九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
釣本 敏樹(つりもと としき) データ更新日:2019.06.07

教授 /  理学研究院 生物科学部門 システム生命科学府分子生命科学講座


主な研究テーマ
真核生物の染色体複製とその制御
キーワード:複製/細胞周期/DNAポリメラーゼ/クランプ/クランプローダー/ AAA+ ATPase
1991.07~2020.03.
研究業績
主要著書
主要原著論文
1. Ryo Fujisawa, Eiji Ohashi, Kouji Hirota, Toshiki Tsurimoto, Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase ϵ efficiently loads the PCNA sliding clamp, Nucleic Acids Research, 10.1093/nar/gkx096, 45, 8, 4550-4563, 2017.01, [URL], The alternative proliferating-cell nuclear antigen (PCNA)-loader CTF18-RFC forms a stable complex with DNA polymerase ϵ (Polϵ). We observed that, under near-physiological conditions, CTF18- RFC alone loaded PCNA inefficiently, but loaded it efficiently when complexed with Polϵ. During efficient PCNA loading, CTF18-RFC and Polϵ assembled at a 3ϵ primer-template junction cooperatively, and directed PCNA to the loading site. Site-specific photo-crosslinking of directly interacting proteins at the primer-template junction showed similar cooperative binding, in which the catalytic N-terminal portion of Polϵ acted as the major docking protein. In the PCNA-loading intermediate with ATPαS, binding of CTF18 to the DNA structures increased, suggesting transient access of CTF18-RFC to the primer terminus. Polϵ placed in DNA synthesis mode using a substrate DNA with a deoxidised 3ϵ primer end did not stimulate PCNA loading, suggesting that DNA synthesis and PCNA loading are mutually exclusive at the 3ϵ primer-template junction. Furthermore, PCNA and CTF18-RFC-Polϵ complex engaged in stable trimeric assembly on the template DNA and synthesised DNA efficiently. Thus, CTF18-RFC appears to be involved in leading-strand DNA synthesis through its interaction with Polϵ, and can load PCNA onto DNA when Polϵ is not in DNA synthesis mode to restore DNA synthesis..
2. Shiomi, Y., Masutani, C., Hanaoka, F., Kimura H. and Tsurimoto, T. , A second PCNA loader complex, Ctf18-RFC, stimulates DNA polymerase η activity. , J. Biol. Chem., 282, 20906-20914 , 2007.07.
3. Ohta, S., Shiomi, Y., Sugimoto, K., Obuse, C., Tsurimoto, T., A proteomics approach to identify PCNA binding proteins in human cell lysates: identification of the human CHL12/RFCs2-5 complex as a novel PCNA binding protein., J. Biol. Chem., 277, 40362-40367, 2002.01.
4. Shiomi, Y., Usukura, J., Masamura, Y., Takeyasu, K., Nakayama, Y., Obuse, C., Yoshikawa, H. Tsurimoto, T., ATP-dependent structural change of the eukaryotic clamp loader protein, RFC., Proc. Natl. Acad. Sci. USA, 97, 14127-14132, 2000.01.
主要総説, 論評, 解説, 書評, 報告書等
1. Ohashi E, Tsurimoto T, Functions of multiple clamp and clamp-loader complexes in eukaryotic DNA replication, Adv Exp Med and Biol., 10.1007/978-981-10-6955-0_7, 2017.08.
2. 釣本敏樹, クランプとクランプローダーによる複製フォーク機能制御, 蛋白質核酸酵素 特集「染色体サイクル、編 正井久雄ほか」, 2009.01.
3. 釣本敏樹, 多様なDNA ポリメラーゼによる複製制御, 細胞工学 特集「細胞増殖とゲノム安定性維持のかなめ,DNA複製のメカニズム解明に迫る、編 正井久雄」, 2008.10.
4. 釣本敏樹, 複製フォークの舵取り役、クランプとクランプローダータンパク質, 実験医学、25巻5号 増刊「染色体サイクル」, 2007.01.
5. Tsurimoto T., PCNA interacting proteins., Proliferating Cell Nuclear Antigen (PCNA). ed. Hoyun Lee, Research Signpost, Kerala, India, 2006.09.
6. Tsurimoto, T., PCNA and RFC proteins in Genomic Stability., DNA Replication and Human Disease ed. DePamphilis, M. L, Cold Spring Harbor Press NY, 2006.09.
主要学会発表等
1. T. Tsurimoto, Roles of PCNA and clamp loaders for leading and lagging DNA synthesis, OKAZAKI Fragment Memorial Symposium: Celebrating the 50th anniversary of the discontinuous DNA replication model, 2018.12,  .
2. Toshiki Tsurimoto, Fujisawa R, Eiji Ohashi, Seiji Tanaka, Hiroyuki Araki, Sun Q, Kaye K, Novel mechanisms of PCNA loader complexes to specify their functions. , The 9th 3R Symposium, 2014.11, Eukaryotes have two active PCNA loader complexes, RFC and Ctf18-RFC, necessary for DNA replication and maintenance of genome integrity. It has been demonstrated that their PCNA loadings have distinct roles, for example, DNA synthesis for replication and repair by RFC and chromosome cohesion and DNA damage response by Ctf18-RFC. However, the mechanism to specify their functions mainly remains to be elucidated.
We have worked on the interaction of Ctf18-RFC and DNA polymerase ε (Pol ε). The C-terminal of Ctf18 is highly conserved from yeast to human and essential for the interaction with Pol ε. The C-terminal deletion of Ctf18 in yeast resulted in hypersensitivity to DNA damage by MMS and to inhibition of fork progression by HU and increased loss-rate of ARS-plasmids as similar as the CTF18 deletion. Thus, most of Ctf18-RFC functions will be mediated through its interaction with Pol ε. Indeed, we demonstrated that binding of Pol ε to Ctf18-RFC stimulated its PCNA loading activity and made its intrinsic salt-sensitive PCNA loading active even at a high salt condition. These results indicated that function of Ctf18-RFC would be specified by its binding partner, Pol ε .
The second example of the mechanism came from the interaction of RFC with Kaposi’s sarcoma-associated herpes virus (KSHV) latency-associated nuclear antigen (LANA), required for the viral DNA replication and persistence. We demonstrated that RFC specifically bound to LANA and was crucial for maintenance of the viral episomes. Furthermore, LANA recruited RFC to KSHV DNA and enhanced PCNA loading in vitro. Thus, the interaction will direct the host replication machinery to the viral genome.
These results indicated that a specific loader-target interaction is one of the mechanisms to specify functional sited for loader complexes.
.
3. Hiroko Okimoto, Seiji Tanaka, Hiroyuki Araki, Eiji Ohashi, Toshiki Tsurimoto, Roles of loader proteins for coupling between replication and chromosome maintenance, 新学術領域研究「ゲノム普遍的制御」主催、International Conference"Coupling of replication, repair and transcription, and their common mechanism of chromatin remodeling"公開シンポジウム, 2014.02, Leading strand synthesis DNA polymerase, Pol ε and chromosome cohesion PCNA loader Ctf18-RFC form a stable complex in human cells. This holocomplex will be involved in functional collaboration between replication fork progression and various chromosome maintenance steps including chromosome cohesion. We demonstrated that Pol ε interacted Ctf18-RFC through the trimeric assembly of the C-terminal of Ctf18 bound with two cohesion specific subunits, Dcc1 and Ctf8. Furthermore, the interaction occurred through the N-terminal catalytic domain of Pol ε p261 subunit and suppressed the DNA synthesis activity partially. We also demonstrated that the complex formation resulted in stimulation of PCNA loading by Ctf18-RFC. These results suggest that the leading DNA synthesis mode will be regulated through dynamics of this novel holocomplex formation.
The Ctf18 C terminal is highly conserved from budding yeast to human. To address whether this Pol ε/Ctf18-RFC holocomplex structure would be also conserved in budding yeast, we expressed yCtf18 C-terminal along with yDcc1 and yCtf8 by an efficient expression system with human 293T cell. We demonstrated that the yCtf18 C-terminal also formed the same assembly as human one and bound specifically with purified yPol ε. Based on this result, we studied phenotypes of the yCtf18 C-terminal deletion (ctf18ΔC) in budding yeast and observed its high sensitivity to DNA damaging reagents, plasmid loss rate and GCR (Gross Chromosomal Rearrangement) similarly as ctf18 deletion mutant. Therefore, the holocomplex formed through the C-terminal of yCtf18 is an essential structure for yCtf18-RFC function to maintain the genome stability in budding yeast.
.
4. Hiroko Okimoto, Seiji Tanaka, Hiroyuki Araki, Eiji Ohashi, Toshiki Tsurimoto, Functions of the C-terminal of the chromosome cohesion PCNA loader, Ctf18-RFC, Cold Spring Harbor Lab. Eukaryotic DNA Replication & Genome Maintenanceワークショップ, 2013.09, Chromosome cohesion is established during DNA replication through functional coordination between DNA synthesis and cohesion apparatuses. We have worked on the interaction of the chromosome cohesion PCNA loader, Ctf18-RFC and DNA polymerase epsilon (Pol e) in human cells. We demonstrated that the C-terminal of Ctf18 formed the trimeric assembly with Dcc1 and Ctf8 that interacts specifically with Pol e, suggesting its importance for the link between DNA synthesis and cohesion reactions. The interaction occurred through the N-terminal catalytic domain of Pol e p261 subunit and modulated the DNA synthesis activity. Furthermore, the assembly structure and its interaction with Pol e were highly conserved from human to budding yeast.
To study cellular functions of the assembly in Ctf18, we employed genetic analyses with budding yeast. Deletion of CTF18 resulted in hypersensitivity to DNA damage by MMS and to inhibition of fork progression by HU and increased loss-rate of ARS-plasmids. Analyses of its C-terminal deletion mutant demonstrated that the structure in yeast Ctf18 was highly involved in progression of DNA replication and faithful minichromosome segregation. These results suggest that the complex of Ctf18-RFC and Pol e will be integrated in the replication fork and crucial for its link with the cohesion apparatus.
.
5. Toshiki Tsurimoto, Hiroko Okimoto, Ryo Fujisawa, Ran Taguri, Eiji Ohashi, Seiji Tanaka, Hiroyuki Araki, Function of the holocomplex between DNA polymerase e and PCNA loader Ctf18-RFC, 日本分子生物学会, 2013.12, Leading strand synthesis DNA polymerase, Pol e and chromosome cohesion PCNA loader Ctf18-RFC form a stable complex in human cells. This holocomplex will be involved in functional collaboration between replication fork progression and cohesion establishment. We have focused on the Ctf18 C-terminal, which plays a central role for their molecular assembly.
We have reported that an assembly of human Ctf18 C-terminal and two additional cohesion proteins, Dcc1 and Ctf8 bound to the N-terminal catalytic domain of Pol e p261 and suppressed the DNA synthesis activity partially. We newly demonstrated that the complex formation resulted in stimulation of PCNA loading by Ctf18-RFC. These results suggest that the leading DNA synthesis mode will be regulated through dynamics of their holocomplex.
The Ctf18 C terminal is highly conserved from yeast to human. We demonstrated that the budding yeast Ctf18 C-terminal also formed the same assembly as human one and bound to budding yeast Polε. Based on this result, we studied phenotypes of the Ctf18 C-terminal deletion (ctf18ΔC) in budding yeast and observed its high sensitivity to DNA damaging reagents, plasmid loss rate and GCR (Gross Chromosomal Rearrangement) similarly as ctf18 deletion mutant. Therefore, the holocomplex formed through the C-terminal of Ctf18 is an essential structure for Ctf18 function to maintain the genome stability in yeast.
.
6. 釣本 敏樹, 大橋 英治, Takeishi Y, Iwaya R, Miyanari R, ヒト細胞のS期チェックポイント制御機構の分子再構築, 第85回日本生化学会年会シンポジウム, 2012.12,  染色体恒常性の維持には、DNA損傷時に複製フォーク進行を制御するS期チェックポイント機構が重要である。ヒト細胞のDNA損傷センサーとして働く9-1-1クランプ (Rad9-Hus1-Rad1複合体)とRad17-RFCローダー複合体は、損傷DNA部位に集まり、さらに9-1-1とTopBP1との結合を介してATRを活性化し、チェックポイント機構を活性化する。9-1-1とTopBP1の結合は、Rad9C末の天然変性領域を介して行われる。我々はこの領域の特定の2つのSerがcasein kinase 2 (CK2)によってリン酸化されることを見出した。これを基に、精製タンパク質を使って9-1-1とTopBP1間の結合を再構築した。さらにこれらの相互作用の程度と、チェックポイント応答能が対応することを、変異型Rad9を発現するHeLa細胞を使って明らかにした。
 この再構築された9-1-1とTopBP1間の相互作用を足がかりにして、DNA損傷からATR活性化までの分子機構を明らかにするため、それぞれの因子間相互作用の詳細を解析した。その結果、9-1-1には潜在的DNA結合能があること、このDNA結合能は通常、Rad9C末による9-1-1分子内結合で、潜在化されていること、この分子内結合に関わるRad9C末の配列はTopBP1結合に必要な2つのSerの間にあることを明らかにした。これらの結果から、損傷DNA識別に関わるこれら因子の分子集合過程を議論する。
.
7. Toshiki Tsurimoto, Eiji Ohashi, Hiroko Okimoto, Seiji Tanaka, Hiroyuki Araki, Molecular crosstalk between DNA synthesis and chromosome cohesion apparatuses, 日本分子生物学会, 2012.12, Chromosome cohesion is established during DNA replication. There must be tight relation between DNA synthesis and cohesion during passage of the replication fork through a cohesin complex. Indeed, the replication clamp PCNA interacts with Esco1, 2 for efficient acethylation of SMC3 to regulate stability of the cohesion complex during DNA replication. We have worked on a cohesion factor, Ctf18-RFC, which functions as a second PCNA loader. It has multiple functional assemblies, one of which consists of ATPase subunits necessary for PCNA loading and second of which involves two cohesion specific subunits Dcc1 and Ctf8. We identified a novel interaction of Ctf18-RFC and DNA polymerase epsilon in human cells. Further analyses demonstrated that the C-terminal of Ctf18 formed the trimeric assembly with Dcc1 and Ctf8 that was responsible for interaction with Polε using the N-terminal
catalytic domain of Polε as the target. Thus, the specific interaction will link DNA synthesis and cohesion reactions. To study cellular functions of these assemblies of Ctf18, we employed genetic analyses with budding yeast. Deletion of CTF18 resulted in hypersensitivity to DNA damage by MMS and inhibition of fork progression by HU. Analyses of its mutants demonstrated that yeast Ctf18 was also functionally separable into two structures, necessary for PCNA loading trough its ATPase motif and for Polε binding through an assembly of the C-terminal, Dcc1 and Ctf8, and that the latter was involved highly in progression of DNA replication. These results suggest that the complex of Ctf18-RFC and Polε will be integrated in the replication fork as a part of the cohesion apparatus..
8. 釣本 敏樹, Okimoto H, Tanaka S, Araki H, 大橋 英治, Two functional structures of the chromosome cohesion PCNA loader, Ctf18-RFC , 第8回3Rシンポジウム, 2012.11, Chromosome cohesion and DNA replication tightly couples. We have worked on an alternate RFC complex, Ctf18-RFC, which functions as a second PCNA loader and plays a key role for establishment of cohesion. It consists of two functional structures, the assembly of ATPase subunits necessary for PCNA loading and a complex of cohesion specific subunits, Ctf18, Dcc1 and Ctf8. Even with its obvious involvement for coupling of replication and cohesion, little is known regarding the mechanism. We identified novel interactions of human RFC complexes with several DNA polymerases, such as Pol η, δ and ε. The assembly of ATPase subunits mainly mediated these interactions. Interestingly, Ctf18-RFC and Pol ε have an additive interaction, which is more stable than other cases and occurred through the assembly of cohesion specific subunits. It bound to the N-terminal catalytic domain of Pol ε and exhibited inhibitory function to its DNA synthesis. Thus, their specific interaction will function to coordinate progression of the DNA fork during cohesion establishment.
To study significance of the interaction in cells, we employed genetic analyses with budding yeast. Deletion of CTF18 resulted in hypersensitivity to DNA damage by MMS and inhibition of fork progression by HU. Analyses of its mutants demonstrated that yeast Ctf18 was also functionally separable into two structures, as their defects could be distinguishable by sensitivities to these treatments. These results suggest that Ctf18-RFC will be an integrated part of the replication fork and connect the cohesion apparatus with the fork through at least two distinct mechanisms.
.
9. Tsurimoto T, Esaki K, Kobayashi H, Ogawa K, Ohashi E., The second PCNA loader Ctf18-RFC interacts with DNA polymerase ε in human cells., 9th International Conference on AAA Proteins, 2011.11, One of the PCNA loader complexes, Ctf18-RFC, exerts multiple functions in S phase and plays crucial roles in DNA replication, sister chromatid cohesion and DNA damage response. To extrapolate its roles in S phase, we performed a proteomics analysis of Ctf18-interacting proteins, and found that Ctf18 interacts with a replicative DNA polymerase, DNA polymerase ε (Pol ε). Co-immunoprecipitation with recombinant Ctf18-RFC and Pol ε demonstrated that their binding is direct and mediated by two distinct interactions, one weak and one stable. Three subunits that are specifically required for cohesion in yeast, Ctf18, Dcc1, and Ctf8, formed a trimeric complex (18-1-8) and together enabled stable binding with Pol ε. The C-terminal 23-amino-acid stretch of Ctf18 was necessary for the trimeric association of 18-1-8 and was required for the stable interaction. The weak interaction was observed with alternative loader complexes including Ctf18-RFC(5), which lacks Dcc1 and Ctf8, suggesting that the common loader structures, including the RFC small subunits (RFC2-5), are responsible for the weak interaction. The two interaction modes, mediated through distinguishable structures of Ctf18-RFC, both occurred through the N-terminal half of Pol ε, which includes the catalytic domain. The addition of Ctf18-RFC or Ctf18-RFC(5) to the DNA synthesis reaction caused partial inhibition and stimulation, respectively. Thus, Ctf18-RFC has multiple interactions with Pol ε that promote polymorphic modulation of DNA synthesis. We propose that their interaction alters the DNA synthesis mode to enable the replication fork to cooperate with the establishment of cohesion..
10. Takeishi Y, Ohashi E, Tsurimoto T., Analysis of intrinsic DNA binding activity of 9-1-1 complex, 日本分子生物学会, 2011.12.
11. Ohashi E, Takeishi Y, Ueda S, and Tsurimoto T., Roles of the 9-1-1/TopBP1 interaction for DNA damage responses in human cells., 日本分子生物学会, 2011.12.
12. Toshiki Tsurimoto, Keiichi Esaki, Hiroko Kobayashi, Satoshi Takeo, Rina Taniguchi, Kaori Ogawa, Eiji Ohashi, Interaction between the cohesion loader complex Ctf18-RFC and DNA polymerase ε in human cells, 日本分子生物学会, 2010.12.
13. 谷口莉菜、釣本敏樹, クランプローダー複合体とMCMサブ複合体の相互作用解析, 染色体ワークショップ, 2009.01.
14. 高野隆司、村上武司、釣本敏樹, ヒトDNAポリメラーゼεの触媒サブユニットp261の機能ドメインの解析, 染色体ワークショップ, 2009.01.
15. 谷口莉菜、Zhiying You、正井久雄、釣本敏樹, クランプローダー複合体とMCMサブ複合体の相互作用解析, 日本分子生物学会年会, 2008.12.
16. 廣川雅人、釣本敏樹, ユビキチン化PCNAによるDNApolymeraseの活性促進, 日本分子生物学会年会, 2008.12.
17. 村上武司、高野隆司、釣本敏樹, クランプローダーとDNAポリメラーゼ間の相互作用の解析, 日本分子生物学会年会, 2008.12.
18. Murakami, T., Takano, R. Taniguchi, R and Tsurimoto, T , Analyses on interaction between loader complexes and replication proteins in human cells, The 6th 3R Symposium, 2008.10.
19. Murakami, T., Takano, R. Taniguchi, R and Tsurimoto, T , STUDIES ON MOLECULAR INTERACTIONS BETWEEN LOADER COMPLEXES AND REPLICATION FORK COMPONENTS, International Symposium on Chromosome Dynamics, 2008.05.
20. 村上武司、高野隆司、谷口莉奈、釣本敏樹, クランプローダーとDNA polymerase epsilon 間の相互作用の解析, 組換え、複製合同ワークショップ, 2008.03.
21. 村上武司、高野隆司、谷口莉奈、釣本敏樹, クランプローダーとpol e, RPA間の相互作用の解析, 染色体ワークショップ, 2008.01.
22. 村上武司、高野隆司、谷口莉奈、釣本敏樹, クランプローダーとDNA複製因子の相互作用の解析, 日本分子生物学会年会, 2007.12.
23. 廣川雅人、花岡文雄、岩井成憲、釣本敏樹, ユビキチン化PCNAによるDNApolymeraseの活性促進, 日本分子生物学会年会, 2007.12.
24. Shiomi, Y. and Tsurimoto, T. , Functional interaction of clamp loader complexes with DNA polymerase eta, Eukaryotic DNA Replication & Genome Maintenance, 2007.09.
25. 釣本敏樹、嶋本敬介, 染色体複製における多重クランプ−ローダー系の役割, 第24回染色体ワークショップ, 2007.01.
26. 塩見泰史、益谷央豪、花岡文雄、木村宏、釣本敏樹, 染色体接着因子Ctf18-RFCとPCNAによるDNA pol ηの活性促進機構の解析, 第18回DNA複製分配ワークショップ, 2006.10.
27. 春日屋達哉、釣本敏樹, DNA損傷応答におけるCasein Kinase 2 による9-1-1複合体のリン酸化の解析, 日本分子生物学会2006フォーラム, 2006.12.
28. 嶋本敬介、木村宏、塩見泰史、釣本敏樹, ヒトDNAポリメラーゼεとCtf18-RFCの相互作用, 日本分子生物学会2006フォーラム, 2006.12.
29. 塩見泰史、益谷央豪、花岡文雄、木村宏、釣本敏樹, 染色体接着因子Ctf18-RFCとPCNAによるDNA pol ηの活性促進機構の解析, 日本分子生物学会2006フォーラム, 2006.12.
30. 井元貴史、釣本敏樹, ヒト新規クランプローダーElg1-RFC複合体の再構築, 日本分子生物学会2006フォーラム, 2006.12.
31. Shiomi, Y., Masutani, C., Hanaoka, F., Kimura H. and Tsurimoto, T. , Functional interaction of the chromosome cohesion PCNA-loader Ctf18-RFC and DNA polymerase η. , DYNAMIC ORGANIZATION OF NUCLEAR FUNCTION meeting, 2006.09.
32. Shiomi, Y., Masutani, C., Hanaoka, F., Kimura H. and Tsurimoto, T. , Functional interaction of DNA polymerase eta and the chromosome cohesion clamp-loader, Ctf18-RFC. , 20th IUBMB International Congress of Biochemistry and Molecular Biology and 11th FAOBMB Congress, 2006.06.
学会活動
所属学会名
日本生化学学会
日本分子生物学会
学会大会・会議・シンポジウム等における役割
2017.09.05~2017.09.09, Eukaryotic DNA Replication & Genome Maintenance Workshop, 座長(Chairmanship).
2016.11.30~2016.12.02, 日本分子生物学会シンポジウム「染色体複製複合体の形成と構造変化の分子機構とその制御」, 座長(Chairmanship).
2012.12.13~2012.12.13, 日本分子生物学会, 座長(Chairmanship).
2011.10.25~2011.10.27, 複製ワークショップ, 組織委員.
2010.12.09~2010.12.09, 日本分子生物学会, 座長(Chairmanship).
2009.12.09~2009.12.09, 日本分子生物学会, 座長(Chairmanship).
2005.12~2005.12, 日本分子生物学会, 座長(Chairmanship).
2012.12.13~2012.12.13, 第35回分子生物学会ワークショップ「染色体トランスアクションタンパク質とクロマチン構成タンパク質のクロストーク」, 座長.
2011.10.25~2011.10.27, 第21回DNA複製・組換え・ゲノム安定性制御ワークショップ, ワークショップ運営委員.
2010.12.09~2010.12.09, 第33回分子生物学会ワークショップ「染色体複製とその制御における超高次複合体のダイナミクス」, 座長.
2009.12.09~2009.12.09, 第32回分子生物学会ワークショップ「染色体倍加装置のダイナミクス」, 座長.
2005.12~2005.12, 第28回分子生物学会シンポジウム「複製装置の集合と維持」, 座長.
2003.12~2003.12, 第26回分子生物学会シンポジウム「情報発信する複製装置」, 座長.
学会誌・雑誌・著書の編集への参加状況
2010.01~2014.12, the Journal of Biochemistry, 国際, Associate Editor .
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2018年度
2017年度
2016年度
2015年度
2014年度
2013年度
2012年度
2011年度
2010年度      
2009年度      
2008年度    
2007年度
2006年度
2005年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
Cold Spring Harbor Laboratory, UnitedStatesofAmerica, 2017.09~2017.09.
Cold Spring Harbor Laboratory, UnitedStatesofAmerica, 2015.09~2015.09.
韓国 KAIST, Korea, 2015.01~2015.01.
Cold Spring Harbor Laboratory, UnitedStatesofAmerica, 2013.09~2013.09.
Cold Spring Harbor Laboratory, UnitedStatesofAmerica, 2009.09~2009.09.
Cold Spring Harbor Laboratory, UnitedStatesofAmerica, 2007.09~2007.09.
Cold Spring Harbor Laboratory, UnitedStatesofAmerica, 2005.09~2005.09.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2017年度~2019年度, 基盤研究(B), 分担, 複製ストレスに起因する治療誘導性細胞老化の分子機序.
2016年度~2018年度, 基盤研究(B), 代表, Ctf18-RFC/Polε複合体による新生DNAでのPCNAの協調的配置機構.
2014年度~2015年度, 新学術領域研究, 代表, DNA合成に干渉する非コード配列での複製フォーク適応機構の研究.
2013年度~2014年度, 新学術領域研究, 代表, Ctf18-RFCによるDNA複製・染色体接着・損傷応答カップリングの解明.
2013年度~2015年度, 基盤研究(C), 代表, ヒト細胞複製フォーク3DNAポリメラーゼモデルの生化学的検証.
2008年度~2010年度, 基盤研究(B), 代表, Ctf18-RFCローダー複合体とDNAポリメラーゼの分子間相互作用.
2005年度~2009年度, 特定領域研究, 代表, 複製フォーク複合体の構築、維持、変換の研究.
2005年度~2007年度, 基盤研究(B), 代表, PCNAクランプによる複製と染色体接着の機能連係の研究.
2002年度~2004年度, 基盤研究(B), 代表, クランプークランプローダー系を介したDNA複製とDNA傷害応答の接点の解析.
2000年度~2004年度, 特定領域研究, 代表, 複製フォーク複合体の形成とその制御機構の研究.
共同研究、受託研究(競争的資金を除く)の受入状況
2013.04~2014.03, 代表, 染色体接着ローダーCtf18-RFCとDNAポリメラーゼε間相互作用の出芽酵母での機能の解析.
2012.10~2013.03, 代表, 染色体接着ローダーCtf18-RFCとDNAポリメラーゼε間相互作用の出芽酵母での機能の解析.
2011.04~2012.03, 代表, 染色体接着ローダーCtf18-RFCとDNAポリメラーゼε間相互作用の出芽酵母での機能の解析.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」