九州大学 研究者情報
発表一覧
石川 邦夫(いしかわ くにお) データ更新日:2023.06.26

教授 /  歯学研究院 歯学部門 口腔機能修復学講座


学会発表等
1. 石川 邦夫、柴原 啓吾、林 幸壱朗、中島康晴, 炭酸アパタイトハニカム人工骨による長管骨再建, 日本再生医療学会, 2023.03.
2. 島袋将弥、川下将一、@石川邦夫, 骨再生・感染予防のための抗菌性炭酸アパタイト骨補填材の開発, 国際・産学連携インヴァースイノベーション材料創出プロジェクト公開討論会, 2023.03.
3. 林 幸壱朗、岸田 良、土谷 享、石川 邦夫, 酸アパタイトハニカム材料の人工造血幹細胞ニッチへの応用, 日本セラミックス協会2023年年会, 2023.03.
4. 柴原啓吾、林幸壱郎、石川邦夫、中島康晴, 骨伝導性と強度を充足する炭酸アパタイトハニカムブロックの開発, 第41回整形外科バイオマテリアル研究会, 2022.12.
5. Kunio Ishikawa, Carbonate apatite honeycomb artificial bone for critical size ulna defect reconstruction, Bioceramics 32, 2022.09.
6. Masaya SHIMABUKURO, Koichiro HAYASHI, Taishi YOKOI, Masakazu KAWASHITA, Kunio ISHIKAWA, Surface functionalization of honeycomb scaffolds consisting of carbonate apatite for bone regeneration and infection prevention, The 2nd international symposium on design & engineering by joint inverse innovation for materials architecture (DEJI2MA 2022), 2022.10.
7. Pery Freitas, 岸田良, 石川邦夫, Fabrication and Histological Evaluation of Porous Carbonate Apatite Blocks Using Disodium Hydrogen Phosphate Crystals as Porogen and Phosphatization Accelerator, 和3年度歯科理工学会九州地方会冬季セミナー, 2021.12.
8. Maab Elsheikh, 岸田良, 石川邦夫, Fabrication and Histological Evaluation of Highly Interconnected Porous Carbonate Apatite Blocks Based on The Setting Reaction of Calcium Sulfate Hemihydrate Granules, 令和3年度歯科理工学会九州地方会冬季セミナー, 2021.12.
9. 柴原啓吾, 林幸壱朗, 石川邦夫, 中島康晴 , 分節型骨欠損におけるハニカム構造を有する炭酸アパタイトの骨伝導性の評価, 第40回整形外科バイオマテリアル研究会, 2021.12.
10. Kaai Deguchi, Shunsuke Nomura, Akira Tsuchiya, Kunio Ishikawa, Ichiro Takahashi, Effect of carbonate content in carbonate apatite on bone remodeling, Kyudai Oral Bioscience & OBT Research Center 5th Joint International Symposium 2021, 2021.11.
11. 出口佳愛, 野村俊介, 土谷享, 石川邦夫, 高橋一郎 , 炭酸アパタイト中の炭酸基含有量が生体吸収性と骨置換性に及ぼす影響, 第80回日本矯正歯科学会学術大会&第5回国際会議, 2021.11.
12. Keisuke Tanaka, Akira Tsuchiya, Yoichiro Ogino, Yasunori Ayukawa, Kunio Ishikawa , Bone reconstruction using three-dimensional interconnected porous CO3Ap block fabricated based on hydrate expansion of CaO granules, The 69th Annual Meeting of Japanese Association for Dental Research, 2021.10.
13. 田中啓喬, 土谷享, 鮎川保則, 石川邦夫, 溶解析出反応の温度が炭酸アパタイトブロックの物理的/化学的性質および骨置換性に与える影響, , 第78回日本歯科理工学会学術講演会(web開催), 2021.10.
14. @林 幸壱朗, @石川 邦夫, ハニカムスキャフォールドの微構造が垂直的骨造成に与える影響, 日本セラミックス協会第34回秋季シンポジウム, 2021.09.
15. 岸田良, Maab Elsheikh, 林幸壱朗, 石川邦夫, 半水石膏顆粒の硬化反応に基づく炭酸アパタイト3次元多孔体の創製とその生体反応評価, 日本セラミックス協会第34回秋季シンポジウム, 2021.09.
16. @島袋将弥, @塙隆夫, @石川邦夫 , 骨再生における炭酸アパタイト骨補填材中のリン酸銀の無毒性量, 日本金属学会 2022年春期 第170回講演大会, 2022.03.
17. 石川 邦夫, 骨組成(炭酸アパタイト)人工骨の挑戦, 第9回 日本バイオマテリアル学会 中四国ブロック シンポジウム, 2022.02.
18. 石川邦夫, 炭酸アパタイト人工骨の創製と展開, 第240回IBBセミナー, 2022.01.
19. Kunio Ishikawa, Keisuke Tanaka, Akira Tsuchiya, :Carbonate apatite artificial bone fabricated from vaterite replaces to bone quickly., 2022 Hawaii-Joint Symposium-SFB+JSB, 2022.01.
20. Kunio Ishikawa, Keisuke Tanaka, Akira Tsuchiya , Fabrication of vaterite block and its transformation to carbonate apatite. , The 43rd Japanese Society for Biomatrials and 8th Asian BioMaterials Congress, 2021.11.
21. 石川邦夫, 骨組成(炭酸アパタイト)人工骨の機能と展開, 日本骨代謝学会(招待:シンポジウム 硬組織再生を制御する), 2021.10.
22. 石川 邦夫, 進化に学ぶ:炭酸カルシウム前駆体からの炭酸アパタイト人工骨の創製, 第24回日本歯科医学会学術大会, 2021.09.
23. @林幸一朗,石川邦夫, 炭酸アパタイトハニカムスキャホールドの骨誘導能評価, 第75回日本歯科理工学会学術講演会, 2021.04.
24. 石川 邦夫, 人工骨としての炭酸アパタイトの基礎と臨床応用, 第94回日本整形外科学会学術総会, 2021.05.
25. 石川 邦夫, 我が国発、世界初の骨組成(炭酸アパタイト)骨補填材の創製, 日本歯科医学会連合第4回大型医療研究推進フォーラム, 2021.02.
26. 石川 邦夫, 炭酸アパタイトハニカムによるIn situ組織再生法へのアプローチ, 第129回日本歯科補綴学会学術大会, 2020.06.
27. 石川 邦夫, 炭酸アパタイト人工骨による骨再生治療, 第62回歯科基礎医学会学術大会, 2020.09.
28. Kunio Ishikawa, Koichiro Hayashi, Akira Tsuchiya, Ryo Kishida, Interconnected Porous Carbonate Apatite. , The 19th Asian Bioceramics Symposium (ABC 2019), 2019.12.
29. Kunio Ishikawa, Naoyuki Fukuda, Kanji Tsuru, Yoshihide Mori, Fabrication of Carbonate Apatite Honeycomb and its Tissue Response., 30th Annual Congress of the European Society for Biomaterials (ESB2019), 2019.09.
30. Kunio Ishikawa, Koichiro Hayashi, Akira Tsuchiya, Ryo Kishida, Fabrication of carbonate apatite honeycomb and its histological evaluation for vertical bone augmentation at cranium. , 31th Annual meeting of the International Society for Ceramics in Medicine(Bioceramics 31), 2019.11.
31. Kunio Ishikawa, Koichiro Hayashi, Akira Tsuchiya, Ryo Kishida, Porous Carbonate Apatite Bone Substitute., The 13th Pacific Rim Conference of Ceramic Societies (PACRIM13), 2019.10.
32. Kunio Ishikawa, Koichiro Hayashi, Akira Tsuchiya, Ryo Kishida, Usefulness of Carbonate Apatite Honeycomb for Vertical Bone Augmentation., 97th General Session & Exhibition of the International Association for Dental Research, 2019.06.
33. Kunio Ishikawa, Carbonate apatite -Next generation artificial bone replacement-, Oral and Biomedical Materials Symposiium between Taiwan and Japan, 2019.05.
34. Kunio Ishikawa, Koichiro Hayashi, Akira Tsuchiya, Ryo Kishida, Vertical Bone Augmentation Using Carbonate Apatite Bone Substitute., Society for Biomaterials 2019 Annual Meeting & Exposition, 2019.04.
35. 林 幸壱朗, 石川 邦夫, 炭酸アパタイトハニカム構造体の作製と骨および骨髄再生, 日本セラミックス協会2019年会, 2019.03.
36. 石川邦夫, 炭酸アパタイトハニカム骨補填材による垂直骨造成, 第18回日本再生医療学会総会, 2019.03.
37. 石川邦夫, 炭酸アパタイト骨補填材の創成, 日本セラミックス協会2019年会, 2019.03.
38. 都留寛治,小林真左子,石川邦夫,宮本洋二, 炭酸アパタイト被覆カルサイトの調製とin vivo評価, 第24回日本アパタイト研究会, 2018.11.
39. 岸田 良, Tya Indah Arifta, 石川邦夫, α型リン酸三カルシウム球の硬化による低結晶性ハイドロキアパタト多孔体作製, 第40回日本バイオマテリアル学会大会, 2018.11.
40. 秋田和也, 福田直志, 大江 剛, 真野隆充, 都留寛治, 石川邦夫, 宮本洋二, マイクロファバーを用いた多孔質炭酸アパタト顆粒の作製およびそ骨再建へ応用, 第40回日本バイオマテリアル学会大会, 2018.11.
41. 土谷 享, 佐藤まりの, 石川邦夫, アパタイト被覆による石膏系骨補填材の溶解制御おび伝導性評価, 第40回日本バイオマテリアル学会大会, 2018.11.
42. 石川邦夫, 林幸壱朗, 土谷 享, 都留寛治, 杉浦悠紀, 気孔径が炭酸アパタイトハニカムの骨伝導性に及ぼす影響, 第40回日本バイオマテリアル学会大会, 2018.11.
43. Tansza Putri, Melvin L. Munar, Koichiro Hayashi, Kanji Tsuru, Kunio Ishikawa, Fabrication of Porous β-TCP Block by Heating β-TCP Granules Bridged with DCPD. , Bioceramics 30 (The 30th Symposium and Annual Meeting of the International Socity for Ceramics in Medicine), 2018.10.
44. Kunio Ishikawa, Carbonate apatite: Innovation for Future Bone Regenerative Therapy. , 18th Asian BioCeramics, 2018.09.
45. Kunio Ishikawa, Melvin Munar, Koichiro Hayashi, Fabrication of carbonate apatite honeycomb and its tissue response., 29th Annual Congress of the European Society for Biomaterials, 2018.09.
46. 都留寛治,石川邦夫, 骨に学ぶ:炭酸アパタイト骨補填材の開発と臨床応用, 第60回歯科基礎医学会学術大会,アップデートシンポジウム7「インプラント臨床を発展させる日本のバイオマテリアル」, 2018.09.
47. 秋田和也,福田直志,大江剛,真野隆充,都留寛治,石川邦夫,宮本洋二, マイクロファイバーを用いた多孔質炭酸アパタイト顆粒の作製およびその骨再建への応用, 日本バイオマテリアル学会, 2018.11.
48. Kunio Ishikawa, Carbonate apatite -Next generation artificial bone augmentation material-., 3rd Indonesian Materials Research Society, 2018.08.
49. 秋田和也,福田直志,鎌田久美子, 大江剛,眞野隆充,都留寛治,石川邦夫,宮本 洋二, マイクロファイバーを用いた多孔質炭酸アパタイト顆粒の開発と骨再建への応用, 第48回日本口腔インプラント学会学術大会, 2018.09.
50. K.Ishikawa, M. Mumur, K.Hayashi, Fabrication of carbonate apatite honeycomb granules., 96th General Session & Exhibition of the International Association for Dental Research, 2018.07.
51. Kunio Ishikawa, Eddy, Fabrication and evaluation of β-tricalcium phosphate granules cement., CIMTEC 2018 - 14th International Conference on Modern Materials and Technologies, 2018.06.
52. K Ishikawa, A Tsuchiya, K Hayashi, Y Miyamoto, K Tsuru, Physical and Histological Comparison of HAp, CO3Ap, and beta-TCP Artificial Bone Substitutes., Society for biomaterials 2018 annual meeting & exposition, 2018.04.
53. 石川邦夫, 福田直志、都留寛治, 多孔体形成セメントの創製, 第17回日本再生医療学会総会, 2018.03.
54. Eddy, Akira Tsuchiya, Kanji Tsuru, Kunio Ishikawa, Fabrication of calcium sulfate hemihydrate coated β-tricalcium phosphate through dissolution-precipitation reaction. , 3rd Annual Conference and Expo on Biomaterials, 2018.03.
55. Masako Fujioka-Kobayashi, Kanji Tsuru, Kunio Ishikawa, Youji Miyamoto, Fabrication and Evaluation of Carbonate Apatite-coated Calcium Carbonate Bone Substitutes., The 4th National Osteology Symposium in Switzerland, 2018.01.
56. Ishikawa Kunio, Carbonate apatite: Next generation artificial bone replacement, 3rd Annual Conference and Expo on Biomaterials, 2018.03.
57. 林幸壱朗,土谷 享,杉浦悠紀,石川邦夫, ウサギ大腿骨へ埋埴した炭酸アパタイト顆粒における骨置換率の評価, 第39回日本バイオマテリアル学会大会, 2017.11.
58. 秋田和也,福田直志,藤澤健司,宮本洋二,都留寛治、石川邦夫, 炭酸アパタイトとコラーゲン複合化による柔軟性のある骨再建用バイオマテリアルの開発, 第39回日本バイオマテリアル学会大会, 2017.11.
59. 杉浦悠紀,林幸壱朗,土谷享,石川邦夫, 炭酸アパタイト顆粒のイヌ抜歯窩における吸収性評価, 第39回日本バイオマテリアル学会大会, 2017.11.
60. 林幸壱朗,土谷享,杉浦悠紀,石川邦夫, 炭酸アパタイト顆粒のin vitro における溶解性試験, 第39回日本バイオマテリアル学会大会, 2017.11.
61. 土谷 享,林幸壱朗,杉浦悠紀,石川邦夫, ウサギ大腿骨へ埋埴した炭酸アパタイト顆粒の吸収性に関する評価, 第39回日本バイオマテリアル学会大会, 2017.11.
62. 石川邦夫、林幸壱朗、土谷享、杉浦悠紀, ウサギ大腿骨へ埋埴した炭酸アパタイト顆粒における骨置換率の評価, 第39回日本バイオマテリアル学会大会, 2017.11.
63. Anuar bin Khairul, Kanji Tsuru, Kunio Ishikawa, Improved osteoconductivity of β-TCP granules by DCPD coating technique., 29th Symposium and Annual Meeting of the International Society for Ceramics in Medicine (Bioceramics 29), 2017.10.
64. Tansza Permata Setiana Putri, Melvin L. Munar, Kanji Tsuru, Kunio Ishikawa, Fabrication of porous βTCP block by heating βTCP granules bridged with DCPD. , 29th Symposium and Annual Meeting of the International Society for Ceramics in Medicine (Bioceramics 29), 2017.10.
65. Retno Ardhani,, Ika Dewi Ana, Kunio Ishikawa, Yasuhiko Tabata, Nerve regeneration potential of carbonated apatite-gelatin membrane: a study on PC12 cells., 29th Symposium and Annual Meeting of the International Society for Ceramics in Medicine (Bioceramics 29), 2017.10.
66. Eddy, Akira Tsuchiya, Kanji Tsuru; Kunio Ishikawa, Fabrication of self-setting beta tricalcium phosphate granular cement through dissolution precipitation reaction., 29th Symposium and Annual Meeting of the International Society for Ceramics in Medicine (Bioceramics 29), 2017.10.
67. Melvin de Leon Munar, Girlie Micu Munar, Kanji Tsuru, Kunio Ishikawa, Carbonate apatite coating on PLGA/CO3Ap foam by compositional transformation through dissolution precipitation reaction, 29th Symposium and Annual Meeting of the International Society for Ceramics in Medicine (Bioceramics 29), 2017.10.
68. Ishikawa Kunio, Calcium phosphate granules cement for bone defect reconstruction, 29th Symposium and Annual Meeting of the International Society for Ceramics in Medicine (Bioceramics 29), 2017.10.
69. 土谷 享,都留寛治,杉浦悠紀,石川邦夫, ウサギ大腿骨へ埋埴した炭酸アパタイト顆粒における新生骨強度の変化, 第70 回日本歯科理工学会学術講演, 2017.10.
70. 都留寛治,土谷 享,杉浦悠紀,石川邦夫, 炭酸アパタイト顆粒のイヌインプラント周囲におけるin vivo 評価, 第70 回日本歯科理工学会学術講演, 2017.10.
71. 杉浦悠紀,都留寛治,土谷 享,石川邦夫, インプラント抜歯即時埋入モデルを用いた炭酸アパタイト顆粒の評価, 第70 回日本歯科理工学会学術講演, 2017.10.
72. Ishikawa Kunio, Carbonate apatite bone replacement, 2017 International Symposium of Biotechnology on Biomaterials, Stem cells and Tissue Engineering (ISBBST 2017), 2017.08.
73. Ishikawa Kunio, Fabrication and tissue response to self-setting β-tricalcium phosphate granules cement, 2017 International Symposium of Biotechnology on Biomaterials, Stem cells and Tissue Engineering (ISBBST 2017), 2017.08.
74. 石川 邦夫, 都留 寛治, MUNAR MELVIN DE LEON, 炭酸アパタイトハニカム人工骨置換材の調製, 第16回日本再生医療学会総会, 2017.03.
75. Ishikawa Kunio, イヌ下顎骨欠損モデルを用いた炭酸アパタイト顆粒の骨形成能比較評価, 第70回日本歯科理工学会学術講演会, 2017.10.
76. Ishikawa Kunio, Fabrication and tissue response to self-setting β-tricalcium phophate cement, BIOREMED 2017, 2017.10.
77. Ishikawa Kunio, Calcium Phosphate Granules Cement for Bone Defect Reconstruction, 28th Annual Conference of the European Society for Biomaterials (ESB2017), 2017.09.
78. Ishikawa Kunio, Fabrication of porous carbonate apatite bone replacement using calcium sulfate granules as precursor, The 12th Pacific Rim Conference on Ceramic and Glass Technology, 2017.05.
79. Ishikawa Kunio, Fabrication of carbonate apatite honeycomb and its in vivo evaluation, Society for Biomaterials (2017 Annual Meeting & Exposition), 2017.04.
80. Kunio Ishikawa, Alireza Valanezhad, Kanji Tsuru, Hydroxyapatite coating on titanium via titanium zinc phosphate layer, 24th European Conference on Biomaterials, EBS 2011, 2011.
81. L. J. Cardenas, A. Takeuchi, K. Tsuru, S. Matsuya, Kunio Ishikawa, Synthesis and in vitro cell compatibility of α-tricalcium phosphate-based apatite cement containing tricalcium silicate, 3rd International Conference on the Development of Biomedical Engineering in Vietnam, 2010, The presence of silicate in artificial bone graft material is known to be effective in increasing bone formation rate. We previously reported the basic setting properties of α-tricalcium phosphate (α-Ca 3PO4; α-TCP) based apatite cement (AC) with various amount of tricalcium silicate (Ca3SiO5; alite) addition using sodium dihydrogen phosphate (NaH2PO4) as the liquid phase. In this study, in vitro biological compatibility of pure α-TCP and 2.5-10.0 wt% alite added to α-TCP based AC is investigated in terms of cell attachment, proliferation and differentiation. Set ACs aged for 168 hrs were used for cell studies with bone marrow cells from tibia of 4 week-old, male, SD rat. Initial cell attachment was observed after 7 hrs; cell proliferation was observed after 3, 5, and 7 days. Cell differentiation (alkaline phosphatase activity) was observed after 3, 6, and 9 days of incubation. Cell attachment of alite added ACs were almost the same as sintered hydroxyapatite (HAp) and alite-free AC. Cell proliferation at 2.5-7.5 wt% alite added ACs were significantly higher at day 5 and 7 (p
82. Toshiyuki Suge, Kunio Ishikawa, Takashi Matsuo, Effects of ammonium hexafluorosilicate concentration on occluding ability of dentin tubules and composition of the precipitate, 8th World Biomaterials Congress 2008, WBC 2008, 2008.
83. Kunio Ishikawa, Learn from the Bone
Carbonate apatite bone replacement, 8th World Biomaterials Congress 2008, WBC 2008, 2008.
84. Ika Dewi Ana, Tetsuya Yuasa, Shigeki Matsuya, Kunio Ishikawa, Physical, chemical, and biological evaluation of a newly developed bioactive resin-modified glass ionomer cement, 8th World Biomaterials Congress 2008, WBC 2008, 2008.
85. A. Kawasaki, T. Suge, Kunio Ishikawa, T. Matsuo, Effects of ammonium hexafluorosilicate on acid resistance of enamel and dentin, Transactions - 7th World Biomaterials Congress, 2004, The effects of ammonium hexafluorosilicate on the acid resistance of bovine enamel and dentin were analyzed. In the case of enamel specimens, shallower demineralized depth was found when the enamel specimens were treated with ammonium hexafluorosilicate or damine silver fluoride. It was also observed that all the fluoride solutions had abilities to reduce the demineralized depth in the case of dentin specimens. The result shows that ammonium hexafluorosilicate is useful to prevent enamel and dentin caries since ammonium hexafluorosilicate treatment increases acid resistance of enamel and dentin to the same degree with diamine silver fluoride without changing the tooth color..
86. Kunio Ishikawa, S. Matsuya, X. Lin, K. Udoh, Masaharu Nakagawa, Y. Terada, Fabrication of carbonate apatite monolith from calcium carbonate with ammonium hydrogen phosphate treatment, Transactions - 7th World Biomaterials Congress, 2004, The feasibility of preparing carbonate apatite monolith from calcium hydroxide powder, carbon dioxide and ammonium hydrogen phosphate was evaluated. It was observed that carbonate apatite was the most stable phase thermodynamically when calcium, phosphate and carbonate ions were present. The coralline apatite was prepared by the hydrothermal treatment of coral that was aragonite in the presence of phosphate ions. The method was found to allow the formation carbonate apatite with good carbonate content, and with similar crystallinity to that of human bone..
87. T. Suge, A. Kawasaki, Kunio Ishikawa, T. Matsuo, Occlusion of dentinal tubules with ammonium hexafluorosilicate for treatment of dentin hypersensitivity, Transactions - 7th World Biomaterials Congress, 2004, The possibility of using ammonium hexafluorosilicate for the treatment of dentin hypersensitivity was investigated. The occluding ability of dentinal tubules with ammonium hexafluorosilicate was evaluated in vitro using human extracted teeth. Scanning electron microscopy revealed that dentinal tubules were occluded homogeneously with precipitate after treatment with ammonium hexafluorosilicate. It was found that the amount of the precipitate formed in dentinal tubules was slightly smaller when the dentinal tubules were enlarged with 6% or 50% citric acid when compared with other groups..
88. Shunsuke Nomura, Kanji Tsuru, Shigeki Matsuya, Ichiro Takahashi, Kunio Ishikawa, Fabrication of spherical carbonate apatite using calcium sulfate as a precursor by W/O emulsion method, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, We fabricated spherical carbonate apatite from spherical calcium sulfate which was prepared by water-in-oil emulsion method. Calcium sulfate hemihydrate slurry was dropped in oil under continuous stirring and was kept at room temperature for 60 min to obtain set spherical calcium sulfate dihydrate (CaSO4·2H2O) with approximately 1 mm in diameter. The spherical CaSO4·2H2O was hydrothermally-treated at 120°C for 24 hours in the presence of 0.4 mol.L-1 disodium hydrogen phosphate and sodium hydrogen carbonate aqueous solution. X-ray diffraction patterns assigned to apatite single phase could be detected from the obtained spheres. Carbonate content in apatitic structure was found to be approximately 6.5wt%..
89. Taro Nikaido, Kanji Tsuru, Giichiro Kawachi, Melvin Munar, Shigeki Matsuya, Seiji Nakamura, Kunio Ishikawa, Fabrication of βTCP foam using αTCP foam as a precursor by heat treatment, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, The present study reports the synthesis of βTCP foam with fully interconnecting pores based on phase transformation of αTCP foam precursor by employing heat treatment. First, the αTCP foam precursor was fabricated by sintering the ceramics slurry-coated polyurethane foam template at 1,500°C. The resultant αTCP foam was again heated below α,βtransition temperature for an extended period of times. After heating at 800°C for 150 hours, 900°C for 100 hours and 1,000°C for 300 hours, βTCP foam was obtained. The compressive strength of βTCP foam was approximately 46 kPa and the porosity was approximately 93%. The long heating period as well as heating temperature were the key to the transformation of βTCP phase. βTCP foam could be an ideal bone replacement since the invasion of bone cells into the pores provides optimum bone growth or repair..
90. Michito Maruta, Shigeki Matsuya, Kanji Tsuru, Kunio Ishikawa, Improvement in handling property of αTCP cement, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, This study aims to improve the handling property of alpha-tricalcium (αTCP) cement. In order to improve the handling property, the effect of γ-poly-glutamic acid (γPGA) as a chelating agent was studied. γPGA is water soluble, biodegradable, nontoxic, and edible material. γPGA contains carboxyl group, so the chelating effect between Ca 2+ ions released from calcium phosphate cement and carboxyl group of γPGA is prospected when it mixed with αTCP based cement. The results obtained in this study clearly demonstrated that the addition of γPGA into the αTCP cement was highly effective in controlling the handling property of αTCP cement..
91. Shigeki Matsuya, Michito Maruta, Kanji Tsuru, Kunio Ishikawa, Preparation of carbonate apatite cement based on α-TCP, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, Carbonate apatite showed an excellent bioresorbability through the remodeling process of bone. In the present study, we prepared self-setting carbonate apatite cement based on α-TCP. We tried two types of the cement powder formulations, that is, first one (F1) is α-TCP containing given amounts (10 to 50 mass%) of synthesized carbonate apatite and second one (F2) is α-TCP treated in 0.5M NaHCO3 for various times between 90 and 360 min. The cement powder was mixed with 0.25M Na2HPO4 to allow set at 37°C and 100% of relative humidity up to 1 day. XRD and FT-IR results showed formation of B-type carbonate apatite phase after setting in both of the formulations. With the formulation, F1, the carbonate content was increased with the treatment time and the maximum content was 4.1 mass%. DTS deacreased with the amount of cabonate apatite in the formulation, F1, however, it increased up to 9 MPa with treatment time in the formulation, F2..
92. Alireza Valanezhad, Kanji Tsuru, Michito Maruta, Shigeki Matsuya, Kunio Ishikawa, Protectivity and adhesive strength of zinclipscombite coating on 316L stainless steel, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, Zinclipscombite (ZnFe3+ 2(PO4) 2(OH)2) coating layer was prepared on 316L SS. The 316L SS plates were treated using hydrothermal treatment at 200°C for 2, 6 and 24 h. The ZnFe3+ 2(PO4)2(OH) 2 layer strongly attached to the 316L SS surface. The adhesive strength of the coating layer was measured higher than 65.7 ± 3 MPa. The surface observation and element analysis indicated that the 316L SS plates were covered with ZnFe3+ 2(PO4)2(OH) 2 coating layer after hydrothermal treatment. Linear voltammograms for treated sample at 200°C for 24 h showed higher corrosion resistance. The ICP results proved protective property for the zinclipscombite coating agains PBS solution..
93. Shunsuke Nomura, Kanji Tsuru, Alireza Valanezhad, Shigeki Matsuya, Ichiro Takahashi, Kunio Ishikawa, Fabrication of carbonate apatite block from calcium sulfate by hydrothermal treatment, 23rd Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2011, 2012.01, Carbonate apatite (CO3Ap) is expected to be an ideal bone substitute since it can harmonize with the bone remodeling cycle. The aim of this study is to fabricate a CO3Ap bone substitute from gypsum (calcium sulfate, CaSO4·2H2O) hardening bodies based on dissolution-precipitation reaction. Calcium sulfate hemihydrate mixed with water at a water-to-powder ratio of 0.5 was packed in a split stainless mold and kept at room temperature for 24 hours to obtain set CaSO 4·2H2O. The set CaSO4·2H 2O was hydrothermally treated in the presence of disodium hydrogen phosphate (Na2HPO4) and sodium hydrogen carbonate (NaHCO3). The results of powder X-ray diffraction and Fourier transform infrared spectroscopy indicated that CO3Ap block could be fabricated from the set CaSO4·2H2O block by hydrothermal treatment with Na2HPO4 and NaHCO3. When the treatment temperature was increased, the conversion rate to CO 3Ap increased. However, the carbonate content decreased with increasing treatment temperature..
94. Aireza Valanezhad, Kanji Tsuru, Michito Maruta, Shigeki Matsuya, Kunio Ishikawa, A novel HAp coating method on titanium, 23rd Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2011, 2012, A coating layer with hierarchical structure: Titanium-Zinc-Phosphate (Ti-Zn-PO4) / Hydroxyapatite (HAp) coating layer was prepared on titanium (Ti). The Ti plates were treated using two step hydrothermal treatments: first step in acidic zinc phosphate solution to form Ti-Zn-PO 4 coating and second step in calcium chloride solution to form HAp. The Ti-Zn-PO4 layer strongly attached to the Ti surface. The adhesive strength of the coating layer was measured higher than 48 MPa. The surface observation and element analysis indicated that the Ti plates were covered with Ti-Zn-PO4 coating layer after hydrothermal treatment at 250°C. When Ti-Zn-PO4 coating was treated hydrothermally with calcium chloride solution, crystalline HAp layer was formed on its surface..
95. Kanji Tsuru, Akihiro Otsu, Michito Maruta, Alireza Valanezhad, Giichiro Kawachi, Akari Takeuchi, Shigeki Matsuya, Kunio Ishikawa, Calcite bone substitute prepared from calcium hydroxide compact using heat-treatment under carbon dioxide atmosphere, 23rd Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2011, 2012, The purpose of this study is to investigate whether calcite blocks with high mechanical property could be obtained for a short period from calcium hydroxide (Ca(OH)2) compact using heat-treatment under carbon dioxide (CO2) atmosphere. The Ca(OH)2 disks compacted with different pressure was heated at different temperature ranging from 200°C to 800°C for an hour under CO2 atmosphere. From the X-ray diffractometry, Ca(OH)2 converted into calcite along with the rise of the heating temperature. Small amount of unreacted Ca(OH)2 remained in samples heated at 600°C whereas samples treated at 800°C converted to calcite with very small amount of calcium oxide. The diametral tensile strength (DTS) value increased with the rise of heating temperature up to 600°C then decreased down to 800°C. Meanwhile, the porosity decreased with the rise of heating temperature up to 600°C then slightly increased up to 800°C. From the scanning electron microscope observation, grains grew bigger along with the rise of heating temperature. Intergranular space between grains decreased from 200°C to 600°C. The highest DTS value (14 MPa±1.3) at 600°C could be the result of lesser intergranular space due to sintering..
96. Taro Nikaido, Kanji Tsuru, Fumikazu Daitou, Melvin Munar, Shigeki Matsuya, Seiji Nakamura, Kunio Ishikawa, Fabrication of βtcp with fully-interconnected porous structure, 23rd Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2011, 2012, Calcium phosphate foam could be an ideal bone filler and scaffold for tissue engineering. This paper describes fabrication method of β-tricalcium phosphate (βTCP) foam with fully-interconnected porous structure by employing magnesium oxide (MgO) as βTCP stabilizer. The foam was prepared using the so-called ceramics foam method. MgO was added to calcium carbonate and dicalcium phosphate dihydrate so that 0, 1, 2, 3, 4, 6 and 8 mol% calcium would be substituted by magnesium (Mg) in βTCP structure. After sintering at 1500°C, crystal phase of the obtained foam included β-tricalcium phosphate (αTCP) when no Mg or less than 3 mol% Mg was added. In contrast, crystal phase was single phase βTCP when 3 mol% or higher Mg was added. The compressive strength was approximately 15 kPa and the porosity was above 95% for all specimens. No significant difference was observed between αTCP and βTCP foams in compressive strength and porosity when the sintering temperature was the same..
97. Kunio Ishikawa, Kanji Tsuru, Trung Kien Pham, Michito Maruta, Shigeki Matsuya, Fully-interconnected pore forming calcium phosphate cement, 23rd Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2011, 2012, Calcium phosphate cement that foams fully-interconnected porous structure along with its gradual replacement to bone may be ideal for bone defect reconstruction. In the present study, α-tricalcium phosphate (αTCP) microspheres were exposed to acidic calcium phosphate solution. It was found that the αTCP microspheres set in approximately 10 min to form fully-interconnected porous structure. The porosity was approximately 50% and the pore size was 300μm. The surface of the porous body was dicalcium phosphate dihydrate whereas the inside was αTCP..
98. N. X T Tram, M. Maruta, K. Tsuru, S. Matsuya, Kunio Ishikawa, Hydrothermal conversion of calcite foam to carbonate apatite, Advances in Bioceramics and Porous Ceramics VI - 37th International Conference on Advanced Ceramics and Composites, ICACC 2013, 2014, We have previously reported an inverse ceramic foam method aiming to improve mechanical strength of calcite foam that has interconnected porous structure. The modified foam was obtained by multiple Polyurethane coating. In previous study, calcium hydroxide (Ca(OH)2) slurry was poured into the foam. After drying, the foam was burnt out to remove polyurethane and to carbonate Ca(OH)2 under mixed O2-CO2 atmosphere. Ca(OH)2 was completely converted to calcite. Those calcite foams are the useful precursors for the preparation of the three-dimensional (3D) interconnected porous carbonate apatite (CO 3AP) foam. Therefore, we investigated the hydrothermal treatment of calcite foam to CO3AP foam in phosphate solution. The results indicated that the conversion ratio depends on the degree of porosity of calcite precursor and calcite foam was completely transformed to CO3Ap foam at 100°C for 14 days. The CO3AP foam showed the increase in the compressive strength compared to conventional foam. So, it is concluded that CO3Ap foam fabricated in this study could be a good candidate for the bone replacement material in clinical application..
99. Tram Nguyen Xuan Thanh, Michito Maruta, Kanji Tsuru, Shigeki Matsuya, Kunio Ishikawa, Three-dimensional porous carbonate apatite with sufficient mechanical strength as a bone substitute material, 11th International Fatigue Congress, FATIGUE 2014, 2014, In this study, three-dimensional porous carbonate apatite (CO3Ap) materials with the chemical compositions and structures similar to cancellous bone were produced via phosphorization of porous calcite precursor in hydrothermal condition. In order to make porous calcite precursor, negative replication of polyurethane foam that named as inverse ceramic foam method was conducted. When the polyurethane template occupied within the ceramic solid walls disappeared due to burning at high temperature, interconnected hollow pathways were produced. Polyurethane foam was used as a porogen-template firstly was coated layer by layer with synthetic resin to modify morphology and enlarge thickness of struts so as to expand porous area for satisficing cellular bioactivities. Calcium hydroxide (Ca(OH)2) slurry was then infiltrated into resin coatedpolyurethane foam. Heat treatment in atmosphere of oxygen and carbon dioxide gases was carried out to eliminate polyurethane template and induce carbonation process. Ca(OH)2 was converted to calcite with the internal porous channel architecture simulating polyurethane foam struts network. That interconnected porous calcite was subsequently transformed to CO3Ap with remaining the same macroporous structure through hydrothermal treatment in phosphate solution. The porous CO3Ap materials were implanted in the tibia of Japanese male rabbits and removed after a period of 3 months. The bone formation response of the three-dimensional porous carbonate apatite in vivo has been preliminary studied using micro-computed tomography (μ-CT) scanner. The results showed that the porous implant materials have sufficient mechanical strength to provide structural support during bone remodeling and successfully bond with host bone..
100. Nurazreena Ahmad, Kami Tsuru, Melvin L. Munar, Shigeki Matsuya, Kunio Ishikawa, Effect of precursor solubility on the mechanical strength of HAp block, Advances in Bioceramics and Porous Ceramics V - 36th International Conference on Advanced Ceramics and Composites, ICACC 2012, 2013.04, The effect of the solubility of the precursors, alpha tricalcium phosphate (α-TCP) and beta tricalcium phosphate (β-TCP) on the mechanical property of hydroxyapatite (HAp) bone substitute was investigated. Uniaxially pressed compacts starting from these precursors were treated hydrothermally with 1 mol/L of ammonia solution at 200°C for various durations. XRD analysis revealed that α-TCP took 3 hours whereas β-TCP took 240 hours for complete transformation to HAp. The porosity of HAp block obtained from β-TCP was found to be lower than that of HAp block from α-TCP. Diametral tensile strength of HAp block from β-TCP showed a significantly higher value than that of HAp block obtained from α-TCP. It is therefore concluded that solubility of precursor affects the mechanical strength of the HAp block..
101. Arief Cahyanto, Michito Maruta, Kanji Tsuru, Shigeki Matsuya, Kunio Ishikawa, Basic properties of carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, The aim of the present study is to fabricate bone cement that could transform to carbonate apatite (CO3Ap) completely at body temperature. The powder phase of vaterite and dicalcium phosphate anhydrous (DCPA) was mixed with 0.8 mol/L of NaH2PO4, Na 2HPO4, and Na3PO4 aqueous solution, respectively, with liquid to powder ratio (L/P ratio) of 0.45, 0.55, and 0.65. The paste was packed into split stainless steel mold, covered with the glass slide and kept at 37°C and 100% relative humidity for up to 96 hours (h). XRD analysis revealed that the cement became pure CO3Ap within 24 h for Na3PO4, 72 h for Na2HPO4, and 96 h for NaH2PO4, respectively. FT-IR results showed that all of the obtained specimens could be assigned to B-type CO3Ap. CHN analysis showed the carbonate content of the specimen were 10.4 ± 0.3% for NaH2PO4, 11.3 ± 0.7% for Na2HPO 4, and 11.8 ± 0.4% for Na3PO4, respectively. Diametral tensile strength of the set CO3Ap cement was 1.95 ± 0.42 MPa for NaH2PO4, 2.53 ± 0.53 MPa for Na2HPO4, and 3.45 ± 1.53 MPa for Na 3PO4, respectively. The set CO3Ap cement had low crystallinity similar to bone apatite since it was synthesized at body temperature. We concluded, therefore, that CO3Ap cement prepared from the present method has higher possibility to be used as an ideal bone replacement..
102. Daiki Honda, Akari Takeuchi, Kunio Ishikawa, Basic properties of starfish derived calcium carbonate and its phase transformation to carbonate apatite, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, Feasibility of starfish bone to be a source material for apatite bone substitute was investigated in the present study because starfish bone is known to be porous calcium carbonate. Starfish bone was assembly of Mg containing calcite granules. And the calcite granules had fully interconnected porous structure with approximately 20 μm of pore size. After the hydrothermal treatment of the calcite granules in Na2HPO4aqueous solution, the granules were gradually transformed to apatite. Therefore, starfish derived calcium carbonate would be a candidate of a source material for carbonate apatite bone substitute..
103. Arief Cahyanto, Kanji Tsuru, Kunio Ishikawa, Carbonate apatite formation during the setting reaction of apatite cement, Advances in Bioceramics and Porous Ceramics V - 36th International Conference on Advanced Ceramics and Composites, ICACC 2012, 2013, Replacement of apatite cement (AC) to bone is still controversial issue. To understand factor that could affect the replacement of AC to bone, AC consisting of an equimolar mixture of tetracalcium phosphate (TTCP; Ca 4(PO4)2O) and dicalcium phosphate anhydrous (DCPA; CaHPO4) was allowed to set at 37°C and 100% relative humidity under 5% CO2 or N2. Carbonate apatite (CO 3Ap) was formed when AC was allowed to set under 5% CO2. The amount of CO3 decreased gradually as the depth from the surface increased. The CO3Ap was the B-type CO3Ap in which CO 3
2- was replaced with PO4
3- and the CO3Ap found in bone. Larger amount of TTCP remain unreacted when the AC was allowed to set under N2 whereas smaller amount of TTCP remain unreacted when the AC was allowed to set under CO2. This may be caused by the larger Ca/P molar ratio of CO3Ap. Formation of CO 3Ap and/or small unreacted TTCP are thought to be key factors for the replacement of AC to bone..
104. Girlie M. Munar, Melvin L. Munar, Kanji Tsuru, Kunio Ishikawa, Comparison of PLGA reinforcement method for carbonate apatite foam, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, Carbonate apatite (CO3Ap) foam with interconnecting porous structure is a potential candidate as bone substitute material owing to its similarity to the cancellous bone with respect to composition, morphology and osteoclastic degradation. However, it is brittle and difficult to handle. This is thought to be caused by no organic material in the CO3Ap foam. The aim of this study is to reinforce the CO3Ap foam with poly(DL-lactide-co-glycolide) (PLGA). Immersion and vacuum infiltration methods were compared as reinforcing methods. Compressive strength of unreinforced CO3Ap foam, (12.0 ± 4.9 kPa) increased after PLGA reinforcement by immersion (187.6 ± 57.6 kPa) or by vacuum infiltration (407 ± 111.4 kPa). Scanning electron microscopy (SEM) showed the preservation of full interconnecting porous structure of CO3Ap foam after PLGA reinforcement using immersion or vacuum infiltration. Interface between the PLGA and CO3Ap foam, however revealed that no gap was found between the PLGA and CO3Ap foam interface when vacuum was used to reinforce the PLGA whereas a gap was found when simple immersion was used. Strong interface between PLGA and CO3Ap foam is therefore thought to be the key for higher compressive strength. In conclusion, vacuum infiltration is a more efficient method to reinforce the CO3Ap foam with PLGA for improving the mechanical strength without sacrificing the cancellous bone-type morphology..
105. Xingling Shi, Kanji Tsuru, Giichiro Kawachi, Kunio Ishikawa, Effects of hydrothermal treatment on properties of titanium nitride coating for dental implants, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, To improve surface hardness of dental implant made of pure titanium (Ti), titanium nitride (TiN) coating was introduced. However, studies revealed that TiN only showed osseointegration similar or inferior to that of Ti. Therefore it is necessary to improve the biocompatibility of TiN for dental implant coating. In the present study, TiN coating was prepared on pure Ti substrates and hydrothermal treatment was conducted to modify its surface properties. It was found that, TiN surface was partially oxidized after treatment and calcium (Ca) was successfully combined onto its surface. Surface morphology, roughness and hardness were not affected after treatments below 140°C and wettability was obviously improved..
106. Tram Nguyen Xuan Thanh, Michito Maruta, Kanji Tsuru, Alireza Valanezhad, Shigeki Matsuya, Kunio Ishikawa, Fabrication of calcite foam by inverse ceramic foam method, 24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012, 2013, We have previously reported that calcite foam that had interconnected porous structure could be prepared by ceramic foam method and it transformed to carbonate apatite (CO3Ap). In the ceramic foam method, polyurethane sponge was used as a template. The polyurethane sponge was immersed in the ceramics slurry, and the strut of the polyurethane foam was covered by ceramic powder. After that it was dried and sintered at high temperature. Calcite foams produced by this approach were comprised of a three-dimensional (3D) interconnected porous structure that facilitated cell penetration. However, all foams have a common limitation: the inherent lack of mechanical strength associated with high porosity. Therefore, in this study, an inverse ceramic foam method was studied; multi polyurethane coating method using polyurethane foam as a template. In this study, the compressive strength was improved by an inverse replication allowed for decreasing porosity while at the same time maintaining the interconnectivity. The burnable synthetic resin coating layer was introduced onto struts of polyurethane foam to make the triangular struts become more round and thick, consequently producing large round capillary within the foam structure fulfilling the requirement for osteoblast colonization. In particular, polyurethane foam was dipped orderly into two monomers, followed by centrifugation to remove excess liquids inside foam. After resin curing, a layer of synthetic resin was coated strut of foam. Calcium hydroxide Ca(OH) 2 slurry was then infiltrated into resin coated-polyurethane foam. By firing at 600°C in O2-CO2 stream, polyurethane template was burnt off and Ca(OH)2 was converted into calcite. Negative replicated calcite foam was fabricated and characterized micro-structurally with interconnectivity and improved mechanical strength. The results obtained in this study suggested that this method dramatically improved the mechanical strength of the calcite foam without sacrificing the interconnected structure, and this means that the calcite foam obtained in this method could be precursors for the 3D interconnected porous CO3Ap foam..
107. Girlie M. Munar, Melvin L. Munar, Kanji Tsuru, Shigeki Matsuya, Kunio Ishikawa, Fabrication of carbonate apatite-PLGA hybrid foam bone substitute, Advances in Bioceramics and Porous Ceramics V - 36th International Conference on Advanced Ceramics and Composites, ICACC 2012, 2013, Porous carbonate apatite (CO3AP) foam is a potential bone substitute material since it approximates the morphology and mineral phase of bone. One drawback however, is the poor mechanical properties for sufficient handling. A useful method to improve the mechanical property is by reinforcing it with biodegradable polymer. This study reports the preparation of carbonate apatite-PLGA (CO3AP-PLGA) hybrid foam with improved mechanical strength and osteoconductivity. CO3AP foam was prepared by hydrothermal treatment of α-tricalcium phosphate (αTCP) foam in carbonate solution at 150°C for 24 hours. CO3AP powder was synthesized from vaterite (CaCO3) and disodium hydrogen phosphate (Na2HPO4) aqueous solution at 37°C. The obtained CO3AP powder was mixed with 10wt% PLGA solution then reinforced on CO3AP foam using freeze-vacuum technique. The obtained CO 3AP-PLGA hybrid foam showed interconnecting porous structure with average porosity of 85%. Compressive strength of CO3Ap-PLGA hybrid foam was as high as 0.35 MPa when compared to that of CO3Ap foam at 0.01 MPa. X-ray diffraction and FT-IR showed CO3Ap as the primary mineral phase. In conclusion, CO3AP-PLGA hybrid foam with improved mechanical properties and approximates the mineral composition and morphology of the cancellous bone can be a potential bone substitute or scaffold for tissue engineering..
108. Nguyen Xuan Thanh Tram, Kunio Ishikawa, Fabrication of calcite block with interconnecting porous structure for bone substitutes, 6th International Conference on the Development of Biomedical Engineering in Vietnam, BME 2016, 2018.01, In this study porous calcite block was fabricated using calcium hydroxide (Ca(OH)2) as precursor and wax spheres as pore-creating volatile particles. X-ray diffraction (XRD) and Scanning electron microscope (SEM) were used to characterize phase composition and structure. The results indicated that pure calcite block consisting of interconnecting pores with pore size about 200–400-µm diameter could be obtained. It is indicated that wax spheres are advantageous on producing interconnecting porous structure since they could be easily removed by sintering. Porous calcite block with interconnecting porous structure is expected to apply as bone substitutes since it could support effectively bone cell activities to promote bone healing..
109. Arief Cahyanto, Kanji Tsuru, Kunio Ishikawa, Masanori Kikuchi, Mechanical strength improvement of apatite cement using hydroxyapatite/collagen nanocomposite, 28th Annual Meeting of the International Society for Ceramics in Medicine, Bioceramics 2016, 2017, The combination of tetracalcium phosphate (TTCP; Ca4(PO4)2O) and dicalcium phosphate anhydrous (DCPA; CaHPO4) which are known as one system of apatite cements already used in the medical and dental application. In spite of several advantages of apatite cements, such as self-setting ability and biocompatibility, their mechanical strengths are still low. The aim of this study is to improve the mechanical strength of the TTCP-DCPA apatite cement using the hydroxyapatite/collagen nanocomposite (HAp/Col). The apatite cement powder was prepared using an equimolar TTCP and DCPA with addition of 10% and 20% of the HAp/Col. That without the HAp/Col was used as a control group. Each group was mixed with 1 mol/L Na1.8H1.2PO4 aqueous solution at powder/liquid ratio of 0.5 and hardened at 37°C and 100 % of relative humidity for 24 hours. A setting time of the cement was evaluated using Vicat needle according to ISO 1566 for dental zinc phosphate cements. Morphology of the cements set were observed by the scanning electron microscopy (SEM), and crystalline phases were identified by the powder X-Ray diffractometry (XRD). The mechanical strength of the cement set was evaluated by the diametral tensile strength (DTS). The setting times of cements were the shortest for the cement with HAp/Col and the longest for the control. XRD patterns of the cement at 24 hours after mixing revealed that all cements changed into apatite from the mixture of TTCP and DCPA. The DTSs of cements were the highest for the cement with 20% HAp/Col and the lowest for the control with significant differences between the cement with 20 % HAp/Col and respective other two cements. The scanning electron micrographs of the surface and fracture surface of the cements suggested that the cement with HAp/Col showed denser structure in comparison to the control and the HAp/Col fibers and/or sheets covered the fracture surface. The HAp/Col would act as reinforcement fibers as well as an adhesive of apatite granules formed by the reaction between TTCP and DCPA. The setting time and mechanical strength of apatite cement was statistically significant improved by adding 20% HAp/Col..
110. C. Sunarso, Riki Toita, Kanji Tsuru, Kunio Ishikawa, Increased pre-osteoblast bioactivity on ca-modified titanium, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015, 2016, The aim of this study is to evaluate a new and simple titanium surface modification by calcium treatment. The treatment was carried out by immersing titanium in CaCl2 solution at 80oC. The XPS spectra showed that calcium has been successfully immobilized onto titanium surface. Moreover, the thickness of oxide layer increased after the treatment due to exposure of titanium surface to aqueous solution. In vitro evaluation revealed that the calcium treated titanium shows cytocompatibility including greater cell attachment and proliferation. The results suggested that our current titanium surface modification is promising to improve osteoconductivity..
111. Nguyen Xuan Thanh Tram, Michito Maruta, Kanji Tusru, Shigeki Matsuya, Kunio Ishikawa, Osteoconductivity and bioresorption of an interconnecting porous carbonate apatite with enhanced mechanical strength, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015, 2016, We have established a processing method to fabricate three-dimensional porous carbonate apatite (CO3Ap) with interconnected porous structure and improved mechanical strength. Briefly, porous CO3Ap materials were produced via phosphorization of porous calcite precursor in hydrothermal condition. In order to make porous calcite precursor, negative replication of modified polyurethane foam template was conducted. In this study, an in vivo behavior of that porous CO3Ap was evaluated. The interconnected porous CO3Ap material was implanted in the tibia of Japanese male rabbits and removed after a period of 6 months. Micro-computed tomography (μ-CT) scanner and histological analysis were used to characterize the bone formation response of the porous CO3Ap. The results suggest that porous CO3Ap with enhanced mechanical strength was not only osteoconductive but also bioresorbable therefore it could be used as bone substitute material..
112. Tya Indah Arifta, M. L. Munar, K. Tsuru, Kunio Ishikawa, Preparation of Porous α-TCP by Fusion of DCPD Coated α-TCP Spheres, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015, 2016, The aim of present study was to fabricate porous α-Tricalcium phosphate (α-TCP) with adequate mechanical strength and pore interconnectivity. First step, α-TCP spheres were exposed to acidic calcium phosphate solution to allow growth and interlocking of dicalcium phosphate dihydrate (DCPD) crystals precipitated on the surface of the α-TCP spheres. Then, the DCPDcoated α-TCP spheres were sintered at 1,500°C for 6h, which resulted in the fusion of spheres to form the interconnected porous block. XRD analysis showed single phase α-TCP was obtained. Mechanical strength of porous α-TCP was 6.9 ± 1.6 MPa and porosity was 53 ± 5%. The obtained porous α-TCP could be employed as potential bone substitute or precursor for other bioceramics like carbonate apatite and hydroxyapatite..
113. Khairul Anuar Shariff, Kanji Tsuru, Kunio Ishikawa, Regulation of DCPD formation on β-TCP granular surface by exposing different concentration of acidic calcium phosphate solution, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015, 2016, Regulation of DCPD formation on β-TCP granules was achieved by exposing β-TCP granular with different concentration of acidic calcium phosphate solution. It was found that a higher amount of DCPD was formed when exposed β-TCP granular with the higher concentration of acidic calcium phosphate solution. Morphological observation shows that the surface of β-TCP granular was fully coated with DCPD crystals after exposed to the higher concentration of acidic calcium phosphate solution. These results demonstrated that the DCPD formation on the β-TCP granular surface could be regulated by varying the concentration of acidic calcium phosphate solution..
114. Arief Cahyanto, Kanji Tsuru, Kunio Ishikawa, Transformation of apatite cement to B-Type carbonate apatite using different atmosphere, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015, 2016, Apatite cement (AC) is a breakthrough in biomaterials for the reconstruction of the bone defect. However, the replacement of AC to bone up to the present time is still controversial for researchers. Several researchers have reported that AC was replaced by bone while others claimed replacement was limited. The aim of this study is to investigate the transformation mechanism of AC to B-Type carbonate apatite (CO3Ap) using different atmosphere. An in vitro study mimicking the body environment was employed in order to examine the effect of setting atmosphere on the composition of set AC. An equimolar of tetracalcium phosphate (TTCP; Ca4 (PO4)2O) and dicalcium phosphate anhydrous (DCPA; CaHPO4) mixed with distilled water was enabled to harden at 37°C and 100% of relative humidity under presence of 5% CO2, 100% CO2, and 100% N2 atmospheres. XRD and FT-IR analyses revealed that in the presence of 100% CO2 and 5% CO2, Btype CO3Ap could be determined and only small amounts of TTCP remained unreacted. On the contrary, in the presence of 100% N2, the CO3 -2 bands could not be detected and larger amount of TTCP remained unreacted compared to 5% CO2 and 100% CO2 atmospheres. SEM morphology showed that the microstructure of AC was entangled and locked to each other. In addition, the small needle like crystals appeared in the surface of 100% N2, similar to hydroxyapatite. We concluded that the CO3 -2 ions incorporated in AC during setting reaction may be one of the essential factors for CO3Ap formation..
115. Pham Trung Kien, Tsuru Kanji, Kunio Ishikawa, Development and characterization of porous calcium phosphate cement using α-tricalcium phosphate bead, 5th International Conference on the Development of Biomedical Engineering, 2014, 2015, Interconnected set porous-calcium phosphate cement (set porous-CPC), which has fully interconnected pores could be an ideal bone substitute. In this study, set porous- CPC consisting of α-tricalcium phosphate (α-TCP) beads and acidic calcium phosphate solution was developed and its basic setting reaction was studied. When α-TCP beads were exposed to the acidic calcium phosphate solution, brushite (CaHPO4 ·2H2O) was formed on the surface of the α-TCP beads. The formed brushite crystals interlocked with each other, resulting in a setting reaction of α-TCP microspheres within 10 min at 37°C. As a result of this setting reaction, a fullyinterconnected calcium phosphate macroporous structure was obtained. The set porous-CPC were immersed into simulated body fluid (SBF) at 37oC for different immersion time, The result clearly showed that brushite surface layer transformed to apatite layer after 3 days immersion into SBF solution by dissolution-precipitation reaction. Since apatite layer show excellent tissue response, the set porous-CPC would be a promising biomaterial used as artificial bone substitutes, and as the scaffold for tissue engineering..
116. Arief Cahyanto, Riki Toita, Kanji Tsuru, Kunio Ishikawa, Effect of particle size on carbonate apatite cement properties consisting of calcite (Or vaterite) and dicalcium phosphate anhydrous, 26th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, ISCM 2014, 2015, Calcium carbonate (CaCO3) has been known as one of the components of carbonate apatite (CO3Ap) cement. Calcite is one of the polymorph of CaCO3 with big particle size and excellent stability. In contrast, vaterite has small particle size and a metastable phase. To discover the effect of particle size on the properties of CO3Ap cement, this study investigated the different particle size of vaterite; calcite from vaterite, which has almost similar particle size and shape with vaterite; grounded calcite and ungrounded calcite. The powder phase of calcite or vaterite combined with dicalcium phosphate anhydrous (DCPA) was mixed with 0.8 mol/L of Na2HPO4 solution in 0.45 liquid to powder ratio. The paste was packed into a split stainless steel mold, covered with glass slide and kept at 37°C and 100% relative humidity for a period of time. XRD and FT-IR analysis revealed that CO3Ap cement consisted of vaterite and DCPA transformed to pure B-type CO3Ap in 72 hours while CO3Ap cement that consisted of calcite with different particle size was not completely transformed to CO3Ap even until 240 hours. We concluded that CO3Ap cement consisted of vaterite with small particle size and metastable phase properties is more effective as starting material due to its fast transformation to CO3Ap..
117. Thi Bang Le, Xing Ling Shi, Kunio Ishikawa, Radzali Othman, Bone marrow cell response on carbonate apatite/PCL-coated α-tricalcium phosphate foam, 5th Regional Conference on Materials Engineering and the 5th Regional Conference on Natural Resources and Materials 2013, RCM5 and RCNRM5 2013, 2014, The aim of this research work was to investigate in vitro effect of the carbonate apatite/poly(ε- caprolactone) (CO3Ap/PCL) on α-tricalcium phosphate (α-TCP) foam. α-TCP was produced by sintering CaCO3 and CaHPO4•2H2O at 1500°C for 5 h. It was then coated with CO3Ap/PCL (wt/wt=1/3) to improve both mechanical and biological properties. The initial cell attachment and proliferation of the bone marrow cells were carried out on the α-TCP and CO3Ap/PCL-coated α- TCP foams. The cell proliferation was calculated by AlamarBlue assay. The cells were able to migrate and proliferate well on both α-TCP and CO3Ap/PCL-coated α-TCP foams indicating an excellent biocompatibility. The incorporation of CO3Ap on the coating layer improved cellular attachment and accelerated proliferation. Thus, CO3Ap/PCL-coated α-TCP foam might be a promising candidate as implant material..
118. Ishikawa Kunio, Surface modification of titanium for improved osteoconductivity. , 16th Australasian BioCeramic Symposium, 2016.12.
119. 石川 邦夫, MUNAR MELVIN DE LEON, 都留 寛治, 炭酸アパタイトハニカム, 第52回九大生体材料・力学研究会, 2016.11.
120. Sunarso, Riki Toita, Kanji Tsuru, Ishikawa Kunio, Co-immobilization of calcium and phosphate ion to titanium and its bioactivity., 日本バイオマテリアル学会シンポジウム2016, 2016.11.
121. MUNAR MELVIN DE LEON, Kanji Tsuru, Ishikawa Kunio, Carbonate apatite ceramics derived from avian bone by hydrothermal treatment., 日本バイオマテリアル学会シンポジウム2016, 2016.11.
122. 福田 直志, 都留 寛治, 森 悦秀, 石川 邦夫, β-TCP顆粒セメントの作製とその組織学的評価, 日本バイオマテリアル学会シンポジウム2016, 2016.11.
123. 重光 勇介, 山本 克史, 石原 容子, 山中 克之, 増田 聖, 都留 寛治, 石川 邦夫, 熊谷 知弘, 炭酸アパタイトのウサギ大腿骨への埋植による新生骨強度の評価, 日本バイオマテリアル学会シンポジウム2016, 2016.11.
124. 藤澤 健司, 永井 宏和, 大江 剛, 都留 寛治, 石川 邦夫, 宮本 洋二, 低結晶性炭酸アパタイトの骨再建への応用―各種骨補填材との比較―, 日本バイオマテリアル学会シンポジウム2016, 2016.11.
125. 石川 邦夫, 新しい骨補填材の開発:アカデミアの立場から, 日本バイオマテリアル学会シンポジウム2016, 2016.11.
126. Kanji Tsuru, MUNAR MELVIN DE LEON, Ishikawa Kunio, Fabrication of biphasic bone substitute consisting of calcite and carbonate apatite., International Dental Materials Congress 2016, 2016.11.
127. Yuki Sugiura, Kanji Tsuru, Ishikawa Kunio, Fabrication of carbonate apatite foam from the set calcium sulfate hemihydrate foam via solution mediated phase conversion. , International Dental Materials Congress 2016, 2016.11.
128. Ishikawa Kunio, Carbonate apatite bone replacement. , International Dental Materials Congress 2016, 2016.11.
129. Nguyen Xuan Thanh Tram, Huynh Tuan Thanh, Ishikawa Kunio, Fabrication of porous carbonate apatite for bone repair. , AUN/SEED-Net Regional Conference 2016 on Materials Engineering (RCME2016), 2016.10.
130. Ishikawa Kunio, Carbonate apatite -Next generation artificial bone replacement- , AUN/SEED-Net Regional Conference 2016 on Materials Engineering (RCME2016), 2016.10.
131. Ishikawa Kunio, Fabrication of carbonate apatite based on dissolution-precipitation reaction using precursors., The 28th Symposium & Annual Meeting of the International Society for Ceramics in Medicine, 2016.10.
132. 柳 健一, 伊藤 敦夫, 野口 裕史, 橋本 幸一, 山崎 正志, 石川 邦夫, 松川 昭博, 荒川 義弘, 整形外科・歯科領域コンビネーション製品評価指標素案の政策-革新的医薬品・医療機器・再生医療製品実用化促進事業による取組, レギュラトリーサイエンス学会, 2016.09.
133. 藤澤 健司, 永井 宏和, 大江 剛, 高丸 菜都美, 都留 寛治, 石川 邦夫, 低結晶性炭酸アパタイトのインプラント領域への応用-犬顎骨へのインプラント体との同時埋植-, 口腔インプラント学会総会, 2016.09.
134. 石川 邦夫, 都留 寛治, Khairul Anuar Shariff, DCPD被膜βTCP顆粒骨補填材の創性, 日本セラミックス協会第29回秋季シンポジウム, 2016.09.
135. 石川 邦夫, リン酸カルシウムセメントの歴史, 日本セラミックス協会第29回秋季シンポジウム, 2016.09.
136. Ishikawa Kunio, Carbonate apatite-next generation bone replacement., 18th International School-Conference "Advanced Materials and Technologies", 2016.08.
137. Ishikawa Kunio, Artificial bone substitute made by dissolution-precipitation method., 2nd Bone and Biomaterials workshop, 2016.08.
138. Ishikawa Kunio, Calcium Phosphate Cement Development and Its Future., ASEAN+3 Course on Bioceramics and Tissue Engineering, 2016.07.
139. Ishikawa Kunio, Types of Bioceramics: Its Development to Application, ASEAN+3 Course on Bioceramics and Tissue Engineering, 2016.07.
140. Ishikawa Kunio, Kanji Tsuru, Song Chen, Effects of the pore size on mechanical property and tissues response to porous carbonate apatite made by the setting reaction of carbonate apatite granules., International Conference on Processing & Manufacturing of advanced materials (Thermec 2016), 2016.06.
141. Ishikawa Kunio, Kanji Tsuru, Song Chen, Fabrication of porous carbonate apatite based on setting reaction of carbonate apatite granules., 10th World Biomaterials Congress, 2016.05.
142. Ishikawa Kunio, Kanji Tsuru, Fabrication of interconnected porous carbonate apatite and its tissue response., 45th Annual Meeting and Exhibition of the American Association for Dental Research, 2016.03.
143. 石川 邦夫, 杉浦 悠紀, 都留 寛治, 含リン酸半水石膏軟化体からの高強度炭酸アパタイトフォームの創製, 日本セラミックス協会2016年会, 2016.03.
144. 柘殖 智仁, 竹内 あかり, 石川 邦夫, 菊池 正紀, ヒトデ由来炭酸カルシウムを前駆体としたリン酸カルシウム多孔体の調整, 日本セラミックス協会2016年会, 2016.03.
145. 石川 邦夫, 都留 寛治, 顆粒連結法による連通気孔型骨補填材の創製, 日本機械学会 第28回バイオエンジニアリング講演会, 2016.01.
146. 石川 邦夫, 杉浦 悠紀, 都留 寛治, α型リン酸三カルシウムフォーム顆粒の硬化反応による炭酸アパタイトフォームの調整, 第37回日本バイオマテリアル学会, 2015.11.
147. 石川 邦夫, セラミックス系バイオマテリアルの基礎, 第37回日本バイオマテリアル学会, 2015.11.
148. Ishikawa Kunio, Nguyen Xuan Thanh Tram, Nguyen Thi Thanh Ueyn, Huynh Tuan Thanh, Huynh Bao Xuyen, Tran Thi Thu Trang, Cao Xuan Viet, Isolation of carbonate apatite from chicken bone, Regional Conference 2015 on Materials Engineering, 2015.10.
149. Ishikawa Kunio, Interconnected porous carbonate apatite for bone replacement, Regional Conference 2015 on Materials Engineering, 2015.10.
150. Ishikawa Kunio, Khairul Anuar Shariff, Kanji Tsuru, Regulation of DCPD formation on β-TCP granular surface by exposing different concentration of acidic calcium phosphate solution, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015.10.
151. Ishikawa Kunio, Noriko Koga, Kanji Tsuru, Ichiro Takahashi, Fabrication of interconnected porous carbonate apatite using calcite granules as a precursor, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015.10.
152. Ishikawa Kunio, Tya Indah Arifta, Munar Melvin De Leon, Kanji Tsuru, Preparation of porous αTCP block by fusion of DCPD coated αTCP spheres, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015.10.
153. Ishikawa Kunio, Sunarso, Toita Riki, Kanji Tsuru, Increased pre-osteoblast resorptions to CaCl2 treated titanium at 80℃, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015.10.
154. Ishikawa Kunio, Nguyen Xuan Thanh Tram, Michio Murata, Kanji Tsuru, Shigeki Matsuya, Osteocnduvitiy and bioresorption of an interconnecting porous carbonate apatite with enhanced mechanical strength, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015.10.
155. Ishikawa Kunio, Yuki Sugiura, Kanji Tsuru, Carbonate apatite foam fabricated from α-TCP foam granuels through hydrotheremal treatment with various amount of NaHCO3, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015.10.
156. Ishikawa Kunio, Arief Cahyanto, Kanji Tsuru, Transformation of apatite cement to B-type carbonate apatite using different atomosphere, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015.10.
157. Ishikawa Kunio, Carbonate apatite for bone regeneration: An insight to the future development, 27th Symposium and Annual Meeting of the International Society for Ceramics in Medicine, 2015.10.
158. 石川 邦夫, 永井 宏和, 藤澤 健司, 都留 寛治, 宮本 洋二, 低結晶性炭酸アパタイトの骨再建への応用-イヌ顎骨に作成した骨欠損部への移植, 日本口腔インプラント学会, 2015.09.
159. 石川 邦夫, 吉本 彰夫, 炭酸アパタイト顆粒の結合による炭酸アパタイト連通多気孔調整, インプラント学会第35回関東・甲信越支部学術大会, 2016.02.
160. 石川 邦夫, 都留 寛治, 古賀 のりこ, 高橋 一郎, 炭酸カルシム連通多孔体の作製とその病理組織学的検索, 第66回日本歯科理工学会学術講演会, 2015.10.
161. 石川 邦夫, 都留 寛治, 杉浦 悠紀, α-TCP-DCPD 硬化反応を応用した高炭酸含有アパタイトフォーム創製, 第66回日本歯科理工学会学術講演会, 2015.10.
162. Ishikawa Kunio, Comparison of hydroxyapatite and carbonate apatite as bone substitutes, International Seminar on Biomaterials & Regenerative Medicine (BioRemed 2015), 2015.09.
163. Ishikawa Kunio, Ira Artilia, Flowability and mechanical property improvement of apatite cement, Dies Forum 2015, 2015.09.
164. Ishikawa Kunio, Kanji Tsuru, Masako Kobayashi, Youji Miyamoto, Fabrication and Histological Evaluation of Carbonate Apatite Coated Calcite, ESB2015, 2015.09.
165. Ishikawa Kunio, Kanji Tsuru, Youji Miyamoto, Carbonate Apatite Bone Replacement, The 5th Asian Biomaterials Congress, 2015.05.
166. Ishikawa Kunio, Kanji Tsuru, Nguyen Xuan Thanh Tram, Fabrication of porous carbonate apatite and its in vivo evaluation, 2015 Annual Meeting & Exposition Society for Biomaterials, 2015.04.
167. 石川 邦夫, 都留 寛治, Ahmed Nafis Rashid, オゾン-カルシウム処理による生体親和性PETの創製, 日本組織培養学会第88回大会, 2015.05.
168. 石川 邦夫, 都留 寛治, Nguyen Xuan Thanh Tram, 蟻の巣型炭酸アパタイト多孔体の調整とその組織反応, 日本再生医療学会, 2015.03.
169. 石川 邦夫, PLGA 階層化炭酸アパタイトフォームの界面制御, 融合マテリアル, 2015.01.
170. 石川 邦夫, 都留 寛治, 石川 真帆, αリン酸型三カルシウム前駆体を用いた炭酸アパタイト調整におけるpHの影響, 生体関連セラミックス討論会, 2014.12.
171. 石川 邦夫, 都留 寛治, 佐々木 和起, 武知 正晃, 二宮 嘉昭, 太田 耕司, Mohammad Zeshaan Rahman, 抗菌薬含有α-TCP/AC硬化体の顎骨骨髄炎への応用に関する基礎的研究, 第36回日本バイオマテリアル学会大会, 2014.11.
172. 石川 邦夫, 都留 寛治, 小林 真左子, 藤澤 健司, 山中 克之, 熊谷 知弘, 宮本 洋二, 炭酸アパタイト被覆炭酸カルシウムを用いたハイブリッド型骨補填材料による骨再生の試み, 第36回日本バイオマテリアル学会大会, 2014.11.
173. 石川 邦夫, Tram Xuan Thanh Nguyen, 都留 寛治, 炭酸アパタイト多孔体の調製と組織反応., 第34回整形外科バイオマテリアル研究会, 2014.12.
174. 都留 寛治, Tram Xuan Thanh Nguyen, 丸田道人, 松家茂樹, 石川 邦夫, 連通気孔型炭酸アパタイトの力学的強さ改善, 生体関連セラミックス討論会, 2014.12.
175. 石川真帆, 都留 寛治, 石川 邦夫, α型リン酸三カルシウム前駆体を用いた炭酸アパタイト調製におけるpHの影響., 生体関連セラミックス討論会, 2014.12.
176. Ishikawa Kunio, Carbonate apatite bone replacement -Porous carbonate apatite-. , AUN/SEED-NET regional conference on materials engineering 2014, 2014.11.
177. Arif Cahyano, Tsuru Kanji, Ishikawa Kunio, Effect of particle size on carbonate apatite cement properties consisting of calcite or vaterite and dicalcium phosphate anhydrous. , Bioceramics 2014, 2014.11.
178. Ishikawa Kunio, Takako Yoshida, Toita Riki, Tsuru Kanji, Basic properties of FGF-2 adsorbed carbonate apatite granular. , Bioceramics 2014, 2014.11.
179. Ishikawa Kunio, Comparison of Cells and Tissue Response to Carbonate Apatite and Hydroxyapatite. , ABC2014, 2014.10.
180. Ishikawa Kunio, Traditional bioceramics for future., ABC2014, 2014.10.
181. Ishikawa Kunio, Fabrication and Evaluation of Porous Carbonate Apatite., Biommedd , 2014.09.
182. 都留 寛治, Khairul Anuar Shariff, 戸井田 力, 石川 邦夫, α-TCPフォーム顆粒を用いた連通気孔型骨セメントの創製, 日本セラミックス協会, 2014.09.
183. 都留 寛治, 石川 邦夫, α-TCPフォーム顆粒を用いた連通気孔型骨セメントの創製, 日本セラミックス協会, 2014.09.
184. 都留 寛治, 石川 邦夫, α-TCPフォーム顆粒を用いた連通気孔型骨セメントの創製, 日本セラミックス協会, 2014.09.
185. Khairul Anuar Shariff, Tsuru Kanji, Ishikawa Kunio, Interconnected porous calcium phosphate forming cement consisting of α-TCP foam granules and calcium phosphate acidic solution., European Society for Biomaterials, 2014.08.
186. Ishikawa Kunio, Tsuru Kanji, MUNAR MELVIN DE LEON, Masako Fujioka-Kobayashi, Youji Miyamoto, Fabrication of carbonate apatite coated calcite and its in vivo evaluation. , European Society for Biomaterials, 2014.08.
187. Sunarso, Toita Riki, Tsuru Kanji, Ishikawa Kunio, Pre-osteoblast cell responses on phosphate and calcium co-immobilized titanium., European Society for Biomaterials,, 2014.08.
188. Khairul Anuar Shariff, Tsuru Kanji, Ishikawa Kunio, Fabrication and characterization of interconnected porous calcium phosphate forming cement consisting of α-TCP foam granules. , The 15th IUMRS, 2014.08.
189. Ishikawa Kunio, Shunsuke Nomura, Tsuru Kanji, Ichiro Takahashi, Fabrication of interconnected porous carbonate apatite from gypsum spheres. , 2014.06.
190. Tsuru Kanji, Taro Nikaido, MUNAR MELVIN DE LEON, Michito Maruta, Shigeki Matsuya, Seiji Nakamura, Ishikawa Kunio, Preparation of in vivo evaluation of beta-TCP bone replacement with fully interconnected pore similar to cancellous bone. , IUMRS-ICA2014, 2014.08.
191. Noriko Koga, Shunsuke Nomura, Tsuru Kanji, Ichiro Takahashi, Ishikawa Kunio, Effect of humidity on carbonation of calcium hydroxide., The 15th IUMRS, 2014.08.
192. Akari Takeuchi, Tarique Al-Mahmood Abullah, Tsuru Kanji, Ishikawa Kunio, In vitro biological properties of Ca-modified alumina prepared by hydrothermal treatment with calcium chloride., IUMRS-ICA2014, 2014.08.
193. Ishikawa Kunio, 吉田 貴子, Toita Riki, Tsuru Kanji, Adsorption and desorption of FGF-2 from carbonate apatite granular., Society for Biomaterials 2014 Annual Meeting & Exposition, , 2014.04.
194. 石川 邦夫, 都留 寛治, 戸井田 力, 炭酸アパタイトセメントの創製―基礎的性質の評価―, 炭酸アパタイトセメントの創製―基礎的性質の評価―, 2014.03.
195. Takuma Hikida, Akari Takeuchi, Masamoto Tafu, Ishikawa Kunio, Katsuya Teshima, Preparation of hydroxyapatite bead from gypsum waste and its ion-exchange ability for Sr2+., 8th International Forum on Ecotechnology, 2013.12.
196. 石川 邦夫, 永井宏和, 原 香苗, 小林真左子, 藤澤健司, 都留 寛治, 山本克史, 宮本洋二, 低結晶性炭酸アパタイトの顎骨再建への応用に関する基礎的研究 第6報 BMP-2との併用効果, 第35回日本バイオマテリアル学会大会, 2013.11.
197. 太田 彰, 武知正晃, 太田耕司, Mohammad Zeshaan Rahman, 都留 寛治, 石川 邦夫, 鎌田伸之, 連通多孔構造を有する炭酸アパタイト/PLGA複合体に関する基礎的研究, 第35回日本バイオマテリアル学会大会, 2013.11.
198. 姫野裕奈, 宮崎敏樹, 城崎由紀, 石川 邦夫, 炭酸カルシウム球状粒子の作製, 第35回日本バイオマテリアル学会大会, 2013.11.
199. Tsuru Kanji, Taro Nikaido, Melvin L. Munar, Michito Maruta, Shigeki Matsuya, Seiji Nakamura, Ishikawa Kunio, Synthesis of carbonate apatite foam using b-TCP foams as precursors., 25th Symposium and Annual Meeting of the International Society for Ceramics in Medicine (BIOCERAMICS 25),, 2013.11.
200. 都留 寛治, 戸井田 力, 石川 邦夫, PLGA の複合化による炭酸アパタイト連通多孔体の操作性改善, 第49 回九大生体材料・力学研究会, 2013.09.
201. Ishikawa Kunio, Melvin L. Munar, Girlie M. Munar, Tsuru Kanji, Fabrication and μCT evaluation of hierarchical carbonate apatite-PLGA foam. , ESB 2013, 2013.09.
202. 都留 寛治, 二階堂太郎, 丸田道人, 松家茂樹, 中村 誠司, 石川 邦夫, β型リン酸三カルシウムフォーム骨置換材の創製とin vitro評価, 日本セラミックス協会第26回秋季シンポジウム, 2013.09.
203. 吉田貴子, 戸井田 力, 都留 寛治, 石川 邦夫, 炭酸アパタイト顆粒へのFGF吸着挙動, 日本セラミックス協会第26回秋季シンポジウム, 2013.09.
204. 石川 邦夫, 野村俊介, 都留 寛治, 石膏球の硬化反応を利用した炭酸アパタイト連通多孔体の調製., 日本セラミックス協会第26回秋季シンポジウム, 2013.09.
205. 戸井田 力, Arief Cahyanto, 都留 寛治, 石川 邦夫, 自己硬化型炭酸アパタイトセメントの基礎的評価, 日本セラミックス協会第26回秋季シンポジウム, 2013.09.
206. 吉田貴子, 戸井田 力, 都留 寛治, 石川 邦夫, FGF-2複合化炭酸アパタイトの作製とその特性解析, 平成25年度日本歯科理工学会九州地方会夏期セミナー, 2013.08.
207. 戸井田 力, 片山 佳樹, 石川 邦夫, ガン細胞シグナル応答型遺伝子キャリヤーの開発, 平成25年度日本歯科理工学会九州地方会夏期セミナー, 2013.08.
208. Ishikawa Kunio, Taro Nikaido, Tsuru Kanji, Seiji Nakamura, Fabrication of β-TCP foam based on thermal treatment of α-TCP foam and its tissue response. , 4th Asian Biomaterials Congress. , 2013.06.
209. Jane HARLAND, Tsuru Kanji, Michto Maruta, Ishikawa Kunio, Ca salt introduction to improve the mechanical strength of carbonate apatite block., 4th Asian Biomaterials Congress., 2013.06.
210. Ishikawa Kunio, Shunsuke Nomura, Tsuru Kanji, Fabrication of interconnected porous carbonate apatite from gypsum spheres. , 6th International symposium on apatite and correlative biomaterials. , 2013.06.
211. Arief Cahyanto, Michito Maruta, Tsuru Kanji, Shigeki Matsuya, Ishikawa Kunio, Carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous transforms to carbonate apatite., The 10th Pacific Rim Conference on Ceramic and Glass Technology, 2013, 2013.06.
212. T.Nikaido, Tsuru Kanji, ML.Munar, S.Matsuya, Seiji Nakamura, Ishikawa Kunio, Fabrication and in vivo study of βTCP foam with fully interconnected porous structure for bone replacement. , The 2nd IADR-APR 2013,, 2013.08.
213. 二階堂太郎, 都留 寛治, 川内義一郎, 中村 誠司, 石川 邦夫, 海綿骨形態に類似したβ 型リン酸三カルシウム骨補填材の調製とその評価, 第67回日本口腔科学会学術集会, 2013.05.
214. Akari Takeuchi, Daiki Honda, Ishikawa Kunio, Basic properties of starfish bone and its phase transformation reaction in phosphate salt solution. , Society for Biomaterials 2013 Annual Meeting & Exposition, 2013.04.
215. Ishikawa Kunio, Taro Nikaido, Tsuru Kanji, Comparison of β-tricalcium phosphate foam made using Mg stabilizer and by heat treatment. , Society for Biomaterials 2013 Annual Meeting & Exposition, 2013.04.
216. Ishikawa Kunio, Munar GM, Munar ML, Tsuru Kanji, Effects of Coating Method on PLGA-Reinforced Carbonate Apatite Foam., 2013 IADR General Session& Exhibition, 2013.03.
217. Sunarso, Toita Riki, Tsuru Kanji, Ishikawa Kunio, Pre-osteoblast cell responses on phosphate and calcium co-immobilized titanium., ESB, 2014.12.
218. Khairul Anuar Shariff, Tsuru Kanji, Ishikawa Kunio, Fabrication and characterization of interconnected porous calcium phosphate forming cement consisting of α-TCP foam granules., The 15th IUMRS-International Conference in Asia, 2014.08.
219. Akari Takeuchi, A.A.-M Tarique, Tsuru Kanji, Ishikawa Kunio, Osteoconductive evaluation of alumina hydrothermally treated in CaCl2 aqueous solution. , Society for Biomaterials 2014 Annual Meeting & Exposition, 2014.04.
220. 都留 寛治, アリフ チャヤント, 戸井田 力, 丸田道人, 松家茂樹, 石川 邦夫, バテライトとリン酸水素カルシウムを原料とした炭酸アパタイトセメントの創製, 第63回日本歯科理工学会学術講演会, 2014.04.
221. 都留 寛治, アリフチャヤント, 戸井田 力, 石川 邦夫, 丸田道人, 松家茂樹, 炭酸アパタイトセメントの創製―基礎的性質の評価―, 日本セラミックス協会2014年年会, 2013.03.
222. 吉本彰夫, 石川 邦夫, PLGA融合炭酸アパタイトフォームの組織反応., インプラント学会第33回関東・甲信越支部学術大会, 2014.02.
223. 坂根 正孝, 澤田 賢則, 伊藤 敦夫, 柳 健一, 吉田 靖弘, 石川 邦夫, 橋本 幸一, 整形・歯科領域コンビネーション製品の開発と評価―厚生労働省革新的医薬品・医療機器・再生医療製品実用化促進事業による検討―, つくば医工連携フォーラム2014―医工連携による革新的医療機器の開発と産業化―, 2014.01.
224. Tram NXT, Maruta M, Tsuru Kanji, FUKUOKA DENTAL COLLEGE, Ishikawa Kunio, Preliminary in vivo evaluation of three-dimensional porous carbonate apatite as a bone substitute., The 13th Asian BioCeramics Symposium in conjunction with The 17th Symposium on Ceramics in Medicine, Biology and Biomimetics., 2013.12.
225. Tsuru Kanji, T Nikaido, Munar ML, Maruta M, Matsuya S, Seiji Nakamura, Ishikawa Kunio, Fabrication of βTCP bone replacement with interconnected porous structure and it’s in vivo evaluation. , The 13th Asian BioCeramics Symposium in conjunction with The 17th Symposium on Ceramics in Medicine, 2013.12.
226. 石川 邦夫, 炭酸カルシウム球状粒子の作製..
227. 石川 邦夫, 炭酸アパタイトによる骨再生., 日本再生医療学会, 2014.03.
228. Ishikawa Kunio, Recent Advances and Invitation to Biomaterials research. , Biomaterials Seminar USM, , 2014.02.
229. Ishikawa Kunio, Biomaterials for Phase 3. , The 6th AUN/SEED-Net Regional Conference on Materials Engineering. , 2014.02.
230. 石川 邦夫, 炭酸アパタイト骨置換材の薬物修飾., つくば医工連携フォーラム2014, 2014.01.
231. 石川 邦夫, Carbonate apatite: Effect of PLGA composite on mechanical properties and tissue response. , The 13th Asian BioCeramics Symposium in conjunction with The 17th Symposium on Ceramics in Medicine, Biology and Biomimetics. , 2013.12.
232. Ishikawa Kunio, Carbonate apatite bone replacement. , 25th Symposium and Annual Meeting of the International Society for Ceramics in Medicine (BIOCERAMICS 25), , 2013.11.
233. 石川 邦夫, Ca表面修飾によるチタンの骨伝導性制御., 東北大学金属材料研究所共同研究ワークショップおよび日本バイオマテリアル学会東北地域講演会, 2013.10.
234. Paul Ducheyne, Shula R. Radin, Lind King, Kunio Ishikawa, C. S. Kim, In vitro dissolution and precipitation of calcium phosphate phases on various biomaterials correlates with in vivo bioactivity, 4th International Symposium on Ceramics in Medicine (April 10, 1990):, 1990.10.
235. Norman Sanin, Kunio Ishikawa, Shozo Takagi, Laurence Chow, Edward D. Eanes, The hydrolysis of anhydrous dicalcium phosphate to hydroxyapatite, 21th Annual Meeting & Exhibition American Association for Dental Research, 1992.03.
236. Kunio Ishikawa, Edward D. Eanes:, The hydrolysis of anhydrous dicalcium phosphate to hydroxyapatite  , 21th Annual Meeting & Exhibition American Association for Dental Research, 1992.03.
237. Kunio Ishikawa, Edward D. Eanes:, The morphology of hydroxyapatite. Gordon conference on calcium phosphate, Gordon conference on calcium phosphate, 1992.03.
238. Kunio Ishikawa, Edward D. Eanes, Ming S. Tung, Effect of supersaturation on apatite crystal growth., 71th General Session and Exhibition of the International Association for Dental Research, 1993.03.
239. Kunio Ishiakwa, Kenzo Asaoka, Release of antibiotics from calcium phosphte cement, The 9th annual meeting of apatite symposium, 1993.12.
240. Shozo Takagi, Laurence C. Chow, Kunio Ishikawa, Formation of hydroxyapatite in new calcium phosphate cements., 72th General Session and Exhibition of the International Association for Dental Research, 1994.03.
241. Hirokazu Fukao, Yohji Miyamoto, Masahiro Sawada, Masaru Nagayama, Masayuki Kon, Kunio Ishikawa, Kenzo Asaoka:, In viro reactions of functionally gradient calcium phosphate, The 3rd World Congress for Oral Implantology, 1994.04.
242. Youji Miyamoto, Kunio Ishikawa, Miwako Yuasa, Masayuki Kon, Kenzo Asaoka, Non-decay type fast-setting calcium phosphate cement -Composite of FSCPC with sodium alginate-., 10th Symposium on Apatite (Kochi Japan: December 15-16, 1994): Transactions of the 10th Symposium on Apatite 60-61., 1994.12.
243. Kunio Ishikawa, Youji Miyamoto, Miwako Yuasa, Masayuki Kon, Kenzo Asaoka, Blast coating of apatite on titanium surface -SEM observation and XRD analysis-., 10th Symposium on Apatite (Kochi Japan: December 15-16, 1994): Transactions of the 10th Symposium on Apatite 62-63., 1994.12.
244. Shozo Takagi, Kunio Ishikawa, Laurence Chow, Norman Sanin, Kenzo Asaoka, Formation of nonstoichiometric hydroxyapaite in cements., 24th Annual Meeting & Exhibition American Association for Dental Research, 1995.03.
245. M. Yuasa, Y. Miyamoto, M. Ngayama, K. Ishikawa, M. Kon, A basic study on application of non-decay type fast-setting calcium phosphate cement for bone defect -Setting Behavior and Tissue Reaction, The 6th International Congress on Dental Trauma, 1995.05.
246. T. Suge, K. Ishikawa, A. Kawasaki, M. Yoshiyama, K. Asaoka, S. Ebisu, Duration of calcium phosphate precipitation method for dentinal tubules occlusion, 73rd General Session and Exhibition of the International Association for Dental Research, 1995.07.
247. A. Kawasaki, K. Ishikawa, T. Suge, M. Yoshiyama, K. Asaoka, S. Ebisu, Effects of calcium phosphate precipitation method on crystallinity of apatite:, 74th General Session and Exhibition of the International Association for Dental Research, 1996.03.
248. T. Suge, K. Ishikawa, A. Kawasaki, M. Yoshiyama, K. Asaoka, S. Ebisu, Calcium phosphate precipitation method using buffer for post-treatment solution, 1996.03.
249. K. Ishikawa, S. Takagi, L.C. Chow, B.A. Sieck, Release of antibiotics from calcium phosphate cement, 74th General Session and Exhibition of the International Association for Dental Research, 1996.03.
250. K. Ishikawa, Y. Miyamoto, M. Kon, and K. Asaoka, Behavior of non-decay type fast-setting calcium phosphate cement, 74th General Session and Exhibition of the International Association for Dental Research, 1996.03.
251. Kunio Ishikawa, Youji Miyamoto, Masayuki Kon, Kenzo Asaoka, Non-decay type fast-setting calcium phosphate cement, PacRim2, 1996.07.
252. Takechi M, Youji Miyamoto, Kunio Ishikawa, Masayuki Kon, Masaru Nagayama, Kenzo Asaok, Effects of antibitotics addition on the basic properties of non-decay type fast-setting caclium phosphate cement: Basic properties of hydroxyapatite putty made with fast-setting calcium phosphate cement and sodium alginate, 9th International Symposium on Ceramics in Medicine, 1996.11.
253. Youji Miyamoto, Kunio Ishikawa, Takechi M, Masayuki Kon, Masaru Nagayama, Kenzo Asaoka, Soft tissue response of calcium phosphate cements:, 9th International Symposium on Ceramics in Medicine, 1996.11.
254. Kunio Ishikawa, Youji Miyamoto, Takechi M, Taketomo Toh, Masayuki Kon, Masaru Nagayama, Kenzo Asaoka, Approaches for bone-replacing calcium phosphate cement, 9th International Symposium on Ceramics in Medicine, 1996.11.
255. Takechi M, Youji Miyamoto, Kunio Ishikawa, Masaru Nagayama, Masayuki Kon, Kenzo Asaoka, Effects of antibiotics addition on the basic properties of non-decay type fast-setting calcium phosphate cement:, 3rd Internet World Congress on Biomedical Sciences, 1996.12.
256. Youji Miyamoto, Kunio Ishikawa, Takechi M, Tetsuya Yuasa, Tomotake Toh, Masayuki Kon, Masaru Nagayama, Kenzo Asaoka, Do calcium phosphate cements really have excellent biocompatibility?, 3rd Internet World Congress on Biomedical Sciences, 1996.12.
257. Kunio Ishikawa, Youji Miyamoto, Masaru Nagayama, Kenzo Asaoka, Blast coating method -A new coating method of titanium surface with hydroxyapatite at room temperature, 3rd Internet World Congress on Biomedical Sciences, 1996.12.
258. Masayuki Kon, Hae-Hyoung Lee, Kunio Ishikawa, Youji Miyamoto, Kenzo Asaoka, Development of calcium phosphate cement for fast-transformation to apatite., 75th General Session and Exhibition of the International Association for Dental Research, 1997.03.
259. Youji Miyamoto, Kunio Ishikawa, Takechi M, Masayuki Kon, Kenzo Asaoka, Masaru Nagayama, Basic properties of calcium phosphate cement containing collagen., 75th General Session and Exhibition of the International Association for Dental Research, 1997.03.
260. Youji Miyamoto, Kunio Ishikawa, Takechi M, Masayuki Kon, Kenzo Asaoka, Masaru Nagayama, Basic properties of calcium phosphate cement containing collagen., Youji Miyamoto, Kunio Ishikawa, Takechi M, Masayuki Kon, Kenzo Asaoka, Masaru Nagayama, 1997.03.
261. Takechi M, Youji Miyamoto, Kunio Ishikawa, Kenzo Asaoka, Masaru Nagayama:, Effects of antibiotics addition on the basic properties of nd-FSCPC., 75th General Session and Exhibition of the International Association for Dental Research, 1997.03.
262. Shinya Horiuchi, Kunio Ishikawa, Satoru Tenshin, Kenzo Asaoka, Teruko Takano Ymamoto, Effects of Na2SiO3 on the fluorization of apatite powder., 75th General Session and Exhibition of the International Association for Dental, 1997.03.
263. Akiko Kawasaki, Kunio Ishikawa, Toshiyuki Suge, Kenzo Asaoka, Takashi Matsuo, Shigeyuki Ebisu, Effects of plaque control on the occlusion of dentin tubules., 75th General Session and Exhibition of the International Association for Dental Research, 1997.03.
264. Shigeyuki Ebisu, Tetsuya Yasunaga, Toshiyuki Suge, Akiko Kawasaki, Kunio Ishikawa, Kenzo Asaoka, Takashi Matsuo, In vivo evaluation of calcium phosphate precipitation method using dogs., 75th General Session and Exhibition of the International Association for Dental Research, 1997.03.
265. Kunio Ishikawa, Youji Miyamoto, Takechi M, Masayuki Kon, Kenzo Asaoka, Masaru Nagayama:, Basic properties and tissue response of hydroxyapatite putty., 75th General Session and Exhibition of the International Association for Dental Research, 1997.03.
266. Toshiyuki Suge, Kunio Ishikawa, Akiko Kawasaki, Takashi Matsuo, Shigeyuki Ebisu, : Acid resistance of bovine enamel after calcium phosphate precipitation method., 75th General Session and Exhibition of the International Association for Dental Research, 1997.03.
267. Kunio Ishikawa, Youji Miyamoto, Masaru Nagayama, Kazuomi Suzuki, Mechanism of the inflammatory reaction of conventional calcium phosphate cement., 10th International Symposium on Ceramics in Medicine, 1997.10.
268. Kunio Ishikawa, Youji Miyamoto, Masaru Nagayama, Kazuomi Suzuki, Mechanism of the inflammatory reaction of conventional calcium phosphate cement., 10th International Symposium on Ceramics in Medicine, 1997.10.
269. Kunio Ishikawa, Youji Miyamoto, Kazuomi Suzuki, Soft tissue response to calcium phosphate cement -Mechanism of inflammatory response-., Third International Congress on Dental Materials, 1997.11.
270. Kazuomi Suzuki, Kunio Ishikawa, Youji Miyamoto, Masaru Nagayama, : Setting behaviour of hydroxyapatite putty in serum., 76th General Session and Exhibition of the International Association for Dental Research, 1998.06.
271. Kunio Ishikawa, Youji Miyamoto, Kazuomi Suzuki, Masaru Nagayama., Mechanism of inflammatory response to calcium phosphate cement., 76th General Session and Exhibition of the International Association for Dental Research, 1998.06.
272. Toshiyuki Suge, Kunio Ishikawa, Akiko Kawasaki, Kazuomi Suzuki, Takashi Matsuo, Shigeyuki Ebisu, Comparison of dentinal tubules occlusion-CPP, Resin and Potassium oxalate., 76th General Session and Exhibition of the International Association for Dental Research, 1998.06.
273. Akiko Kawasaki, Kunio Ishikawa, Toshiyuki Suge, Kazuomi Suzuki, Takashi Matsuo, Shigeyuki Ebisu, In vivo evaluation of plaque control on dentine hypersensitivity., 76th General Session and Exhibition of the International Association for Dental Research, 1998.06.
274. Kunio Ishikawa, Kazuomi Suzuki, Yoshiya Ueyama, Apatite coated titanium implant made with blast coating method., The 3rd International Meeting of Pacific Rim Ceramic Societies, 1998.09.
275. Guan G, Miyamoto M, Hattori T,Kunio Ishikawa, Kazuomi Suzuki, Takano-Y, Yamamoto, An approach to increase the bond strength of plastic bracket to adhesive with sandblasting-silane coupling treatment., The 3rd asian-pacific orthodontic conference, 1998.11.
276. Kunio Ishikawa, Yoshiya Ueyama, Mano, Koyama, Kazuomi Suzuki, Tomoya Matsumura, Feasibility of alginate membrane as barrier membrane for GTR method., 77th General Session and Exhibition of the International Association for Dental Research, 1998.11.
277. Yoshiya Ueyama, Kunio Ishikawa, Takamitsu Mano, Takahiro Koyama, Hitoshi Nagatsuka, Tomohiro Matsumura, Kazuomi Suzuki, Tissue response to anti-washout apatite cement in the premaxilla of a rat., 11th International Symposium on Ceramis in Medicine, 1998.11.
278. Kunio Isihkawa, Youji Miyamoto, Kazuomi Suzuki, Comparison of the tissue response to calcium phosphate cements with various setting accelerator., 11th International Symposium on Ceramis in Medicine, 1998.11.
279. Takamitsu Mano, Yoshiya Ueyama, Kunio Ishikawa, Takahiro Koyama, Tomohiro Matsumura, Kazuomi Suzuki, Blast coating method –Tissue response to titanium implant coated with hydroxyapatite at room temperature-. , 11th International Symposium on Ceramis in Medicine, 1998.11.
280. Kousuke Itou, Y Torii, Kunio Ishikawa, Kazuomi Suzuki, K:, Effect of primer containing calcium phosphate on hybrid layer., 77th General Session and Exhibition of the International Association for Dental Research, 1999.03.
281. Kunio Ishikawa, Kazuomi Suzuki, Progress of apatite cement., ’99 Sino-Japanese conference on stomatology , 1999.06.
282. Kazuomi Suzuki, Kunio Ishikawa, Sugiyama, Furuta, Content and release of bisphenol A from polycarbonate dental product., 78th General Session and Exhibition of the International Association for Dental Research, 2000.04.
283. 二宮嘉昭、武知正晃、太田耕司、平岡美里、南正彦、湯浅哲也、石川邦夫、鎌田伸之, GM含有α-TCP/ACの顎骨骨髄炎への応用に関する基礎的研究, 日本バイオマテリアル学会シンポジウム2008, 2008.11.
284. 都留寛治、杉野篤史、早川聡、城崎由紀、石川邦夫、尾坂明義, GRAPE® Technologyを適用したTi-15Zr-4Nb-4Ta合金のin vivo評価―骨と材料の結合強度―, 日本セラミックス協会 2009 年年会, 2009.03.
285. 丸田道人, レスタージョセフ カルデナス, 竹内あかり, 都留寛治, 松家茂樹, 石川邦夫, ケイ酸三カルシウム含有αリン酸三カルシウム系アパタイトセメントの創製, 第53回日本歯科理工学会学術講演会, 2009.04.
286. 都留寛治, タリク アブドゥラ, 丸田道人, 竹内あかり, 松家茂樹, 寺田善博, 石川邦夫, CaCl2水溶液を用いて水熱処理したアルミナ基板のin vitro骨伝導性, 第53回日本歯科理工学会学術講演会, 2009.04.
287. 大東文和, 竹内あかり, 都留寛治, 松家茂樹, 寺田善博, 石川邦夫, 炭酸カルシウム-第二リン酸カルシウム混合物の水熱処理による炭酸アパタイトブロックの調製 ―第2報―, 第53回日本歯科理工学会学術講演会, 2009.04.
288. 坂口真実, 川内義一郎, 丸田道人, 都留寛治, 松家茂樹, 古谷野潔, 石川邦夫, オゾン処理を用いた骨伝導性チタン材料の創製, 第54回日本歯科理工学会学術講演会, 2009.10.
289. 大東文和, 丸田道人, 川内義一郎, 都留寛治, 松家茂樹, 寺田善博, 石川邦夫, 炭酸カルシウム-第二リン酸水素カルシウム混合物の熱処理による炭酸アパタイトブロックの調製, 第54回日本歯科理工学会学術講演会, 2009.10.
290. Alireza Valanezhad, Kanji Tsuru, Michito Maruta, Giichiro Kawachi, Shigeki Matsuya, Kunio Ishikawa, Novel ceramic coating on titanium with high mechanical properties, 22nd International Symposium on Ceramics in Medicine. Bioceramics 22, 2009.10.
291. Fumikazu Daitou, Michio Maruta, Kanji Tsuru, Giichiro Kawachi, Shigeki Matsuya, Yoshihiro Terada, Kunio Ishikawa, The effect of reaction temperature on mechanical property of apatite block derived from dicalcium phosphate and calcium carbonate, 22nd International Symposium on Ceramics in Medicine. Bioceramics 22, 2009.10.
292. Kunio Ishikawa, Regulation of cells based on surface modification, 2nd AUN/SEED-Net Regional Conference on Materials Engineering, 2009.11.
293. 谷内光史、川下将一、石川邦夫、吉田靖弘, 水晶基板へのアパタイトナノコーティング, 第31回日本バイオマテリアル学会シンポジウム, 2009.11.
294. K. Taninai, M. Kawashita, K. Ishikawa and Y. Yoshida, Electrophoertic deposition of bone-like apatite onto quartz substrate, 9th Asian BioCeramics Symposium, 2009.12.
295. K. Matsumoto, G. Kawachi, M. Maruta, K. Tsuru, S. Matsuya, I. Takahashi, K. Ishikawa, Improvement of the Mechanical Strength of Carbonate Apatite Block, 9th Asian BioCeramics Symposium, 2009.12.
296. M. Sakaguchi, G. Kawachi, M. Maruta, K. Tsuru, S. Matsuya, K. Koyano, K. Ishikawa, Fabrication of Osteoconductive Titanium with Ca-ozone Treatment, 9th Asian BioCeramics Symposium, 2009.12.
297. Kunio Ishikawa, Hydrothermal surface modification with calcium, The 2nd International Symposium on Surface and Interface of Biomaterials, 2010.01.
298. 石川邦夫, 骨に学ぶ:骨再建材料, 日本歯科先端技術研究所 「骨」を考える, 2010.03.
299. 松元歌奈子、都留寛治、川内義一郎、丸田道人、松家茂樹、高橋一郎、石川邦夫, カルシウム塩導入による炭酸アパタイト骨補填材の機械的強さ向上, 第55回日本歯科理工学会学術講演会, 2010.04.
300. Kunio Ishikawa, Mami Sakaguchi, Kanji Tsuru, Giichiro Kawachi, Michito Maruta, Kiyoshi Koyano, Effects of Ca-ozone treatment on initial cell attachment to titanium, 2010 Annual meeting & Exposition Society For Biomaterials, 2010.04.
301. Kunio Ishikawa, Nanocrystalline carbonate apatite fabrication based on chemical conversion from calcium carbonate., CIMTEC2010; 5th Forum on New Materials; 9th International Conference Medical Applications of Novel Biomaterials and Nano-biotechnology, 2010.06.
302. Fumikazu. Daitou, Michito Maruta, Giichiro Kawachi, Kanji Tsuru, Yoshihiro Terada, Kunio Ishikawa, Shigeki Matsuya, Synthesis and characterization of carbonate apatite through internal dissolution-precipitation reaction., IADR General Session, 2010.07.
303. Valanezhad Alireza, Kanji Tusru, Michito Maruta, Giichiro Kawachi, Shigeki Matsuya, Kunio Ishikawa, A novel rich-phosphate coating on ziroconia with high bonding to surface., CIMTEC2010; 5th Forum on New Materials; 9th International Conference Medical Applications of Novel Biomaterials and Nano-biotechnology, 2010.07.
304. Kunio Ishikawa, A. Valanezhad Alireza, Kanji Tsuru, Zinc phosphate coating on titanium and its cell response. European Biomaterials Society, European Biomaterials Society, 2010.09.
305. Kunio Ishikawa, Bone engineering., One day workshop on tissue engineering, 2010.11.
306. Taninai K, Kawashita M, Ishikawa K, Yoshida Y, Apatite coatings onto quartz substrate using self-assembled monolayer., The 10th Asian BioCeramics Symposium, 2010.11.
307. Ruslin, Michito Maruta, Kanji Tsuru, Giichiro Kawachi, Shigeki Matsuya, Kunio Ishikawa, Effect of distilled water treatment on the initial setting time of a-tricalcium phosphate., The 10th Asian BioCeramics Symposium, 2010.11.
308. Artilia I, Maruta M, Kawachi G, Tsuru K, Ishikawa K, Improvement of handling property of apatite cement paste by O3 treatment., The 10th Asian BioCeramics Symposium, 2010.11.
309. Fumikazu Daiou, Kanji Tsuru, Michito Maruta, Shigeki Matsuya, Yoshihiro Terada, Ishikawa K, Osteoclastic resorption of carbonate apatite block prepared from DCPD and CaCO3., The 10th Asian BioCeramics Symposium, 2010.11.
310. Kunio Ishikawa, Macroporous calcium phosphate cement: Setting reaction and initial mechanical strength,, 3rd International Congress on Ceramics., 2010.11.
311. 高本 愛、武知正晃、太田耕司、鎌田伸之、都留寛治、石川邦夫、峯 裕一、高木祐子、二川浩樹, CaCl2水溶液を用いて水熱処理した金属チタンの細菌付着性., 第32回日本バイオマテリアル学会大会 , 2010.11.
312. 湯浅哲也、藤澤健司、永井宏和、大江 剛、佐藤裕子、池村光代、山本克史、都留寛治、石川邦夫、宮本洋二, 低結晶性炭酸アパタイトの顎骨再建への応用に関する基礎的研究 , 第32回日本バイオマテリアル学会大会 , 2010.11.
313. 二宮嘉昭、武知正晃、太田耕司、南 正彦、多田美里、太田 彰、湯浅哲也、石川邦夫、鎌田伸之, GM含有α―TCP/ACの顎骨骨髄炎への応用に関する基礎的研究-基本物性と骨形成評価について-., 第32回日本バイオマテリアル学会大会 , 2010.11.
314. 石川邦夫, 炭酸アパタイトによる骨再生, 第32回日本バイオマテリアル学会大会, 2010.11.
315. 大東文和、丸田道人、川内義一郎、都留寛治、松家茂樹、寺田善博、石川邦夫, DCPAとCaCO3を原料とした炭酸アパタイトブロックのin vitro破骨細胞吸収性., 第14回生体関連セラミックス討論会, 2010.12.
316. Kunio Ishikawa, Shape forming based on dissolution-precipitation reaction., 5th International Symposium on Apatites and Correlative Biomaterials, 2010.12.
317. Ahmed Nafis Rashid, Kanji Tsuru, Giichiro Kawachi, Michito Maruta, Shigeki Matsuya, Kunio Ishikawa, Surface modification of polyethylen terephthalate (PET) substrates for biomedical application by ozone-calcium chloride treatments., 5th International Symposium on Apatites and Correlative Biomaterials, 2010.12.
318. Girlie M. Munar, Melvin L. Munar, Kanji Tsuru, Shigeki Matsuya, Kunio Ishikawa, Carbonate apatite foam bone substitute reinforced with PLGA for mechanical strenght improvement., 5th International Symposium on Apatites and Correlative Biomaterials, 2010.12.
319. M. Kawashita1, K. Taninai1, K. Ishikawa2 and Y. Yoshida, Electrophoretic deposition of low-crystalline apatite on quartz substrate., 5th International Symposium on Apatites and Correlative Biomaterials, 2010.12.
320. Pham Trung-Kien, Michito Maruta, Kanji Tsuru, Giichiro Kawachi, Shigeki Matsuya, Kunio Ishiwaka, Effect of reaction time on setting property of α-tricalcium phosphate (α -TCP) balls., 5th International Symposium on Apatites and Correlative Biomaterials, 2010.12.
321. 石川邦夫, アパタイトセメントの変遷, 相澤「次世代バイオセラミックス」プロジェクト 「2010年度 第2回 勉強会」, 2011.02.
322. 石川邦夫, 骨に学ぶ~炭酸アパタイト骨置換材の創製, バイオマテリアル学会九州ブロックキックオフシンポジウム, 2011.03.
323. Kunio Ishikawa, Kanji Tsuru, Pham Trung Kien, Michito Maruta, Shigeki Matsuya, Preparation of porous calcium phosphate cement from preparation of porous calcium phosphate cement from α-TCP balls. , Society for Biomaterials 2011 Annual meeting & exposition., 2011.04.
324. Taro Nikaido, Kanji Tsuru, Fumikazu Daitou, Melvin Munar, Michito Maruta, Shigeki Matsuya, Seiji Nakamura, Kunio Ishikawa, Fabrication of βTCP foam using magnesium oxide as a stabilizer. , International Dental Materials Congress 2011., 2011.05.
325. Fumikazu Daitou, Kanji Tsuru, Michito Maruta, Shigeki Matsuya, Yoshihiro Terada, Kunio Ishikawa, In vitro evaluation of osteoclastic resorption on carbonate apatite block derived from dicalcium phosphate and calcium carbonate., International Dental Materials Congress 2011., 2011.05.
326. Kunio Ishikawa, Youji Miyamoto, Kenji Fujisawa, Hirokazu Nagai, Kanji Tsuru, Michito Maruta, Shigeki Matsuya, Effects of granular size on the tissue response to carbonate apatite granules in rabbit., International Dental Materials Congress 2011., 2011.05.
327. Kanji Tsuru, Mami Sakaguchi, Yasunori Ayukawa, Yasuko Moriyama, Michito Maruta, Shigeki Matsuya, Kiyoshi Koyano, Kunio Ishikawa, In vitro and in vivo evaluation of Ca-modified titanium with Ca-ozone treatment., International Dental Materials Congress 2011., 2011.05.
328. Kunio Ishikawa, Michito Maruta, Shigeki Matsuya, Kanji Tsuru, Fabrication of CO3Ap foam bone replacement from sintered calcite foam., PacRim9 (The 9th International Meeting of Pacific Rim Ceramic Societies)., 2011.07.
329. Kunio Ishikawa, Michito Maruta, Shigeki Matsuya, Kanji Tsuru, Hydroxyapatite coating on titanium via titanium zinc phosphate layer., 24th European Conference on Biomaterials, 2011.09.
330. Kunio Ishikawa, Michito Maruta, Shigeki Matsuya, Kanji Tsuru, Hydroxyapatite coating on titanium via titanium zinc phosphate layer., 24th European Conference on Biomaterials, 2011.09.
331. Kunio Ishikawa, Michito Maruta, Shigeki Matsuya, Kanji Tsuru, Hydroxyapatite coating on titanium via titanium zinc phosphate layer., 24th European Conference on Biomaterials, 2011.09.
332. Ahmed Rashid, Masaharu Nakagawa, Kanji Tsuru, Giichiro Kawachi, Kunio Ishikawa, Surface modification of polyethylene terephtalate (PET) by ozone-calcium chloride (O3-CaCl2) treatment: chemical characterization and biological assessment., The 3rd Asian Biomaterials Congress, 2011.09.
333. Kunio Ishikawa, Kanako Matsumoto, Kanji Turu, Ichiro Takahashi, Reinforcement of carbonate apatite bone replacement with carbonate apatite by Ca salt introduction., The 3rd Asian Biomaterials Congress, 2011.09.
334. Trung Kien Pham, Michito Maruta, Kanji Tsuru, Shigeki Matsuya, Kunio Ishikawa, Interconnected porous cement from a-tricalcium phosphate microsphres., The 3rd Asian Biomaterials Congress, 2011.09.
335. 須ノ内一広、都留寛治、丸田道人、川内義一郎、松家茂樹、寺田善博、石川邦夫, 前駆体としてカルサイトを用いた中実および中空炭酸アパタイト球状骨置の創製., 第58回日本歯科理工学会学術講演会, 2011.10.
336. 大津亮泰、都留寛治、丸田道人、バラネザハド アリレザ、松家茂樹、石川邦夫, 焼結炭酸カルシウムを前駆体として用いた骨補填材の創製., 第58回日本歯科理工学会学術講演会, 2011.10.
337. Kunio Ishikawa, Biomaterials for reconstruction of bone defect. The symposium on Recent Progress on Bone Graft and its Relevance in Dental Clinics, 2011.10.
338. Kunio Ishikawa, Modification of Titanium Surface with Hydroxyapatite and Calciumt., 4th Regional conference of natural resources and materials, 2011.10.
339. Shunsuke Nomura, Kanji Tsuru, Alireza Valanezhad, Shigeki Matsuya, Ichiro Takahashi, Kunio Ishikawa, Fabrication of Carbonate Apatite Block from Calcium Sulfate by Hydrothermal Treatment., Bioceramics23, 2011.11.
340. Alireza Valanezhad, Kanji Tsuru, MichitoMaruta, Shigeki Matsuya, Kunio Ishikawa, A novel HAp coating method on titanium., Bioceramics23, 2011.11.
341. Kanj Tsuru, Akihiro Otsu, Michito Maruta, AlirezaValanezhad,GiichiroKawachi, Akari Takeuchi, Shigeki Matsuya,Kunio Ishikawa, Calcite Bone Substitute Prepared From Calcium Hydroxide Compact Using Heat-Treatment Under Carbon Dioxide Atmosphere., Bioceramics23, 2011.11.
342. Taro Nikaido, Kanji Tsuru, FumikazuDaitou, Melvin Munar, Shigeki Matsuya, Seiji Nakamura,Kunio Ishikawa, Fabrication of βTCP with Fully-Interconnected Porous Structure, Bioceramics23, 2011.11.
343. Kunio Ishikawa, Kanji Tsuru, TrungKien Pham, Michito Maruta, ShigekiMatuya, Fully-Interconnected Pore Forming Calcium Phosphate Cement, Bioceramics23, 2011.11.
344. Kunio Ishikawa, Modification of Titanium Surface with Hydroxyapatite and Calciumt., 4th Regional conference on high performance materials, 2011.12.
345. Nurazreena Ahmad, Kanji Tsuru, Melvin L. Munar, Shigeki Matsuya, Kunio Ishikawa, Fabrication of Monophasic HAp Discs from Tricalcium Phosphate by Hydrothermal Treatment in Ammonia Solution., 36th International Conference and Exposition on Advanced Ceramics and Composites., 2012.01.
346. Girlie M. Munar, Melvin L. Munar, Kanji Tsuru, Shigeki Matsuya, Kunio Ishikawa., Fabrication of Carbonate Apatite–PLGA Hybrid Foam Bone Substitute. , 36th International Conference and Exposition on Advanced Ceramics and Composites., 2012.01.
347. Arief Cahyanto, Kanji Tsuru, Kunio Ishikawa, Carbonate Apatite Formation During The Setting Reaction of Apatite Cement., 36th International Conference and Exposition on Advanced Ceramics and Composites., 2012.01.
348. 石川邦夫, PLGA階層化炭酸アパタイトフォームの創製., 融合マテリアル分子制御による材料創成と機能開拓第4回公開シンポジウム, 2012.01.
349. 酒井亜希子、バラネザハド・アリゼラ、尾崎正雄、丸田道人、石川邦夫、松家茂樹, Sr含有炭酸アパタイトのin vitro評価, 第59回日本歯科理工学会学術講演会. , 2012.04.
350. 二階堂太郎、都留寛治、川内義一郎、松家茂樹、中村誠司、石川邦夫, αTCP フォームを前駆体として用いた βTCP フォームの調製, 第59回日本歯科理工学会学術講演会. , 2012.04.
351. 都留寛治,ラスリン,丸田道人,松家茂樹,石川邦夫, α-リン酸三カルシウム型アパタイトセメントの硬化時間に及ぼすアパタイト結晶核の添加方法の影響, 第59回日本歯科理工学会学術講演会. , 2012.04.
352. 石川邦夫, 骨リモデリングサイクルに適合して吸収される炭酸含有アパタイト, 第85回日本整形外科学会学術総会, 2012.05.
353. 大東文和,都留寛治,石川邦夫,寺田善博, 第二リン酸カルシウムと炭酸カルシウムを出発原料とした炭酸アパタイトブロックの骨伝導能評価, (社)日本補綴歯科学会第121回学術大会, 2012.05.
354. Kunio Ishikawa, Ira Artilia, Michito Maruta, Kanji Tsuru., Ozone Treatment Improves Handling and Mechanical Properties of Apatite Cement., 9th World Biomaterials Congress., 2012.06.
355. Kanji Tsuru, Girlie M. Munar, Melvin L. Munar, Michito Maruta, Shigeki Matsuya, Kunio Ishikawa., Reinforcement of carbonate apatite foam by coating with poly-L-lactic acid containing carbonate apatite granules., 9th World Biomaterials Congress., 2012.06.
356. Alireza Valanezhad, Kanji Tsuru, Michito Maruta, Shigeki Matsuya, Kunio Ishikawa., Hydroxyapatite Coating on Zinc Phosphatized Titanium., 9th World Biomaterials Congress., 2012.06.
357. 石川邦夫, PLGA-炭酸アパタイトフォーム階層化における真空浸漬の影響, 新学術領域(融合マテリアル)第5回公開シンポジウム, 2012.06.
358. 石川邦夫, 都留寛二, Munar Girlie, Munar Melvin, 炭酸アパタイトPLGA複合フォームの創製, 日本再生医療学会, 2012.06.
359. Ishikawa Kunio, Fully-interconnected pore forming calcium phosphate cement. 90th General Session & Exhibition of the International Association for Dental Research, Iguacu Falls, 2012.06.
360. Le Thi Bang, Kunio Ishikawa, Radzali Othman, Biological evaluations of carbonate apatite and silicon-substituted carbonate apatite: MC3T3-E1 osteoblast cell-like study, International Conference of Young Researchers on Advanced Materials, 2012.07.
361. Ishikawa Kunio, Carbonate apatite bone replacement., Ho Chi Minh City University of Technology Biomaterials Symposium, 2012.08.
362. Ishikawa Kunio, Carbonate apatite bone replacement., Ho Chi Minh City High Tech Park Lecture, 2012.08.
363. Ishikawa Kunio, Carbonate apatite foam bone replacement., 5th International Conference on Biomaterials Tissu Engineering & Medical Devices” BiomMedD’2012, 2012.08.
364. 柳健一、伊藤敦夫、吉田靖弘、石川邦夫、重藤和弘、橋本幸一、坂根正孝, 埋植型薬剤組み合わせ医療機器の評価方法確立のための調査研究―第1報研究計画―, 第2回レギュラトリーサイエンス学会学術大会, 2012.09.
365. 石川 邦夫, 炭酸アパタイト骨置換材, 第10回医療機器フォーラム, 2012.09.
366. 都留寛治、石川邦夫、Ruslin、丸田道人、松家茂樹, α-リン酸三カルシウム型アパタイトセメントの基礎的物性に及ぼすアパタイト種結晶導入方法の影響, 日本セラミックス協会第25回秋期シンポジウム, 2012.09.
367. 石川邦夫、都留寛治、Munar Girlie、Munar Melvin, PLGA-炭酸アパタイト融合フォーム調製における真空浸漬の影響, 日本セラミックス協会第25回秋期シンポジウム, 2012.09.
368. Ishikawa Kunio, Bioceramics for medical application., Tissue Enginnering Seminer., 2012.11.
369. 石川 邦夫, アパタイトの科学, 日本口腔院プラント学会第32会中国・四国支部総会・学術大会, 2012.11.
370. 柳健一、伊藤敦夫、吉田靖弘、石川邦夫、重藤和弘、橋本幸一、坂根正孝, 埋植型薬剤組み合わせ医療機器の評価方法確立のための調査研究―品目の定義と機能的分類―, 第50回日本人工臓器学会大会, 2012.11.
371. Ishikawa Kunio, Tricalcium phosphate for bone defect reconstruction., The 5th AUN/SEEDNet Regional Conference on Materials Engineering & The 5th Regional Conference on Natural Resources and Materials, 2013.01.
372. Le Thi Bang, Shi Xingling, Kunio Ishikawa, Radzali Othman, Bone marrow cell response on carbonate apatite/PCL coated -TCP foam. , The 5th AUN/SEEDNet Regional Conference on Materials Engineering & The 5th Regional Conference on Natural Resources and Materials., 2013.01.
373. Chuthathip Mangkonsu, Radzali b. Othman, Kunio Ishikawa, Banhan Lila, Study on the sintering of -TCP bioceramics by conventional and microwave sintering. , The 5th AUN/SEEDNet Regional Conference on Materials Engineering & The 5th Regional Conference on Natural Resources and Materials., 2013.01.
374. Ishikawa Kunio, Tricalcium phosphate for bone defect reconstruction., The 5th AUN/SEEDNet Regional Conference on Materials Engineering & The 5th Regional Conference on Natural Resources and Materials., 2013.01.
375. 吉本彰夫、石川邦夫, 炭酸アパタイトフォーム骨置換材:PLGAとの融合化, 第32回 関東・甲信越支部学術大会, 2013.02.
376. Ishikawa Kunio, Bioceramics for medical application., The symposium on Recent Progress on Tissue Enginnering, 2013.02.
377. 石川 邦夫, 硬組織再建材料の科学, 香川大学インプラント研究会, 2013.03.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。