Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Ryoichi Kuwano Last modified date:2018.06.21

Professor / Interdisciplinary Chemistry
Department of Chemistry
Faculty of Sciences


Graduate School
Undergraduate School
Other Organization


E-Mail
Homepage
http://www.scc.kyushu-u.ac.jp/Yuki/e_molcat/
Phone
092-642-2572
Academic Degree
Ph D. (Eng) from Kyoto University
Field of Specialization
Organic Chemistry
Research
Research Interests
  • Catalytic Asymmetric Hydrogenation of Aromatics
    keyword : catalytic asymmetric reaction, benzene, catalytic asymmetric synthesis, metal
    2007.04.
  • Catalytic Reactions through (eta3-benzyl)palladium
    keyword : palladium, catalytic reaction, organic synthesis, benzylation
    2002.10.
  • Catalytic Asymmetric Hydrogenation of Heteroaromatics
    keyword : catalytic asymmetric reaction, indole, catalytic asymmetric synthesis, rhodium
    1996.04.
Academic Activities
Reports
1. Ryoichi Kuwano, Catalytic Transformations of Benzylic Carboxylates and Carbonates., Synthesis, (7), 1049-1061., 2009.04.
2. Palladium-Catalyzed Nucleophilic Substitution of Benzylic Esters.
Ryoichi Kuwano
Yuki Gosei Kagaku Kyokaishi 2009, 67 (3), 119-128..
3. Catalytic Asymmetric Hydrogenation of Heteroaromatic Compounds, Indoles.
Ryoichi Kuwano
Yuki Gosei Kagaku Kyokaishi 2007, 65 (2), 109-118..
Papers
1. Ryuhei Ikeda, Ryoichi Kuwano, Asymmetric Hydrogenation of Isoxazolium Triflates with a Chiral Iridium Catalyst, CHEMISTRY A EUROPEAN JOURNAL, 10.1002/chem.201600732, 22, 25, 8610-8618, 2016.06, The iridium catalyst [IrCl(cod)]2–phosphine–I2 (cod = 1,5-cyclooctadiene) selectively reduced isoxazolium triflates to isoxazolines or isoxazolidines in the presence of H2. The iridium-catalyzed hydrogenation proceeded in high-to-good enantioselectivity when an optically active phosphine–oxazoline ligand was used. The 3-substituted 5-arylisoxazolium salts were transformed into 4-isoxazolines with up to 95:5 enantiomeric ratio (e.r.). Chiral cis-isoxazolidines were obtained in up to 89:11 e.r., with no formation of their trans isomers, when the substrates had a primary alkyl substituent at the 5-position. The mechanistic studies indicate that the hydridoiridium(III) species prefers to deliver its hydride to the C5 atom of the isoxazole ring. The hydride attack leads to the formation of the chiral isoxazolidine via a 3-isoxazoline intermediate. Meanwhile, in the selective formation of 4-isoxazolines, hydride attack at the C5 atom may be obstructed by steric hindrance from the 5-aryl substituent..
2. Ryoichi Kuwano, Yuta Hashiguchi, Kentaro Ishizuka, Catalytic Asymmetric Hydrogenation of Pyrimidines, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 10.1002/anie.201410607, 54, 8, 2393-2396, 2015.02, 光学活性イリジウム錯体と希土類ルイス酸を組み合わせて用いることにより、芳香族複素環ピリミジンの高エナンチオ選択的な触媒的不斉水素化を実現した。本不斉触媒系を利用することにより、有用な生理活性化合物として期待できる光学活性環状ピリミジンが最高99% eeで得られる。.
3. Ryoichi Kuwano, Ryuichi Morioka, Manabu Kashiwabara, Nao Kameyama, Catalytic Asymmetric Hydrogenation of Naphthalenes, Angew. Chem. Int. Ed., 10.1002/anie.201201153, 51, 17, 4136-4139, 2012.04, 炭素原子のみで構成される芳香環であるナフタレンの高エナンチオ選択的な触媒的不斉水素化の開発に世界で初めて成功した。不斉配位子PhTRAPのルテニウム錯体を触媒として用いることによって、最高で92% eeの水素化生成物が得られる。このような官能基の触媒的不斉水素化はこれまでに報告がなかった。.
4. Ryoichi Kuwano, Nao Kameyama, Ryuhei Ikeda, Catalytic Asymmetric Hydrogenation of N-Boc-Imidazoles and Oxazoles, J. Am. Chem. Soc., 10.1021/ja201543h, 133, 19, 7312-7315, 2011.05, 芳香族化合物であるイミダゾールおよびオキサゾールの高エナンチオ選択的な触媒的不斉水素化の開発に成功した。不斉配位子PhTRAPのルテニウム錯体を触媒として用いることによって、最高で99% eeの水素化生成物が得られる。この反応によって生成する光学活性イミダゾリン、オキサゾリンは、加水分解等によって、生理活性化合物やキラル補助基として有用な光学活性1,2-ジアミンやβ-アミノアルコールに変換できる。.
5. Jung-Yi Yu, Ryosuke Shimizu, Ryoichi Kuwano, Selective cine Substitution of 1-Arylethenyl Acetates with Arylboron Reagents and a Diene/Rhodium Catalyst, Angew. Chem. Int. Ed., 10.1002/anie.201002745, 49, 36, 6396-6399, 2010.08, 通常のクロスカカップリング反応では、互いの基質の脱離基が結合している炭素上で結合が形成される。しかし、ジエンの配位したロジウム錯体を触媒として用いると、脱離基からみてβ位の炭素上で結合形成がおこることを見出した。.
6. Jung-Yi Yu, Ryoichi Kuwano, Rhodium-Catalyzed Cross-Coupling of Organoboron Compounds with Vinyl Acetate, Angew. Chem. Int. Ed., 10.1002/anie.200903146, 48, 39, 7217–7220, 2009.09.
7. Ryoichi Kuwano, Manabu Kashiwabara, Masato Ohsumi, Hiroki Kusano, Catalytic Asymmetric Hydrogenation of 2,3,5-Trisubstituted Pyrroles., J. Am. Chem. Soc., 130, 3, 808-809, 2008.01.
8. Ryoichi Kuwano, Takenori Shige, Palladium-Catalyzed Formal [4+2] Cycloaddtion of o-Xylylenes with Olefins, J. Am. Chem. Soc., 129, 13, 3802-3803, 2007.04.
9. Ryoichi Kuwano, Yutaka Kondo, Yosuke Matsuyama, Palladium-Catalyzed Nucleophilic Benzylic Substitutions of Benzylic Esters., J. Am. Chem. Soc., 10.1021/ja037735z, 125, 40, 12104-12105, 2003.10.
10. Ryoichi Kuwano, Koji Sato, Takashi Kurokawa, Daisuke Karube, Yoshihiko Ito, Catalytic Asymmetric Hydrogenation of Heteroaromatic Compounds, Indoles., J. Am. Chem. Soc., 122, 31, 7614-7615, 2000.08.
11. Ryoichi Kuwano, Yoshihiko Ito, Catalytic Asymmetric Allylation of Prochiral Nucleophiles, alpha-Acetamido-beta-ketoesters., J. Am. Chem. Soc., 121, 3236-3237., 1999.04.
Presentations
1. A New Access to Optically Active Heterocycles: Catalytic Asymmetric Hydrogenation of Heteroaromatics
Ryoichi Kuwano
The 23rd Seminar on Synthetic Organic Chemistry.
2. Palladium-Catalyzed Formal [4+2] Cycloaddtion of o-Xylylenes with Dienophiles
Ryoichi Kuwano, Takenori Shige
50th Symposium on Organometallic Chemistry, Japan.
3. Catalytic Asymmetric Hydrogenation of Heteroaromatics, Indoles
Ryoichi Kuwano
Pacifichem 2005.
Membership in Academic Society
  • Catalysis Society of Japan
  • Japan Society of Coordination Chemistry
  • The Chemical Society of Japan
  • The Society of Synthetic Organic Chemistry, Japan
  • The Kinki Chemical Society, Japan
  • The American Chemical Society
Awards
  • Catalytic Transformations of Benzylic Esters
  • Catalytic Asymmetric Hydrogenation of Heteroaromatics
Educational
Educational Activities
I give lectures, 'Organic Chemistry II' and 'Organometallic Chemistry,' for the bachelor course in School of Science every year.
I give lecture , 'Advanced Organic Chemistry III,' for the graduate course.