitinase, APCChE 2022, 2022.08.
14. @Noriho Kamiya, Enzymatic Protein Lipidation for Biomolecular Engineering at Biointerfaces, The 13th AFOB Regional Symposium (ARS 2022) Taiwan series, 2022.06.
15. #内田 和希、#大林 洋貴、@南畑 孝介、@若林 里衣、@後藤 雅宏、@下川 直史、@高木 昌宏、@神谷 典穂, 人工脂質修飾タンパク質の免疫細胞膜上へのアンカリング技術の開発, 化学工学会第87年会, 2022.03.
16. @神谷 典穂, 生体分子工学と昆虫バイオリファイナリー, 第24回 化学工学会 学生発表会, 2022.03.
17. @Noriho Kamiya, Biomolecular engineering with microbial transglutaminase, European Society of Applied Biocatalysis (ESAB) Webinar ‘Enzyme Engineering’, 2022.02.
18. @Noriho Kamiya, Enzymatic manipulation of protein assemblies that function at biointerface, PacificChem2021, 2021.12.
19. 神谷 典穂, 非細胞コンパートメントの構築とその生物工学的応用, 第73回日本生物工学会大会, 2021.10.
20. @神谷 典穂, 生物工学的応用に向けた微小ハイドロゲルビーズの調製と機能化, 第73回日本生物工学会大会(ランチョンセミナー), 2021.10.
21. Noriho Kamiya, Design of Bioconjugates that Function at Biological Interface, The Korean Society for Biotechnology and Bioengineering (KSBB) 2021 International Symposium, 2021.04.
22. 内田和希、大林洋貴、南畑孝介、若林里衣、後藤雅宏、下川直史、高木昌宏、神谷典穂, 酵素反応を利用した脂質修飾によるタンパク質の膜ドメイン選択的提示, 第23回化学工学会学生発表会, 2021.03.
23. 津留杏祐、南畑孝介、後藤雅宏、神谷典穂, 抗体の捕捉と検出を志向した抗体結合性タンパク質固定化微小ハイドロゲルの設計, 化学工学会第86年会, 2021.03.
24. 佐藤崚、南畑孝介、若林里衣、後藤雅宏、神谷典穂, 抗原結合タンパク質の酵素反応による集合化とその機能評価, 化学工学会第86年会, 2021.03.
25. Pugoh Santoso, Takuya Komada, Hiromasa Taniguchi, Yugo Ishimine, Ryo Sato, Kosuke Minamihata, Tomoya Takashima, Toki Taira, Noriho Kamiya, Synergistic Antifungal Action of Lipid-Modified Chitinase With Amphotericin-B, International Chemical Engineering Symposia 2021, 2021.03.
26. 神谷典穂, 生物界面で機能する人工生体触媒の開発, 日本応用酵素協会 酵素研究助成第46回研究発表会, 2020.12.
27. 神谷典穂, 架橋酵素が繋ぐ異分野融合バイオ研究の展開―基礎研究からスタートアップ起業までー, 「九州大学学術研究都市」Seminar in Tokyo 2020, 2020.12, 「九州大学学術研究都市」Seminar in Tokyo 2020.
28. 神谷典穂, カイコを用いた持続可能なタンパク質生産への挑戦, 第10回CSJ化学フェスタ2020, 2020.10, 第10回CSJ化学フェスタ2020, 未来を創る主体者であれ!〜化学系ベンチャーの挑戦〜.
29. 津留杏祐、大濵有紀、Wahyu Ramadhan、南畑孝介、神谷典穂, 抗体の捕捉を志向した融合タンパク質固定化ハイドロゲルの設計と機能評価, 第14回バイオ関連化学シンポジウム, 2020.09.
30. 有吉龍太郎、佐藤崚、南畑孝介、後藤雅宏、神谷典穂, 活性型トランスグルタミナーゼ前駆体の低分子・高分子基質に対する触媒特性の評価, 第14回バイオ関連化学シンポジウム, 2020.09.
31. 佐藤崚、南畑孝介、若林里衣、後藤雅宏、神谷典穂, 様々な高分子水溶液中でのタンパク質架橋酵素の特異な触媒挙動, 第14回バイオ関連化学シンポジウム, 2020.09.
32. 津留杏祐、大濵有紀、Wahyu Ramadhan、南畑孝介、神谷典穂, 抗体捕捉能を有する機能性微小ハイドロゲルの設計, 化学工学会第51回秋季大会, 2020.09.
33. 谷口浩誠、Pugoh Santoso、駒田拓也、佐藤崚、南畑孝介、石嶺悠悟、平良東紀、神谷典穂, 酵素触媒を用いた脂質修飾キチナーぜの調製と抗真菌活性の評価, 化学工学会第51回秋季大会, 2020.09.
34. 有吉龍太郎、佐藤崚、南畑孝介、後藤雅宏、神谷典穂, 異なる基質特異性を示す活性型トランスグルタミナーゼ前駆体の機能評価, 化学工学会第51回秋季大会, 2020.09.
35. 佐藤崚、南畑孝介、若林里衣、後藤雅宏、神谷典穂, タンパク質架橋酵素の触媒挙動に与える分子クラウディング剤の効果, 化学工学会第51回秋季大会, 2020.09.
36. 神谷典穂, 酵素が触媒する分子間架橋反応に立脚した生体分子工学の展開, 九州大学ベンチャーエコシステム連絡会, 2020.08.
37. 大濵有紀、南畑孝介、若林里衣、後藤雅宏、神谷典穂, 微小ゲル内での無細胞合成系を利用したタンパク質スクリーニング系の構築, 日本バイオマテリアル学会 九州ブロック第9回講演会, 2020.01.
38. Noriho Kamiya, Biomolecular engineering for sustainable production of designer functional proteins, The 10th Symposium on Innovative Bioproduction Taichung (iBioT2019), 2019.11.
39. Noriho Kamiya*, Dani Permana, Wahyu Ramadhan, Kosuke Minamihata, Masahiro Goto, Biomolecular engineering by oxidative enzymatic manipulation, The 25th Young Asian Biological Engineer’s Community 2019, 2019.11.
40. Noriho Kamiya, Biomolecular engineering by biocatalysis for designer bio-based functional materials, International Symposium of Innovative Bio-production Indonesia on Biotechnology & Bioengineering (ISIBio2019), 2019.10.
41. Noriho Kamiya*, Kosuke Minamihata, Biomolecular engineering toward sustainable production of value-added functional proteins, 18th Asian Pacific Confederation of Chemical Engineering Congress (APCChE 2019), 2019.09.
42. 神谷典穂, 南畑孝介, 日下部宜宏, 蚕を起点とする持続可能な高付加価値タンパク質生産プロセスの構築, 日本生物工学会2019年度大会, 2019.09.
43. Noriho Kamiya, Enzymatic biomolecular engineering toward designer bioconjugates and biomaterials, The 14th Asian Congress on Biotechnology (ACB 2019), 2019.07.
44. Rie Wakabayashi, Hiroki Obayashi, Noriho Kamiya, Masahiro Goto, Complemantary interaction with peptide amphiphiles guided the intracellular delivery of small molecular drugs, The 24th Symposium of Young Asian Biological Engineers' Community (YABEC2018), 2018.11.
45. Noriho Kamiya, Takashi Matsuzaki, Ryo Sato, Kounosuke Hayashi, Rie Wakabayashi, Kosuke Minamihata, Engineered active zymogen of microbial transglutaminase, The 15th Japan-China-Korea Joint Symposium on Enzyme Engineering, 2018.07.
46. Noriho Kamiya, Biocatalyst Engineering toward Biomedical Applications, ACB (Asian Congress on Biotechnology) 2017, 2017.07.
47. Noriho Kamiya, Enzyme-mediated Design of Functional Bioconjugates and Biomaterials, 2017 BEST Conference, 2017.06.
48. Noriho Kamiya, Mari Takahara, Rie Wakabayashi, Masahiro Goto, Design of novel biocatalysts by enzymatic biomolecular conjugation, The 9th AFOB Regional Symposium (ARS 2017), 2017.02.
49. Noriho Kamiya, 生体触媒を活用した新奇ナノハイブリッド分子の設計, nano tech 2017, 2017.02.
50. 神谷 典穂, 南畑 孝介, Enzymatic Conjugation Strategy for the Design of Artificial Biomolecular Assemblies, 2016 AIChE Annual Meeting, 2016.11.
51. 神谷 典穂, Exploring biological strategies for sustainable utilization of lignocellulosic biomass, The e-ASIA Joint Research Program (e-ASIA JRP) Project Workshop, 2016.09.
52. 神谷 典穂, 森 裕太郎, 川嶋宏希, 南畑 孝介, 田中 勉, 中澤 光, 梅津光央, 自己集合型酵素複合体の設計と固相基質に対する触媒特性, 第10回バイオ関連化学シンポジウム, 2016.09.
53. 神谷 典穂, 固相基質界面で機能する酵素複合材料の設計, 第16回日本蛋白質科学会年会, 2016.06.
54. 神谷 典穂, One-dimensional assembly of functional proteins by avidin-biotin interaction, Asian Congress on Biotechnology (ACB) 2015, 2015.11.
55. 神谷 典穂, Design of biomolecular assemblies by enzymatic protein manipulation, NANO KOREA 2015, 2015.07.
56. 神谷 典穂, Molecular design of biocatalytic assemblies for sustainable biotechnological applications, ARS 2015, 2015.05.
57. 神谷 典穂, Potential use of oxidoreductases for the fabrication of biomaterials, Active Enzyme Molecule 2014, 2014.12.
58. 神谷 典穂, Enzyme as a Catalytic Tool for Fabrication of Biomaterials, The 13th CJK Symposium on Enzyme Engineering, 2014.11.
59. 神谷 典穂, Self-sacrificial display of an active protein on gold nanoparticles, YABEC 2014, 2014.11.
60. 神谷 典穂, ENZYMATIC APPROACHES FOR ACCELERATING CELLULOSIC BIOMASS HYDROLYSIS, 16th International Biotechnology Symposium and Exhibition - IBS 2014, 2014.09.
61. 神谷 典穂, Enzyme as a catalytic tool for designing new bioconjugates, 2014 BEST Conference, 2014.06, Proteins exhibit multiple roles in living systems. In particular, enzymes facilitate metabolic pathways by catalyzing the different types of chemical reactions to sustain our life. A variety of enzyme functions have been exploited in both biochemical studies and biotechnological applications, however, there has still been a room for applying biocatalysis for the design and creation of artificial biomaterials.
In natural biological systems, proteins often form well-organized higher-order structures that associate unique functions, which cannot be accessed by a single protein unit alone. Interestingly, enzymatic post-translational modification of protein building blocks plays an important role in the formation of multi-subunit macromolecular structures.
Inspired by nature’s strategy, we are interested in configuring biocatalysis for creating new functional biomaterials. Herein, I’ll introduce our strategies which will be exemplified by three different types of enzymes (microbial trasnglutaminase, horseradish peroxidase, and glycerol dehydrogenase) to create (nano)biomaterials with distinct functions in line with their possible applications..
62. 神谷 典穂, Biomolecular Assembly by Enzymatic Conjugation and Scaffolding, 2013 KSBB Spring Meeting and International Symposium, 2014.04.
63. 神谷 典穂, Protein assembly design by enzymatic conjugation and scaffolding, 化学工学会第79年会(国際セッション), 2014.03.
64. 神谷 典穂, Assembling enzymes on a DNA scaffold for Biotechnological Applications, Asian Congress on Biotechnology (ACB-2013), 2013.12.
65. 神谷 典穂, タンパク質機能のアセンブリデザイン, 九州大学未来化学創造センター ナノバイオアセンブリWS, 2013.11.
66. 神谷 典穂, 機能性タンパク質の部位特異的アセンブリ技術の開発と応用, INCHEM TOKYO 2013 産学官マッチングフォーラム, 2013.10.
67. 神谷 典穂, 酵素基質の分子設計に基づくタンパク質の翻訳後修飾技術の開発と応用, 第1回バイオ関連化学シンポ若手フォーラム, 2013.09.
68. 神谷 典穂, Substrate engineering for enzymatic site-specific and covalent modification of functional proteins, Enzyme Engineering XXII: Emerging Topics in Enzyme Engineering, 2013.09.
69. 神谷 典穂, 機能性タンパク質の部位特異的アセンブリ技術の開発と応用, 化学工学会第45回秋季大会シンポジウム「バイオ関連最先端・次世代研究によるグリーンイノベーション」, 2013.09.
70. 森 裕太郎, Rie Wakabayashi, Masahiro Goto, 神谷 典穂, Fabrication of higher-order protein supramolecular complexes, IGER International Symposium on Cell Surface Structures and Functions, 2013.09.
71. 神谷 典穂, Protein Supramolecular Complex Formation by Site-specific Protein Interactions and Scaffolding, IGER International Symposium on Cell Surface Structures and Functions, 2013.09, Proteins are biomacromolecules exhibiting multiple roles in living systems. A variety of protein functions have proven to be valuable in both biochemical studies and biotechnological applications. In natural biological systems, proteins often form well-organized higher-order structures that associate unique functions, which cannot be accessed by a sole protein unit. In the formation of multi-subunit protein polymers such as cell-surface pili in gram-positive bacteria, self-assembly of protein building blocks plays an important role, and interestingly, post-translational modification also facilitates the growth and stabilization of proteinaceous polymeric structures by introducing covalent bonds at specific sites of protein subunits.
Toward designer protein supramolecular complexes (PSCs), ordered protein assemblies have been designed by either site-specific ligand-receptor interaction or site-specific protein labeling onto a scaffold molecule based on a transglutaminase-catalyzed post-translational, site-specific protein modification technique with artificial substrates. For the former, strong and specific molecular interaction between a natural receptor protein, streptavidin (SA), and its small molecular ligand, biotin, was selected. By using a dimeric Escherichia coli alkaline phosphatase (AP) as a symmetric protein building block, we evaluated how the avidin-biotin interaction sites between protein units affect the formation of PSCs composed of AP and SA.[1] For the latter, we have selected nucleic acid as a polymeric scaffold, and created novel DNA- and RNA-(enzyme)n conjugate, a nucleic acid-enzyme hybrid with 1:n stoichiometry.[2] Our challenge for cellulosomal design with a nucleic acid scaffold will be also presented.[3] .
72. 神谷 典穂, Development of New Biomolecular Conjugation Techniques and Their Applications, YABEC 2013, 2013.08.
73. 神谷 典穂, Manipulating biomolecules through enzymatic post-translational protein modification, 2013 KMB's 40th Anniversary International Symposium "Recent Breakthroughs in Microbial Biotechnology: From Bench to Industry", 2013.07, Site-specific modification of proteins with a variety of organic molecules represents a valuable approach to obtain biologically active and homogeneous protein formulations. In particular, site-specific and covalent protein manipulation catalyzed by enzymes that function in post-translational modifications is practical because enzymatic transformations offer high substrate specificity under protein-friendly conditions. Recombinant proteins tagged with a short peptide, which can be post-translationally modified by a specific enzyme, have been successfully employed for this purpose.
Our group has focused on the utility of microbial transglutaminase (MTG) from Streptomyces mobaraensis in biotechnology. Transglutaminase is an enzyme that catalyzes covalent bond formation between the side chains of specific Gln and Lys residues of target peptides and proteins in post-translational modification process. By combining simple chemistry and MTG-catalyzed reaction, we have demonstrated site-specific protein conjugation with genetically introduced substrate peptide tags, site-specific protein immobilization to solid surfaces and site-specific protein labeling with new chemical entities. The basic concept has recently been extended to enzymatic conjugation of functional proteins with oligonucleotides, DNA and RNA. We are also interested in the use of oxidoreductases for enzymatic manipulation of biomolecules. Our recent efforts on biofabrication of a range of unique proteinaceous materials will be presented. .
74. 神谷 典穂, 生体触媒工学, 化学物質評価研究機構公開講座, 2013.06.
75. 神谷 典穂, バイオ化学工学〜バイオリファイナリーと酵素工学, 化学物質評価研究機構公開講座, 2013.01.
76. 神谷 典穂, 酵素反応を活用した生体分子工学と産学連携への取り組み, 福岡新テクノロジー創成シンポジウム, 2012.11.
77. 神谷 典穂, Hiroki Abe, Masahiro Goto, Controlling protein localization by enzymatic protein lipidation, YABEC 2012, 2012.10.
78. 神谷 典穂, タンパク質機能の集積化における酵素触媒反応の活用, 日本生物工学会創立90周年記念大会シンポジウム「デザイナブルバイオインターフェース」, 2012.10.
79. 神谷 典穂, 酵素反応を活用した翻訳後タンパク質修飾法の開発と応用, 公益社団法人 新化学技術推進協会(JACI)ライフサイエンス技術部会・材料分科会 講演会, 2012.10.
80. 神谷 典穂, 中元亜耶, Uju, Masahiro Goto, Chiaki Ogino, Nobuhiro Ishida, Potential of pyridinium ionic liquids in a cellulosic biomass pretreatment process, 15th International Biotechnology Symposium and Exhibition, 2012.09.
81. 神谷 典穂, セルロース系バイオマス高効率分解に向けた酵素工学的アプローチ, トークシャワー・イン・九州2012, 2012.09.
82. 神谷 典穂, Designing biocatalysis for protein engineering through enzymatic post-translational modification
, The 2nd International Conference on Molecular and Functional Catalysis, 2012.07.
83. 神谷 典穂, トランスグルタミナーゼの機能性人工基質デザインとその活用, Fusion 3x2: 21世紀を拓くバイオテクノロジーシンポジウム, 2012.06.
84. 神谷 典穂, Momoko Kitaoka, Kounosuke Hayashi, A novel methodology for multiple enzyme labeling on nucleic acid scaffolds, 12th Japan-China-Korea Joint Symposium on Enzyme Engineering, 2012.05.
85. Noriho Kamiya, Uju, Masahiro Goto, Potential of Ionic Liquid Pretreatment for Enzymatic Saccharification of Lignocellulosic Biomass, The 2nd i-BioP Asian Symposium, 2011.12.
86. 神谷典穂,北岡 桃子,後藤 雅宏,三ツ森 正之,林 浩之輔,平石 佳之,宮脇 克行,野地 澄晴 , 翻訳後酵素修飾反応を利用した酵素標識核酸プローブの創製, 第33回日本バイオマテリアル学会大会, 2011.11.
87. Noriho Kamiya, Uju, Masahiro Goto, Wataru Tokuhara, Yoshiuki Noritake, Satoshi Katahira, Nobuhiro Ishida , Potential of ionic liquids pretreatment on lignocellulosic biomass for efficient enzymatic saccharification, YABEC2011, 2011.10, 本研究は、リグノセルロースの酵素触媒による効率的糖化反応に対して、ピリジニウム系イオン液体が極めて効果的であることを示したものである。従来用いられて来たイミダゾリウム系イオン液体とは異なり、イオン液体処理そのものによるセルロース鎖が加水分解を受けることを、多方面から評価し、纏めたものである。本成果は、適当なイオン液体によるバイオマスの前処理により、セルラーゼ成分を低減できる可能性、発酵過程の負荷の低減の可能性を示した点で産業上の価値も高い。.
88. Noriho Kamiya, M.Kitaoka, M. Mitsumori, K. Hayashi, Y. Hiraishi, M. Miyawaki, S. Noji, M. Goto, Enzymatic Creation of a Novel DNA-(Enzyme)n conjugate for Highly Sensitive DNA detection, Defence, Science & Research Conference (DSR2011), 2011.08.
89. 神谷典穂, 工学研究者の視点からの生体触媒の活用 ~トランスグルタミナーゼを例として~, 第4回バイオエンジニアリング研修会, 2011.07.
90. Noriho Kamiya, Kazunori Nakashima, Masahiro Goto, Nobuhiro Ishida, Enzymatic hydrolysis of cellulosic biomass in aqueous-ionic liquid media, China-Japan Joint Sympo on Chem. Eng. , 2011.06.
91. 神谷典穂, 新規酵素標識核酸プローブの開発と応用, 第24回九州分析化学若手の会 春の講演会, 2011.05.
92. 神谷典穂, 新奇バイオハイブリッド分子による極微量遺伝子検出, 第6回未来化学創造センターシンポジウム, 2011.05.
93. Noriho Kamiya, M.Kitaoka, M. Mitsumori, K. Hayashi, Y. Hiraishi, M. Miyawaki, S. Noji, M. Goto, Enzymatic Fabrication of a Novel DNA Probe for Highly Sensitive Nucleic Acid Detection, 2011 Asian Congress on Biotechnology, 2011.05.
94. 神谷典穂, 酵素反応を利用するタンパク質の翻訳後分子操作技術の展開, 第7回ISITナノテク先端セミナー, 2011.02.
95. Noriho Kamiya, Molecular manipulation of enzymes by bacterial transglutaminase for biotechnological applications, Technical Seminar on Bio-Technology in Japan and the Netherlands, 2011.02.
96. Noriho Kamiya, Yuichi Matsushita, Yasuhiro Shoda, Kazunori Nakashima, Masahiro Goto, Nobuhiro Ishida, Haruo Takahashi, Enzymatic in situ saccharification of cellulosic biomass with ionic liquid pretreatment, Pacifichem2010, 2010.12.
97. 神谷典穂, 革新的核酸ー酵素ハイブリッド化技術の創製, 日本分子生物学会「遺伝子検出用試薬の新展開・従来法との比較」アロカ・ランチョンセミナー, 2010.12.
98. 神谷典穂, 工学研究者の視点からのトランスグルタミナーゼの活用, 第13 回(平成22 年度)トランスグルタミナーゼ研究会学術集会, 2010.12.
99. Noriho Kamiya, Japanese Insectaxis -Why we have and love insects?-, YABEC2010, 2010.11.
100. Noriho Kamiya, Yuichi Matsushita, Yasuhiro Shoda, Kazunori Nakashima, Masahiro Goto, Nobuhiro Ishida, Haruo Takahashi, Cellulase-catalyzed hydrolysis of cellulosic biomass in aqueous-ionic liquid media, The 11th China-Japan-Korea Joint Symposium on Enzyme Engineering, 2010.11.
101. 神谷典穂, 医療と環境に資する酵素エンジニアリング, 化学工学会3支部合同大会「支部若手研究者間の ネットワーク構築」シンポジウム, 2010.10.
102. 神谷典穂, 生体環境をモニタリングする新規核酸プローブの創製, 日本生物工学会「ナノバイオテクノロジーによる環境への新アプローチ」シンポジウム, 2010.10.
103. 神谷典穂, 微生物由来トランスグルタミナーゼの機能性人工基質のデザイン, 日本農芸化学会シンポジウム「タンパク質を修飾する酵素反応の活用と新展開」, 2010.03.
104. 神谷典穂, イオン液体の活用によるセルロース前処理と酵素糖化の同時促進, 第61回日本生物工学会大会 シンポジウム「バイオマス糖化技術の新展開」, 2009.10.
105. 神谷典穂, 翻訳後修飾酵素の活用によるハイブリッドタンパク質工学, 第12回日本化学会バイオテクノロジー部会シンポジウム, 2009.08.
106. Noriho Kamiya, Site-specific and Covalent Protein Labeling with DNA by Enzymatic Post-translational Protein Modification, The 7th A3 (China-Japan-Korea) Foresight Meeting on Gene Therapy & Biomaterials, 2009.05.
107. 神谷典穂, トランスグルタミナーゼの活用による新規有用タンパク質の創製, 第8回 日本蛋白質科学会年会、WS「社会貢献を目指す蛋白工学」, 2008.06.
108. 神谷典穂, 産業応用を目指した人工酵素ハイブリッドの創製, 第3回産業用酵素シンポジウム, 2008.03.
109. Noriho Kamiya, Jo Tominaga, Tatsuo Maruyama, Masahiro Goto, A New Methodology for Labeling DNA with Enzymes and Its Application to DNA-Directed Immobilization, APBioChEC'07, 2007.11.
110. Noriho Kamiya, Microbial transglutaminase: a potent enzyme that contributes to biochemical engineering, YABEC2007, 2007.10.
特許出願・取得
特許出願件数  7件
特許登録件数  1件
その他の優れた研究業績
2024.03, インドネシアボゴール農科大学と工学研究院のMOU締結に際し、工学研究院代表として取り纏めを行った。.
2021.03, 薬学部西田教授、農学部日下部教授との共同研究を通して、コロナウイルス感染予防に関する基礎研究成果の創出 (Clomipramine suppresses ACE2-mediated SARS-CoV-2 entry) に貢献した。.
2014.04, インドネシアボゴール農科大学と本学のMOU締結に際し、工学研究院代表として取り纏めを行った。.
学会活動
所属学会名
日本バイオマテリアル学会
日本農芸化学会
日本DDS学会
化学工学会
日本生物工学会
酵素工学研究会
バイオサイエンスとインダストリー協会
学協会役員等への就任
2017.10~2025.03, 日本化学会バイオテクノロジー部会, 幹事.
2017.04~2025.03, 化学工学会 九州支部, 幹事.
2021.04~2025.03, 化学工学会 九州支部, 代議員.
2016.04~2025.03, 日本生物工学会 九州支部評議員, 運営委員.
2019.06~2023.05, 日本生物工学会 理事, 理事.
2013.04~2025.03, 化学工学会 バイオ部会, 幹事.
2022.04~2025.03, Asian Federation of Biotechnology, 運営委員.
2018.04~2025.03, 酵素工学研究会, 委員.
2013.04~2022.03, 化学工学会 バイオ部会, 幹事.
2018.04~2021.03, 酵素工学研究会, 運営委員.
2020.04~2021.03, 日本生物工学会 九州支部, 運営委員.
2017.04~2018.03, 日本生物工学会 九州支部, 幹事.
2014.04~2018.03, 酵素工学研究会, 幹事.
2013.04~2016.03, 日本生物工学会 九州支部, 運営委員.
2015.04~2017.03, 化学工学会 九州支部, 運営委員.
2009.04~2013.03, 化学工学誌トピックス委員(バイオ部会), .
2001.04~2014.03, 酵素工学研究会, 幹事.
2013.04~2014.03, 化学工学会 九州支部, 幹事.
2011.04~2013.03, 化学工学会九州支部, 幹事.
2012.04~2013.03, 化学工学会 バイオ部会, 役員.
2011.04~2012.03, 化学工学会 Post-vision 2011委員会, 幹事.
2010.04~2012.03, 北九州化学工学懇話会(KACE), 幹事.
2007.04~2010.03, JBAトピックス委員, .
学会大会・会議・シンポジウム等における役割
2023.09.12~2023.09.12, 化学工学会第54回秋季大会シンポジウム, オーガナイザー.
2023.09.04~2023.09.04, 第75回日本生物工学会大会シンポジウム, 世話人.
2020.05.01~2020.10.01, 第14回バイオ関連化学シンポジウム, 総務.
2019.07.03~2019.07.03, ACB 2019, 座長(Chairmanship).
2018.11.17~2018.11.17, Young Asian Biochemical Engineer's Community (YABEC) 2018, 座長(Chairmanship).
2017.03.16~2017.03.19, 日本化学会第97春季年会, 座長(Chairmanship).
2016.10.27~2016.10.29, YABEC (Young Asian Biochemical Engineer's Community) 2016, Chair.
2015.10.27~2015.10.27, 第67回日本生物工学会大会 シンポジウム「バイオ界面における要素技術から展開する新たな生体分子工学」, シンポジウムオーガナイザー.
2015.10.27~2015.10.27, 第67回日本生物工学会, 座長(Chairmanship).
2015.10.15~2015.10.17, Young Asian Biochemical Engineer's Community (YABEC) 2015, 座長(Chairmanship).
2015.09.16~2015.09.17, スマートバイオデザイン研究会, 世話人.
2015.05.27~2015.05.30, AFOB Regional Symposium 2015, 座長(Chairmanship).
2015.01.06~2015.01.07, 平成26年度化学工学会バイオ部会インフォーマルミーティング, 実行委員.
2014.11.06~2014.11.08, YABEC 2014, 司会(Moderator).
2014.09.10~2014.09.10, 第66回日本生物工学会, 閉会の挨拶.
2014.09.08~2012.09.10, 第66回日本生物工学会大会 シンポジウム「バイオベンチャーを創出する生体分子・バイオ界面工学のイノベーション」, シンポジウムオーガナイザー.
2014.04.26~2014.04.26, 酵素工学研究会第71回講演会, 運営総括.
2014.04.01~2015.03.31, YABEC (Young Asian Biochemical Engineer's Community) 2014, 日本代表.
2014.01.21~2014.01.22, Korea-Japan Smart Biodesign Workshop: Technology exchange for green biotechnology, 座長(Chairmanship).
2013.09.17~2013.09.17, 化学工学会第45回秋季大会シンポジウム「バイオ関連最先端・次世代研究によるグリーンイノベーション」, シンポジウムオーガナイザー.
2013.09.17~2013.09.17, 化学工学会第45回秋季大会, 学生ポスター賞審査委員.
2013.09.16~2013.09.16, 化学工学会第45回秋季大会, 座長(Chairmanship).
2013.09.01~2013.09.03, IGER International Symposium on Cell Surface Structures and Functions, 座長(Chairmanship).
2013.04.01~2014.03.31, YABEC (Young Asian Biochemical Engineer's Community) 2013, 日本代表.
2012.12.14~2012.12.15, International Symposium on Chemical Engineering, 座長(Chairmanship).
2012.12.07~2012.12.08, 第3回イオン液体討論会, 実行委員.
2012.12.07~2012.12.08, 第3回イオン液体討論会, 座長(Chairmanship).
2012.10.26~2012.10.26, 化学工学会に関する大分ワークショップ, 化学工学会九州支部学生賞審査委員.
2012.10.24~2012.10.24, 日本生物工学会創立90周年記念大会シンポジウム, 座長(Chairmanship).
2012.10.01~2012.10.31, YABEC (Young Asian Biochemical Engineer's Community) 2012, 副実行委員長.
2012.09.18~2012.09.18, 日本生物工学会90周年記念国際シンポジウム「Biomolecular Enginnering」, シンポジウムオーガナイザー.
2012.09.17~2012.09.17, 15th International Biotechnology Symposium and Exhibition, 座長(Chairmanship).
2012.09.15~2012.09.15, 第64回日本生物工学会大会 シンポジウム「デザイナブルバイオインターフェース」, シンポジウムオーガナイザー.
2012.06.30~2012.06.30, 化学関連支部合同九州大会, ポスター賞審査委員.
2012.05.29~2012.05.29, 12th Japan-China-Korea Joint Symposium on Enzyme Engineering, 座長(Chairmanship).
2012.03.16~2012.03.16, 化学工学会第77 年会, 司会(Moderator).
2012.03.15~2012.03.17, 化学工学会第77 年会, 座長(Chairmanship).
2011.09.01~2011.09.30, 第63回日本生物工学会大会 シンポジウム「ナノアーキテクチャによる生体分子工学の新たな展開」, シンポジウムオーガナイザー.
2011.04.01~2012.03.31, YABEC (Young Asian Biochemical Engineer’s Community) 11, 日本幹事委員.
2011.03.15~2011.03.15, 化学工学会第76 年会, 座長(Chairmanship).
2010.12.04~2010.12.04, 化学工学に関する国際シンポジウム, 座長(Chairmanship).
2010.11~2010.11, 第62回日本生物工学会大会 シンポジウム「ナノバイオテクノロジーによる環境へのアプローチ」, シンポジウムオーガナイザー.
2010.11~2010.11, YABEC (Young Asian Biochemical Engineer’s Community) 10, 日本幹事委員.
2010.04~2009.04, 酵素工学研究会第63回講演会, 座長(Chairmanship).
2010.03~2010.03, 日本農芸化学会シンポジウム「タンパク質を修飾する酵素反応の活用と新展開」, オーガナイザー.
2010.03~2010.03, 化学工学会第75 年会, 座長(Chairmanship).
2009.10.01~2009.10.10, 第61回日本生物工学会大会 シンポジウム「バイオマス糖化技術の新展開」, オーガナイザー.
2009.04.24~2009.04.24, 酵素工学研究会第61回公演会, 座長(Chairmanship).
2009.03.18~2009.03.18, 化学工学会第74 年会, 座長(Chairmanship).
2009.03.18~2009.03.18, 化学工学会第74 年会, 司会(Moderator).
2009.03.07~2009.03.07, 第11 回化学工学会学生発表会(岡山大会), 座長(Chairmanship).
2008.11.18~2008.11.18, 化学工学会関西支部姫路大会2008, 座長(Chairmanship).
2008.11.01~2008.11.10, YABEC (Young Asian Biochemical Engineer’s Community) 08, 実行委員.
2008.10.01~2008.10.30, 酵素工学研究会30周年記念シンポジウム, 実行委員.
2008.01.12~2008.01.12, 第10回生命化学研究会, 座長(Chairmanship).
2007.09.01~2007.09.15, 第39回化学工学会秋季大会, 座長(Chairmanship).
2006.11.01~2006.11.30, 化学工学会バイオ部会インフォーマルミーティング, 幹事.
2006.06.01~2006.12.01, 生物工学若手研究者の集い2006, 幹事.
2006.03.01~2006.03.15, 化学工学会第71年会, 座長(Chairmanship).
2004.09.01~2004.09.10, Young Asian Biochemical Engineer's Community 2004, 実行役員.
2004.04.01~2004.04.15, 化学工学会第69年会, 座長(Chairmanship).
2003.09.01~2003.09.15, 平成15年度生物工学会大会, 座長(Chairmanship).
2003.03.01~2003.03.10, 化学工学会第68年会, 座長(Chairmanship).
学会誌・雑誌・著書の編集への参加状況
2020.06~2024.05, Biotechnology and Bioprocess Engineering, 国際, 編集委員.
2019.06~2023.05, Journal of Bioscience and Bioengineering, 国際, 編集委員長.
2017.09~2020.03, BIohemical Engineering Journal, 国際, 編集委員.
2012.04~2017.03, Journal of Chemical Engineering Japan, 国際, 編集委員.
2009.06~2013.05, Journal of Bioscience and Bioengineering, 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2023年度 10        10 
2022年度 200        200 
2021年度 200        200 
2020年度 250        250 
2019年度 250        250 
2018年度 45        45 
2017年度 35        35 
2016年度 25        25 
2015年度 35        35 
2014年度 30        30 
2013年度 30        30 
2012年度 35        35 
2011年度 35      36 
2010年度 20        20 
2009年度 15      16 
2008年度 10        10 
2007年度 10        10 
2006年度    
2004年度 10      13 
その他の研究活動
海外渡航状況, 海外での教育研究歴
Bogor Agricultural University, Indonesia, 2023.11~2023.11.
Bogor Agricultural University, Indonesia, 2022.10~2022.10.
Bogor Agricultural University, Indonesia, 2019.10~2019.10.
Bogor Agricultural University, Indonesia, 2015.05~2015.05.
National Cheng Kung University, Taiwan, 2014.06~2014.06.
Texas Christian University, UnitedStatesofAmerica, 2012.08~2012.08.
Massachusetts Institute of Technology, UnitedStatesofAmerica, 2001.10~2002.09.
外国人研究者等の受入れ状況
2023.10~2024.03, 1ヶ月以上, Department of Chemistry - Johannes Gutenberg University Mainz - Germany, Germany, 外国政府・外国研究機関・国際機関.
2022.10~2023.03, 1ヶ月以上, Department of Chemistry - Johannes Gutenberg University Mainz - Germany, Germany, 外国政府・外国研究機関・国際機関.
2017.08~2017.08, 2週間未満, Korea University, Korea, 外国政府・外国研究機関・国際機関.
2016.11~2016.11, 1ヶ月以上, Department of Aquatic Product Technology, Bogor Agricultural University, Indonesia, 外国政府・外国研究機関・国際機関.
2015.07~2015.09, 1ヶ月以上, Department of Aquatic Product Technology, Bogor Agricultural University, Indonesia, 外国政府・外国研究機関・国際機関.
2013.04~2013.04, 2週間未満, SouthKorea, .
2014.11~2014.11, 2週間未満, UnitedStatesofAmerica, 文部科学省.
2013.11~2013.12, 2週間以上1ヶ月未満, UnitedStatesofAmerica, 文部科学省.
2013.06~2013.08, 1ヶ月以上, UnitedStatesofAmerica, 科学技術振興機構.
2013.05~2015.03, 1ヶ月以上, Brazil, 科学技術振興機構.
2010.04~2013.03, 1ヶ月以上, Department of Aquatic Product Technology, Bogor Agricultural University, Indonesia, 外国政府・外国研究機関・国際機関.
2007.05~2010.03, 1ヶ月以上, 九州大学, Japan, .
受賞
第16回 生物工学功績賞, 日本生物工学会, 2022.08.
第20回酵素応用シンポジウム研究奨励賞, 一般財団法人 天野エンザイム科学技術振興財団, 2019.06.
平成30年度化学工学会研究賞, 化学工学会, 2019.03.
第22回 日本生物工学会論文賞, 日本生物工学会, 2014.09.
Honorable Mention Award, Poster Competition in Enzyme Engineering XXII, 2013.09.
平成24年度 九州大学研究・産学官連携活動表彰 , 九州大学, 2012.05.
The Best Presentation Award at APBioChEC'09, Organizing Committee of APBioChEC'09, 2009.11.
平成21年度 九州大学研究・産学官連携活動表彰 , 九州大学, 2009.05.
The Best Poster Paper Award in APBioChEC'07, APBioChEC'07 organizing committe, 2007.11.
平成19年度 九州大学研究・産学官連携活動表彰 , 九州大学, 2007.05.
平成18年度日本生物工学会論文賞, 日本生物工学会, 2006.09.
平成17年度酵素工学奨励賞, 酵素工学研究会, 2005.05.
平成15年度化学工学会奨励賞, 化学工学会, 2004.03.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2023年度~2026年度, 基盤研究(A), 代表, 異種細胞界面で機能する両親媒性人工タンパク質の創製と生物機能の人為的制御.
2019年度~2022年度, 基盤研究(A), 代表, 部分疎水化が創発する両親媒性の理解を通した新たなタンパク質機能の開拓.
2017年度~2018年度, 挑戦的研究(萌芽), 代表, 細胞風呂敷による異種細胞集塊複合構造体の形成と機能評価.
2016年度~2018年度, 基盤研究(B), 代表, タンパク質を構成要素とする超分子型自己集合系の構築と高次機能の創出.
2015年度~2016年度, 挑戦的萌芽研究, 代表, 環境応答型ハイドロゲルを利用した細胞を基材とするバイオマテリアルの創製.
2013年度~2015年度, 基盤研究(B), 代表, 機能性タンパク質の1次元アセンブリによる高次機能創発.
2013年度~2014年度, 挑戦的萌芽研究, 代表, タンパク質提示金ナノ粒子の大腸菌細胞質内調製法の開発.
2006年度~2008年度, 若手研究(A), 代表, 組換え大腸菌を利用するシトクロムP450システムの機能強化.
日本学術振興会への採択状況(科学研究費補助金以外)
2001年度~2002年度, 海外特別研究員, Enzymatic catalysis in nonconventional media.
競争的資金(受託研究を含む)の採択状況
2023年度~2027年度, JST A-STEP本格型, 分担, 大量の微小培養区画を用いたタンパク質高生産微生物のスクリーニング.
2021年度~2025年度, AMED国際競争力のある次世代抗体医薬品製造技術開発, 分担, 次世代抗体医薬品の製造基盤技術開発.
2020年度~2024年度, NEDOカーボンリサイクル実現を加速するバイオ由来製品生産技術の開発, 分担, データベース空間からの新規酵素リソースの創出.
2015年度~2017年度, 大学発新産業創出プログラム(START)(プロジェクト支援型), 分担, オンリーワンカイコリソースと昆虫工場を用いた難発現性有用組換えタンパク質の大量生産システム.
2012年度~2012年度, JST研究成果最適展開支援プログラム(A-STEP)シーズ顕在化タイプ, 代表, 新規抗体-酵素ハイブリッドによる超高感度抗原検出法の確立
.
2011年度~2015年度, JST先端的低炭素化技術開発(ALCA), 代表, デザイナー生体触媒による超高効率バイオマス糖化.
2010年度~2010年度, JST A-STEP 探索研究, 代表, 新規抗体―酵素ハイブリッドによる超高感度抗原検出系の構築.
2009年度~2009年度, JST A-STEP 探索研究, 代表, 新規抗体―酵素ハイブリッドによる超高感度抗原検出系の構築.
2009年度~2009年度, JST 平成20年度シーズ発掘試験, 代表, タンパク質の1ステップマルチラベル化技術の開発.
2008年度~2010年度, JST 平成20年度育成研究, 代表, 革新的部位特異的核酸—酵素ハイブリッド化技術の開発.
2007年度~2008年度, 第6回「トヨタ先端技術共同研究公募」, 代表, イオン液体を反応場とする生体触媒の高度利用技術の開発.
2006年度~2006年度, JST 平成18年度シーズ発掘試験, 代表, 部位特異的核酸—酵素ハイブリッド化技術の開発.
2005年度~2007年度, 産業技術研究助成事業 (経済産業省), 代表, 物理的・化学的・酵素的タンパク質固定化のための表面修飾ガラス基盤の開発.
共同研究、受託研究(競争的資金を除く)の受入状況
2006.04~2007.03, 代表, 蛋白ナノ粒子表面への抗体の固定化方法に関する研究.
2005.08~2008.03, 分担, 逆ミセル型高分子ナノ粒子によるバイオ医薬送達技術の開発.
2006.08~2007.03, 代表, 蛋白ナノ粒子表面への抗体の固定化方法に関する研究.
2004.05~2005.03, 代表, ナノ薄膜中での共役酵素反応を利用した微量検体検出システムの開発.
寄附金の受入状況
2019年度, 公益財団法人 日本応用酵素協会, 2019年度酵素研究助成.
2004年度, ネスレ科学振興会, ネスレ科学振興会2004年度研究助成.
2004年度, 長瀬科学技術振興財団, 長瀬科学技術振興財団研究助成金.
学内資金・基金等への採択状況
2004年度~2004年度, 工学研究院COE若手研究者育成研究助成, 分担, Development of Novel Gene Delivery Systems Using Artificial Protein Nanocapsules.
2003年度~2003年度, 財団法人九州大学後援会 教官の研究プロジェクト助成事業, 代表, 新しい発想に基づく新規経口投与型タンパク質製剤の開発.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。