九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
雉本 信哉(きじもと しんや) データ更新日:2024.03.27

教授 /  工学研究院 機械工学部門 力学システム


主な研究テーマ
領域分離可能な能動音場制御
キーワード:能動音響制御, 領域分離, 多チャンネル制御
2018.04.
制御領域の拡大を目的とした能動音響制御
キーワード:能動音響制御, 波面制御, 多チャンネル制御, 仮想マイクロホン
2015.04.
能動的音響制御を利用する音声マスキング手法
キーワード:能動音響制御,マスキング,適応制御,適応アルゴリズム
2012.10.
能動遮音壁による騒音低減
キーワード:能動音響制御,遮音壁,適応制御,適応アルゴリズム,移動騒音源
2009.04.
制御点の移動に追従する能動音響制御
キーワード:適応制御,能動音響制御,制御点の移動
2004.04.
壁面/床面を透過する衝撃音の能動制御
キーワード:能動音響制御,衝撃音
2008.04.
水素流量の音響的計測法
キーワード:水素流量計,伝播時間
2005.04~2010.03.
漏洩水素の音響的検出手法
キーワード:水素センサ,音響特性
2004.04~2009.03.
外部入射騒音の能動的制御
キーワード:能動的音響制御,適応制御,適応アルゴリズム,移動音源
1999.04.
従事しているプロジェクト研究
SR(スマートラバー)技術を活かした健康・福祉・医療分野における応用に関する事業家研究
2010.04, 代表者:古川勝彦, 産学連携センター.
窓ガラス清掃ロボットの開発
2006.07~2008.03, 代表者:山本元司, 九州大学, 九州大学
実用的なビル窓ガラス清掃用ロボットの研究および開発.
需要家用水素計量システムの研究開発
2005.12~2008.03, 代表者:古川雅人, 九州大学, 九州大学,愛知時計電機株式会社
我が国は,定置型燃料電池を将来のエネルギー・環境政策の要の一つと位置づけ,その開発・普及を推進している.この定置型燃料電池の普及実現のためには,集合住宅やオフィスビルなどへの燃料電池導入が不可欠であるが,それを効率的に運用するためには,水素の製造/貯蔵を集積化して水素配管により各需要家に水素ガスを供給することが有効であり,その目的に適した需要家用水素計量システムの開発が喫緊の課題となっている.この需要家用水素計量システムを超音波式水素流量計により実現するにあたって問題となる,流体力学的・音響学的課題,材料・シールに関する課題,およびシステムの安全運用に関する課題を基礎研究により解決することを目的とする..
研究業績
主要著書
1. 末岡淳男, 雉本信哉, 松崎健一郎, 井上卓見, 劉孝宏, 機械力学演習, 森北出版, 2004.09.
2. 鈴木昭次, 西村正治, 雉本信哉, 御法川学, 機械音響工学, コロナ社, 2004.04.
3. 長松昭男, 萩原一郎, 吉村卓也, 梶原逸朗, 雉本信哉, 音・振動のモード解析と制御, コロナ社, 1996.07.
主要原著論文
1. 田中 亮太郎, 木庭 洋介, 石川 諭, 雉本 信哉, 能動音響制御と音声分離手法を用いた音声明瞭化, 日本機械学会論文集, 10.1299/transjsme.19-00164, 86, 882, 2020.02, Active noise control (ANC) is a technique used to reduce environmental noise in noisy places such as office or aircraft cabin. ANC reduces the overall input signal even when it has necessary information such as conversation as well as noise. In other words, conventional ANC has the disadvantage of reducing the required sound. On the other hand, there are scenes where conversation is desired even in a noisy environment. However, since the entire input signal is reduced, it cannot be solved even by using conventional ANC. We propose speech separation ANC system which separate announce and noise then control only noise component by ANC. To separate noise from the input signal, we focus on the signal separation method of spectral subtraction method and harmonic extraction method. These methods are simple and require a small computational load but have the disadvantage of leaving an estimated noise component. We also propose two signal separation methods which remain less noise component. In this paper, we verify the effectiveness of the proposed signal separation method while comparing it with the conventional signal separation method. Furthermore, the sound attenuation performance of the proposed method is confirmed by a control experiment in an anechoic room..
2. 山下 大地, 木庭 洋介, 石川 諭, 雉本 信哉, 能動音響制御と周波数スペクトル平坦化による低騒音な音声マスキング手法, 日本機械学会, 10.1299/transjsme.18-00146, Vol. 84, No. 866, p. 18-00146, 2018.10, Sound masking is a method that used for protecting speech privacy of conversation at public open space such as a pharmacy or a bank window. In a conventional masking, a masking sound is used to cover contents of conversation. This masking sound which is generated from a loudspeaker allow a third party not to understand what is said, but there is a problem that the sound level is increased because of a masking sound. Against this problem, we proposed Low-noise sound masking method using active noise control (ANC). The approach of this method is to make spectrum of phonemes flat by control sound. It is difficult to recognize phonemes that are processed by this method because the major factor determining the phonemes in speech recognition is the relative relationship of the peaks of its spectrum. In this paper, the sound attenuation performance of the proposed method is validated by control experiments in an anechoic chamber. Moreover, a listening experiment is carried out to investigate the sound masking performance. The result show that comparing with the conventional sound masking method, the proposed method can achieve the sound masking effect with a smaller sound pressure level..
3. 横田 和哉, 木庭 洋介, 石川 諭, 雉本 信哉, 音響伝達特性の変化を考慮した評価点移動時の能動音響制御, 日本機械学会, https://doi.org/10.1299/transjsme.17-00446, Vol. 84, No. 859, p. 17-00446, 2018.10, Because of using interference of sound wave, it is difficult to control in whole three-dimensional acoustic field by Active Noise Control (ANC). Instead, around-head-control is investigated in this paper. In this system, two error microphones are set near ears, and noise is reduced around evaluation points locally. This system requires fast adaptation speed of controller following movement of head, and a problem still remains that the control effect during movement becomes worse. Against this problem, we propose Modified Reference signal Method (MRM). This method improves adaptation speed during movement, by modification of filtering of input signal in Filtered-x. The secondary path model that controller requires is interpolated by the method Ohno et al. proposed. There is modeling error of secondary path caused by interpolation and measuring error of it, and this modeling error causes divergence of controller. In this paper, suppression method of divergence is also investigated. Suppression of divergence is executed by addition of penalty term to evaluation value, and it is equivalent to ridge regression mathematically. Proposed method requires a large number of matrix calculations, therefore reducing method of computational complexity according to acoustic characteristics is also investigated in this paper. The validity of the proposed method is shown by numerical simulation and experiment..
4. Xun Wang, Takayuki Satake, Yosuke Koba, Satoshi Ishikawa, Shinya Kijimoto, Active reduction of the two-way diffraction from a noise barrier by using feedforward control, 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future, INTER-NOISE 2016
Proceedings of the INTER-NOISE 2016 - 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future
, 576-586, 2016.08, This paper develops a feedforward (FF) structure based active noise control (ANC) system that reduces the two-way diffraction from an office partition with the aim of actively creating isolated acoustic domains in open-plan offices. The FF-ANC system can only reduce the noise downstream of the reference sensor due to the causality requirement. Therefore, a coupled FF control structure is proposed to realize the reduction of two-way diffraction. This system applies a two-source loudspeaker array as the control source, and two microphones as the reference and error sensors. The directivity of the loudspeaker array is controlled to emit the control sound only into the corresponding control area. In comparison with the preceding active diffraction reducing systems, using a directivity controlled loudspeaker array can generate an absorptive acoustic boundary rather than a reflective boundary on the diffracting edge, which can isolate the acoustic environment without adding reverberation in a room. The effectiveness of the proposed system is verified by computer simulations..
5. Xun Wang, Yousuke Koba, Satoshi Ishikawa, Shinya Kijimoto, Hybrid active noise barrier with sound masking in open-plan offices, Noise Control Engineering Journal, 10.3397/1/376389, 64, 3, 403-415, 2016.05, [URL], This paper presents a small-typed active noise barrier (ANB) with sound masking techniques for alleviating the noise problem and protecting the speech privacy in open-plan offices. This soundproof system reduces and masks the undesired sound simultaneously so that lower level of the masker is required to achieve the sound masking effect, comparing with the conventional sound masking systems. First, a real-time experiment to verify the noise attenuation performance of the proposed system for practical application has been conducted in a real office room. In the experiment, the influence of background noise on the system performance has also been investigated. The experiment results show that 3-8 dB active noise attenuation can be achieved behind the ANB in an office room. Moreover, in order to select an appropriate masker for the sound masking part of the system, several maskers have been compared and investigated by listening experiments. The results suggest that the stationary maskers are more suitable for the sound masking in offices by considering the sound masking performance and the annoyance of the maskers comprehensively..
6. 王循, 木庭洋介, 石川 諭, 雉本 信哉, ハイブリッドANCシステムを用いた能動的遮音壁(ロバスト性能を確保できる適応型フィードバックANCシステムの提案及び適用), 日本機械学会, 10.1299/transjsme.15-00532, Vol. 82, No. 835, 15-00532-15-00532, p. 15-00532, 2016.02, In this paper, an adaptive robust feedback (FB) active noise control (ANC) system is proposed and applied to the previously developed active noise barrier (ANB) using a hybrid (HB) ANC system, which aims to relieve the indoor noise problem. The FB control is preferred for this small-typed ANB application because only error sensor is required for the FB control system so that a compact controller can be easily realized. In practice, however, the robust stability of the FB controller must be considered. Moreover, the waterbed effect of the FB control will cause noise enhancement at some frequencies out of the target band of control. In order to design a robust controller with limited noise enhancement in real-time control, a modified frequency domain block LMS (modified FDB-LMS, MFDB-LMS) algorithm, which has the reduced computation complexity and the same steady-state performance comparing with the conventional FDB-LMS algorithm, is proposed in this paper, firstly, owing to the easiness to verify the robust stability and the noise enhancement constraints in the frequency domain adaptive process. Then, an internal model control (IMC) typed FB-ANC system exploiting the MFDB-LMS algorithm, into which the constraints to guarantee the robust stability and limit the noise enhancement to within a given value has been integrated, is proposed and applied to the ANB. The effectiveness of the proposed FB-ANC system and the noise attenuation performance of the ANB using the proposed system have been validated by simulations..
7. 王循, 木庭洋介, 石川 諭, 雉本 信哉, ハイブリッドANCシステムを用いた能動的遮音壁(ウォーターベッド効果による増音の抑制及び各種音場における減音効果の考察), 日本機械学会, 10.1299/transjsme.15-00064, Vol. 81, No. 827, 15-00064-15-00064, p. 15-00064, 2015.07, In this paper, the hybrid active noise control (HB-ANC) system applied in the active noise barrier (ANB) is improved, and the noise attenuation performace of the ANB is invetigated under four different sound field configurations. This hybird ANB reduces the diffraction noise from top of the ANB and the noise propagated to the head position of the target person behind the ANB simultaneously to achieve higher noise attenuation. However, the waterbed effect of the feedback control part of the HB-ANC system will cause noise enhancement at some frequencies in the control area. In order to solve this problem, the HB-ANC system is improved by adding a filter to cancel the noise enhancement caused by the waterbed effect. Then, the noise attenuation performance of the hybrid ANB under four sound field configurations is evaluated by simulations. The sound field configurations are set up to investigate how the diffraction from side of the ANB and the reflection influence the performance of the ANB. An experiment in the anechoic chamber is also conducted. The results indicate that the low frequency noise attenuation can be obtained in a wide area behind the ANB, and at the head position of the person, the noise attenuation can be ensured within a wider frequency range, even for the sound fields where the uncontrolled diffraction from side and the reflection exist..
8. 王循, 木庭洋介, 石川 諭, 雉本 信哉, ハイブリッドANCシステムを用いた能動的遮音壁, 日本機械学会論文集C編, 10.1299/transjsme.2014dr0165, 80, 814, DR0165-DR0165, 2014.06, In this paper, in order to improve the low frequency noise insulation performance of a noise barrier, a new type of hybrid active noise control (ANC) system is proposed. The proposed system is a combination of feedforward and feedback controller. The reference signal for the feedforward controller is generated in the feedback part, so the reference microphone is not necessary. The feedback controller is used for controlling the acoustic boundary to insulate the diffraction noise, and the feedforward controller is used for reducing the noise at the error microphone which is set to be near the ears of people. As a preliminary work, this paper validated the effectiveness of the proposed ANC system both by simulations and by an experiment. The result shows that the active noise insulation provided by feedback controller and the noise attenuation provided by feedforward controller accumulated in the control area, so that the proposed ANC system has better control performance than individual feedforward or feedback ANC system..
9. 石川 諭, 雉本 信哉, 木庭洋介, 大脇 亮磨, 森 裕樹, 集中系モデルによる2次元音響解析, 日本機械学会論文集B編, 10.1299/kikaib.79.744, 79, 801, 744-748, 2013.05, FDTD method and CIP method are used for an acoustic analysis in time domain. However, these methods do not take into account a sound attenuation from viscosity. In our study, we propose a concentrated mass model which consists of spring-mass-damper system to perform a two-dimensional acoustic analysis. The dampers of this model consider viscosity of air. In this paper, we derive mass, connecting springs, and connecting dampers. The characteristic of connecting spring is derived from the condition of adiabatic change of air, and the connecting damper is derived from the normal stress. To confirm the validity of the proposed model, the numerical results obtained by the concentrated mass model are compared with the theoretical value of a traveling wave, and with the theoretical value of the natural frequency. All numerical computational results agree very well with the theoretical values. Therefore, it is concluded that the proposed model is valid for the two-dimensional acoustic analysis..
10. Yoshiko Ohno, Yosuke Koba, ISHIKAWA Satoshi, Shinya Kijimoto, ACTIVE NOISE CONTROL FOR A MOVING EVALUATION POINT USING STEPSIZE VECTOR AND SECONDARY PATH INTERPOLATION, MJIIT-JUC Joint Symposium 2012, 2012.11.
11. 大野佳子, 池田生馬, 木庭洋介, 松田 浩一, 雉本 信哉, ステップサイズベクトルを用いた評価点移動時の能動音響制御, 日本機械学会論文集C編, 10.1299/kikaic.78.1670, 78, 789, 1670-1679, 2012.05, In three-dimension acoustic field, it is difficult to control in the whole room using active noise control (ANC) technique. Instead, around-head-control is investigated in this paper. By using around-head-control method, an object person can get the noise reduction effect without controlling in the whole space, because it makes around the head quiet locally. Therefore, to realize around-head-control, it is necessary for a controller to follow the head movement. However, there is a problem that the control effect under the movement is worse, and the recovery of control effect after movement is slow by conventional ANC. Against this problem, we propose the new method of improving the adaptation speed when an evaluation point moves. In the algorithm, the updating size appropriate to each coefficient of the adaptive filter is calculated by using a step size vector. The step size vector is calculated from the coefficient of adaptive filter before updating. The validity of the proposal method is shown by the numerical simulation and the experiment in an anechoic chamber..
12. 嘉村俊一, 木庭洋介, 松田 浩一, 雉本 信哉, 周波数領域適応アルゴリズムを用いた衝撃音の能動制御, 日本機械学会論文集C編, 10.1299/kikaic.78.1655, 78, 789, 1655-1662, 2012.05, Noise control has been developed to establish the comfortable soundscape even if our house life. Floor impact noise such as the sound of footsteps or falling object becomes a problem in an apartment house. Floor impact noise has a peak at the low-frequency range. Passive noise control is not effective against low-frequency noise. Therefore, the purpose of this paper is to control the impact noise using active noise control. Since each impact noise is generated in a short period, LMS algorithm is difficult to use because of its slow convergence characteristics. On the other hand, frequency domain adaptive algorithm is known for fast convergence characteristics. In this paper, the effectiveness of active noise control using frequency domain adaptive algorithm is confirmed through simulations and experiments..
13. Xun WANG, Shinya KIJIMOTO, Yosuke KOBA and Koichi MATSUDA, Noise Barrier Using Feedback Active Noise Control, The 40th International Congress and Exposition on Noise Control Engineering (INTER-NOISE 2011), TS-6, SS33, 2011.09.
14. 池田生馬, 雉本信哉, 松田浩一, 空間の音響モード特性を考慮した広帯域能動的音響制御, 日本機械学会論文集C編, 76, 765, 1265-1270, 2010.05.
15. 池田生馬, 雉本信哉, 松田浩一, 木庭洋介, 景山慶太郎, 評価点の位置情報を利用した3 次元能動的音響制御, 日本機械学会論文集C編, 75, 753, 1421--1427, 2009.05.
16. Ikuma IKEDA, Shinya KIJIMOTO, Koichi MATSUDA, Yosuke KOBA and Keitaro KAGEYAMA, Active Noise Control Using Position of Evaluation Point, Journal of System Design and Dynamics, 4, 753, 1421--1427, Special Issue on D&D2008, Paper No. T2-08-0860, 2009.05.
17. 大窪貴宏, 雉本信哉, 松田浩一, 木庭洋介, 音響信号を利用した水素漏洩検出法, 日本機械学会論文集, C編,75巻,752号,pp.912 - 918, 2009.04.
18. 景山慶太郎, 雉本信哉, 松田浩一, 木庭洋介, 池田生馬, 衝撃音の能動音響制御, 日本機械学会論文集, C編,74巻,748号,pp.2904 - 2909, 2008.12.
19. Ikuma IKEDA, Shinya KIJIMOTO, Koichi MATSUDA, Yosuke KOBA and Toshihiko HIGASHI, Active Noise Control Assuming Quiet Zone Movement, Journal of System Design and Dynamics, Vol.2,No.6,pp.1296-1305,2008, 2008.12.
20. 池田生馬, 雉本信哉, 松田浩一, 木庭洋介, 東周彦, 3次元空間における評価点の移動を考慮した能動的音響制御, 日本機械学会論文集C編, 74巻741号,pp.1273-1280, 2008.05.
21. 木庭洋介, 雉本信哉, 池田生馬, 松田浩一, 東周彦, ステップサイズ自動調整法を用いた能動的音響制御, 日本機械学会論文集C編,, 74巻741号,pp.1281-1286, 2008.05.
22. Ikuma IKEDA, Shinya KIJIMOTO, Koichi MATSUDA and Yosuke KOBA, Active Noise Control with a Moving Evaluation Point, Journal of System Design and Dynamics, Vol.2,No.1,pp.362-369,2008, 2008.03.
23. 雉本 信哉 木庭 洋介 金光 陽一 松田 浩一, 空間音響特性の変化を利用する水素検出手法(実現可能性の検討), 日本音響学会誌, 63巻,5号,pp.245-250, 2007.05.
24. Shinya Kijimoto, Yuichi SASAKI, Yoichi KANEMITSU, Koichi MATSUDA, Takashi YOSHIDA, Active Noise Control for Three-Dimensional Sound Field Using Fast Converging Algorithms, Journal of Environment and Engineering, vol.2, No.2, pp.257-265, 2007.03.
25. 雉本信哉, 佐々木優一, 金光陽一, 松田浩一, 吉田敬, 高速に収束するアルゴリズムを用いた3次元の能動的音響制御, 日本機械学会論文集 (C編), 71, 707, pp.2141-2146, 2005.07.
26. 雉本信哉, 鈴木英男, 金光陽一, 松田浩一, マイクロホンプローブの実効受音位置, 日本音響学会誌, 第57 巻, 第8 号,pp. 502--508, 2001.08.
27. 雉本信哉, 田中英雄, 金光陽一, 松田浩一, 2音源を用いた能動的音響制御のためのハウリング抑制手法, 日本機械学会論文集(C編), 67, 656, pp. 948- 953, 2001.04.
28. Shinya KIJIMOTO, Hideo SUZUKI and Shun OGURO, Diffraction of Sound by Two Finite-Length Cascade Cylinders, The Journal of Acoustical Society of Japan(E), 19, 4, pp. 269- 273, 1998.01.
29. 雉本信哉, 下嶋浩, 柴原章宏, 能動的音響制御のための周波数領域適応アルゴリズム, 第2報,ダクトモデルによる実験的検討, 日本機械学会論文集(C), 62, 596, pp.1397-1402, 1996.04.
30. 雉本信哉, 下嶋浩, 能動的音響制御のための周波数領域適応アルゴリズム 第1報,アルゴリズムの提案およびシミュレーション, 日本機械学会論文集(C編), 61, 589, pp.3581-3586, 1995.01.
主要総説, 論評, 解説, 書評, 報告書等
1. 雉本信哉, 3次元空間内での能動的音響制御, 2008.01.
2. 雉本信哉, 3次元空間内での能動的音響制御, 2007.01.
3. 雉本信哉, 東周彦, 池田生馬, 木庭洋介, 松田浩一, 金光陽一, 三次元空間内での能動音響制御, 2007.03.
4. 雉本信哉, 3次元空間内の能動的音響制御, 2006.12.
5. Shinya Kijimoto, Toshihiko Higashi, Ikuma Ikeda, Yoichi Kanemitsu, Koichi Matsuda, Yosuke Koba, Active Noise Control in 3-dimensional Sound Field, 2006.09.
6. 雉本信哉, LMSに替わる適応アルゴリズムを用いた能動的音響制御, 2004.12.
7. 雉本信哉, 外部から騒音が入射する音場の能動的制御, 2003.01.
8. Shinya KIJIMOTO, Hideo TANAKA, Yoichi KANEMITSU, Koichi MATSUDA, Howling Cancellation for Active Noise Control, 1999.10.
9. 雉本信哉, 周波数領域適応アルゴリズムによる能動的音響制御, 1997.10.
主要学会発表等
1. WANG Xun, SATAKE Takayuki, KOBA Yosuke, Satoshi ISHIKAWA, KIJIMOTO Shinya, Active reduction of the two-way diffraction from a noise barrier by using feedforward control, Inter-Noise 2016, 2016.08.
2. Xun Wang, Yosuke Koba, Satoshi Ishikawa, Shinya Kijimoto, Development of indoor hybrid active noise barrier, 22nd International Congress on Sound and Vibration, ICSV 2015, 2015.07, This paper develops an indoor active noise barrier (ANB) by using a hybrid active noise control (HB-ANC) system. The HB-ANC system reduces the noise diffracted from the top of the ANB and the noise propagated to the head position of the target person behind the ANB simultaneously to achieve higher noise attenuation. However, the waterbed effect of the feedback control part of the HB-ANC system will cause noise enhancement at some frequencies in the control area. In the paper, in order to solve this problem, a filter able to cancel the noise enhancement is integrated into the HB-ANC system. Then, the noise attenuation performance of the ANB under four sound field configurations is verified by simulations. The sound field configurations are set up to investigate how the diffraction from side of the ANB and the reflection influence the performance of the ANB. An experiment in the anechoic chamber is also conducted. The simulation and experiment results indicate that the low frequency noise can be reduced in a wide area behind the ANB, and at the head position of the person, the noise attenuation can be obtained within a wider frequency range, even for the sound fields where the diffraction from side and the reflection exist..
3. Xun Wang, Yosuke Koba, Satoshi Ishikawa, Shinya Kijimoto, Hybrid active noise barrier with sound masking (Experiment for verifying the noise attenuation performance in an office room and evaluation of maskers by listening experiments), 44th International Congress and Exposition on Noise Control Engineering, INTER-NOISE 2015, 2015.08, A hybrid active noise barrier (ANB) integrating sound masking techniques, which aims to abate the noise problem and improve the speech privacy in open plan offices, has been proposed in the previous work. This ANB exploits a hybrid active noise control (ANC) system with sound masking techniques to reduce and mask the target sound simultaneously, so less masker power is needed to achieve the same masking performance with the conventional sound masking techniques. In the previous work, the effectiveness of the ANB has been verified by computer simulations and by experiments in an anechoic chamber. In this paper, an experiment is conducted to verify the noise attenuation performance of the ANB in the sound field of a real office room. The influence of background noise on the noise attenuation performance of the ANB is also investigated in the experiment. Moreover, in order to select an appropriate masker for the sound masking part of the control system, several types of maskers are compared and investigated by listening experiments in this paper..
4. WANG Xun, KOBA Yosuke, ISHIKAWA Satoshi, KIJIMOTO Shinya, Hybrid active noise barrier with sound masking, Inter Noise 2014, 2014.11.
5. TANIGUCHI Tishiro, KOBA Yosuke, ISHIKAWA Satoshi, KIJIMOTO Shinya, Active Noise Control Considering Moving Evaluation Point in Actual Sound Field, The 3rd Japan-Korea Joint Symposium on Dynamics and Control, 2013.08.
6. TAKAHASHI Akihiro, KIJIMOTO SHINYA, ISHIKAWA Satoshi, KOBA Yosuke, Sound Masking Using Active Noise Control, The 3rd Japan-Korea Joint Symposium on Dynamics and Control, 2013.08.
7. Kazuya YOKOTA, Shinya Kijimoto, ISHIKAWA Satoshi, Yosuke KOBA, Active Noise Control with Changing Adaptive Behavior Algorithm, The 3rd Japan-Korea Joint Symposium on Dynamics and Control, 2013.08.
8. Yoshiko Ohno, KOBA Yosuke, ISHIKAWA Satoshi, Shinya Kijimoto, Active Noise Control for a Moving Evaluation Point Using Stepsize Vector and Secondary Path Interpolation, Mjiit-Juc Joint Symposium, 2012.11.
9. Xun Wang, Shinya Kijimoto, Yosuke Koba, and Koichi Matsuda, Noise barrier using feedback active noise control, The 40th International Congress and Exposition on Noise Control Engineering (inter-noise 2011), 2011.09.
10. Ikuma Ikeda, Yosuke Koba, Shinya Kijimoto and Koichi Matsuda, Active noise control using filter map in 3-dimensional acoustic field, The 38th International Congress and Exposition on Noise Control Engineering (inter-noise 2009), 2009.08.
11. Shinya Kijimoto, Ikuma Ikeda, Yosuke Koba, Koichi Matsuda and Keitaro Kageyama, Noise reduction with active noise shielding system, The 2009 International Symposium on Active Control of Sound and Vibration, 2009.08.
12. Ikuma Ikeda, Shinya Kijimoto, Koichi Matsuda, Yosuke Koba and Keitaro Kageyama, Filter-Map Updating Algorithm for 3-Dimensional Active Noise Control, Inter Noise 2008, Proceedings of The 37th International Congress & Exhibition on Noise Control Engineering, CD-ROM No. 0311, 2008, 2008.10.
13. Ikeda, I., Kanemitsu, Y., Kijimoto, S., Matsuda, K. and Koba, Y., Simulations for Speeding Up the Adaptive Algorithm on Active Noise Control, 12th Asia Pacific Vibration Conference, 2007.08.
14. Shinya Kijimoto, Yasumasa Imamura, Yoichi Kanemitsu, Koichi Matsuda, Yosuke Koba, Active Noise Control Using Online Secondary Path Identification Algorithm, 35th International Congress and Exposition on Noise Control Engineering (Inter-noise 2006), 2006.12.
15. Shinya KIJIMOTO, Yuichi SASAKI, Yasumasa IMAMURA, Yoichi KANEMITSU, Koichi MATSUDA, Latest Approaches about Active Noise Control, Sixth World Congress on Computational Mechanics in conjunction with the Second Asia-Pacific Congress on Computational Mechanics, 2004.09.
16. Shinya KIJIMOTO, Hideo TANAKA, Yoichi KANEMITSU, and Koichi MATSUDA, Howling Cancellation for Active Noise Control, The 2002 International Symposium on Active Control of Sound and Vibration (ACTIVE 2002), 2002.07.
17. Shinya KIJIMOTO, Yoichi KANEMITSU, Koichi MATSUDA and Hideo Suzuki, Influence of Microphone Probe on Sound Field, Asia-Pacific Vibration Conference '99, 1999.12.
特許出願・取得
特許出願件数  2件
特許登録件数  0件
学会活動
所属学会名
電子情報通信学会
日本音響学会
日本機械学会
学協会役員等への就任
2020.04~2022.03, 日本機械学会, 環境工学部門総務委員.
2021.04~2022.03, 代表会員, 代表会員.
2018.04~2019.03, 機械力学・計測制御部門長, 機械力学・計測制御部門長.
2018.04~2019.03, 運営委員, 運営委員.
2016.04~2020.03, アクティブコントロール分科会主査, アクティブコントロール分科会主査.
2011.04~2012.03, 九州支部庶務幹事, 九州支部庶務幹事.
2004.04, アクティブコントロール分科会委員, アクティブコントロール分科会委員.
2004.04, 環境工学部門 第一技術委員会委員, 環境工学部門 第一技術委員会委員.
2005.04~2008.03, 環境工学部門 代議員, 環境工学部門 代議員.
2005.04~2008.03, 機械力学部門 代議員, 機械力学部門 代議員.
2004.04, 校閲委員, 校閲委員.
2004.04~2005.03, 機械力学部門 広報委員, 機械力学部門 広報委員.
学会大会・会議・シンポジウム等における役割
2023.08.20~2023.08.23, Inter-Noise 2023, Area Organizer.
2023.07.25~2023.07.25, 日本機械学会環境工学総合シンポジウム2023, オーガナイザ.
2022.07.07~2022.07.08, 日本機械学会環境工学総合シンポジウム2022, オーガナイザ.
2019.08.26~2019.08.30, 日本機械学会機械力学・計測制御部門講演会, その他.
2019.03.14~2019.03.14, 日本機械学会九州支部総会講演会, その他.
2016.06.30~2016.07.01, 日本機械学会環境工学総合シンポジウム2016, その他.
2016.03.15~2016.03.15, 日本機械学会九州支部総会講演会, その他.
2013.08.27~2013.08.28, The 3rd Japan-Korea Joint Symposium on Dynamics and Control, その他.
2013.09.05~2013.09.06, 騒音制御工学会秋季研究発表会, その他.
2013.08.26~2013.08.30, 日本機械学会D&D Conference 2013, その他.
2013.03.13~2013.03.13, 日本機械学会九州支部総会講演会, その他.
2012.07.04~2012.07.06, 日本機械学会環境工学総合シンポジウム2012, その他.
2012.09.18~2012.09.21, 日本機械学会D&D Conference 2012, その他.
2011.09.05~2011.09.09, 日本機械学会D&D Conference 2011, その他.
2011.06.30~2011.07.01, 日本機械学会環境工学総合シンポジウム2011, その他.
2011.03.17~2011.03.17, 日本機械学会九州支部総会講演会, その他.
2010.06.27~2010.06.28, 日本機械学会環境工学総合シンポジウム2010, その他.
2010.09.14~2010.09.17, 日本機械学会D&D Conference 2010, その他.
2010.05.19~2010.05.21, 第22回「電磁力関連のダイナミクス」シンポジウム(SEAD22), その他.
2009.09.02~2009.09.04, 第11回「運動と振動の制御」シンポジウム(MoViC 2009), その他.
2009.08.03~2009.08.07, 日本機械学会D&D Conference 2009, その他.
2009.07.09~2009.07.11, 日本機械学会環境工学総合シンポジウム2009, その他.
2009.03.18~2009.03.18, 日本機械学会九州支部講演会, その他.
2008.09.02~2008.09.05, 日本機械学会D&D Conference 2008, その他.
2008.07.10~2008.07.11, 日本機械学会環境工学総合シンポジウム2008, その他.
2007.09.25~2007.09.28, 日本機械学会D&D Conference 2007, その他.
2007.07.19~2007.07.20, 日本機械学会環境工学総合シンポジウム2007, その他.
2006.11, 日本機械学会鳥取講演会, その他.
2006.09, 日本機械学会年次大会, その他.
2006.08, 日本機械学会D&D Conference 2006, その他.
2006.07, 日本機械学会環境工学総合シンポジウム2006, その他.
2005.08, 日本機械学会D&D Conference 2005, その他.
2004.09, 日本機械学会D&D Conference 2004, その他.
2016.09.11~2016.09.14, 日本機械学会 2016年度年次大会, その他.
2016.08.23~2016.08.26, Dynamics and Design Conference 2016, その他.
2016.06.30~2016.07.01, 第26回環境工学総合シンポジウム2016, その他.
2015.08.25~2015.08.28, Dynamics and Design Conference 2015, その他.
2015.07.08~2015.07.10, 第25回環境工学総合シンポジウム2015, その他.
2014.11.18~2014.11.18, 第24回環境工学総合シンポジウム2014, その他.
2014.08.26~2014.08.29, Dynamics and Design Conference 2014, その他.
2013.08.26~2013.08.30, Dynamics and Design Conference 2013, その他.
2013.07.10~2013.07.12, 第23回環境工学総合シンポジウム2013, その他.
2012.07.04~2012.07.06, 第22回環境工学総合シンポジウム2012, その他.
2012.09.18~2012.09.21, Dynamics and Design Conference 2012, その他.
2011.06.30~2011.07.01, 第21回環境工学総合シンポジウム2011, その他.
2011.09.05~2011.09.09, Dynamics and Design Conference 2011, その他.
2010.06.27~2010.06.28, 第20回環境工学総合シンポジウム2010, その他.
2010.09.14~2010.09.17, Dynamics and Design Conference 2010, その他.
2010.05.19~2010.05.21, 第22回「電磁力関連のダイナミクス」シンポジウム(SEAD22), その他.
2009.09.02~2009.09.04, 第11回「運動と振動の制御」シンポジウム(MoViC 2009), その他.
2009.08.03~2009.08.08, Dynamics and Design Conference 2009, その他.
2009.07.09~2009.07.11, 第19回環境工学総合シンポジウム2009, その他.
2004.06, 第16回電磁力関連のダイナミクスシンポジウム, その他.
学会誌・雑誌・著書の編集への参加状況
2018.04, 日本機械学会 Mechanical Engineering Journal, 国際, 編集委員.
2011.04, 日本機械学会論文集, 国内, 編集委員.
2007.04, Journal of Environment and Engineering, 国際, 編集委員.
2004.04, 日本機械学会 機械力学部門 ニュースレター, 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2022年度    
2021年度    
2020年度    
2019年度    
2018年度   10 
2017年度    
2016年度    
2015年度    
2014年度    
2013年度    
2012年度 27      28 
2011年度 30      33 
2010年度 18  19 
2009年度
2007年度
2006年度
2005年度
2004年度
2003年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
大連理工大学, China, 2019.04~2019.05.
Kolon HOTEL, Korea, 2018.05~2018.05.
Ramada Innsbruck Tivoli, Austria, 2013.09~2013.09.
Corus Hotel, Malaysia, 2012.11~2012.11.
Westin Ottawa Hotel, Canada, 2009.08~2009.08.
Shanghai International Convention Center, China, 2008.10~2008.10.
Sheraton Waikiki, UnitedStatesofAmerica, 2006.12~2006.12.
KOREA MARITIME UNIVERSITY KOREA MARITIME UNIVERSITY Korea Maritime University, Korea, 2003.09~2003.09.
University of Southampton, UnitedKingdom, 2001.03~2002.03.
受賞
研究業績賞, 日本機械学会, 2014.11.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2013年度~2015年度, 基盤研究(B), 代表, 能動音響制御を併用する低騒音で効果的な音声マスキング手法.
2003年度~2004年度, 萌芽研究, 代表, 準能動型すべり軸受変形装置の試作.
共同研究、受託研究(競争的資金を除く)の受入状況
2023.06~2024.03, 代表, 音場制御技術の研究.
2023.04~2024.03, 代表, ANC制御技術の振動制御への応用研究.
2020.06~2021.03, 代表, 音場制御技術の研究.
2022.04~2023.03, 代表, ANC制御技術の振動制御への応用研究.
2021.04~2022.03, 代表, ANC制御技術の振動制御への応用研究.
2019.04~2020.03, 代表, 音場制御技術の研究.
2020.04~2021.03, 代表, ANC制御技術の振動制御への応用研究.
2018.04~2019.03, 代表, 音場制御技術の研究.
2019.04~2020.03, 代表, 3次元局所空間ANCの技術開発.
2017.11~2018.03, 代表, 音場制御技術の研究.
2018.04~2019.03, 代表, 3次元局所空間ANCの技術開発.
2017.04~2018.03, 代表, 3次元局所空間ANCの技術開発.
2016.04~2017.03, 代表, 3次元局所空間ANCの技術開発.
2015.06~2016.03, 代表, 3次元局所空間ANCの技術開発.
2014.04~2015.03, 代表, 誘電ポリマー型スピーカーの能動音響制御への応用に関する研究.
2014.04~2015.03, 代表, 3次元局所空間ANCの技術開発.
2013.04~2014.03, 代表, 3次元局所空間ANCの技術開発.
2013.04~2014.03, 代表, 誘電ポリマー型スピーカーの能動音響制御への応用に関する研究.
2012.04~2013.03, 代表, 誘電ポリマー型スピーカーの能動音響制御への応用に関する研究.
2011.04~2012.03, 代表, 誘電ポリマー型スピーカーの能動音響制御への応用に関する研究.
2010.11~2011.03, 代表, 誘電ポリマー型スピーカーの能動音響制御への応用に関する研究.
2007.04~2009.03, 代表, 居住空間における壁や床の騒音能動制御システム.
寄附金の受入状況
2020年度, JSW株式会社, 使途特定寄付金.
2021年度, 株式会社正興電機製作所, 使途特定寄付金.
2020年度, 株式会社正興電機製作所, 使途特定寄付金.
2019年度, 株式会社正興電機製作所, 使途特定寄付金.
2010年度, 東海ゴム工業株式会社, 使途特定寄付金/知能機械システム部門.
2009年度, 東海ゴム工業株式会社, 使途特定寄付金/知能機械システム部門.
2007年度, ヘルツ株式会社, 使途特定寄付金/知能機械システム部門.
2006年度, ヘルツ株式会社, 使途特定寄付金/知能機械システム部門.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。