九州大学 研究者情報
総説一覧
石川 邦夫(いしかわ くにお) データ更新日:2023.06.26

教授 /  歯学研究院 歯学部門 口腔機能修復学講座


総説, 論評, 解説, 書評, 報告書等
1. 柴原 啓吾, 林 幸壱朗, 佐藤 太志, 中島 康晴, 石川 邦夫, 炭酸アパタイトハニカムブロックを用いた分節型骨欠損の骨再建, 日本整形外科学会雑誌, Vol.95, No.8, p.S1561, 2021.08.
2. Yoichiro Ogino, Yasunori Ayukawa, Noriko Tachikawa, Masahiro Shimogishi, Youji Miyamoto, Keiko Kudoh, Naoyuki Fukuda, Kunio Ishikawa, Kiyoshi Koyano, Staged Sinus Floor Elevation Using Novel Low-Crystalline Carbonate Apatite Granules: Prospective Results after 3-Year Functional Loading, Materials, 10.3390/ma14195760, Vol.14, No.19, p.5760, 2021.10, The aim of this study was to evaluate clinical outcomes of staged sinus floor elevation (SFE) using novel low-crystalline carbonate apatite (CO3Ap) granules. Patients who needed SFE for implant placement were recruited into this clinical trial. A staged procedure (lateral window technique using CO3Ap granules, followed by implant placement after 7 ± 2 months) was employed in 13 patients. Bone-height increase and insertion torque values (ITVs) were assessed along with histological evaluation. The survival and success rates of 3-year functioning implants were also evaluated. Mean of bone-height increase after SFE using CO3Ap granules was 7.2 ± 2.5 mm and this increase allowed implant placement in all cases (17 implants). Mean of ITV was 25.1 ± 13.2 Ncm and primary stability was achieved successfully in all cases. Histological analyses revealed mature new bone formation (36.8 ± 17.3%) and residual CO3Ap granules (16.2 ± 10.1%) in the compartment after SFE. The survival and success rates after 3-year functional loading were 100% and no complications were found. These results clearly indicate the clinical usefulness of CO3Ap granules for SFE..
3. Sunarso, Akira Tsuchiya, Riki Toita, Kanji Tsuru, Kunio Ishikawa, Impact of surface functionalization with phosphate and calcium on the biological performance of Ti-6Al-4V, Materials Letters, 10.1016/j.matlet.2021.130716, Vol.304, 2021.12, This study aimed to determine the bioactivities and osseointegration activities of Ti-6Al-4V after surface functionalization with a combination of phosphate and calcium. Several Ti-6Al-4V containing different amounts of phosphate and/or calcium on their surface were prepared. Phosphate was introduced by allowing samples to react with H3PO4, and the resulting phosphate-modified samples were further allowed to react with CaCl2 to obtain phosphate- and calcium-co-immobilized samples. Cell studies revealed that the co-immobilization of phosphate and calcium significantly promoted MC3T3-E1 preosteoblast proliferation and osteogenic differentiation, compared to that in unmodified, phosphate-modified, or calcium-modified Ti-6Al-4V. Furthermore, after implants were inserted into the bone marrow cavity of a rat femur, the osseointegration activity and bond strength between implants and the bone were increased in a phosphate- and calcium-functionalized sample, compared to those in a bare sample..
4. Keigo Shibahara, Koichiro Hayashi, Yasuharu Nakashima, Kunio Ishikawa, Honeycomb Scaffold-Guided Bone Reconstruction of Critical-Sized Defects in Rabbit Ulnar Shafts, ACS Applied Bio Materials, 10.1021/acsabm.1c00533, Vol.4, No.9, pp.6821-6831, 2021.09.
5. Kunio Ishikawa, Tya Indah Arifta, Koichiro Hayashi, Kanji Tsuru, Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 10.1002/jbm.b.34117, Vol.107, No.2, pp.269-277, 2021.02, Carbonate apatite (CO 3 Ap) blocks have attracted considerable attention as an artificial bone substitute material because CO 3 Ap is a component of and shares properties with bone, including high osteoconductivity and replacement by bone similar to autografts. In this study, we fabricated an interconnected porous CO 3 Ap block using α-tricalcium phosphate (TCP) spheres and evaluated the tissue response to this material in a rabbit tibial bone defect model. Interconnected porous α-TCP, the precursor of interconnected porous CO 3 Ap, could not be fabricated directly by sintering α-TCP spheres. It was therefore made via a setting reaction with α-TCP spheres, yielding interconnected porous calcium-deficient hydroxyapatite that was subjected to heat treatment. Immersing the interconnected porous α-TCP in Na–CO 3 –PO 4 solution produced CO 3 Ap, which retained the interconnected porous structure after the dissolution–precipitation reaction. The diametral tensile strength and porosity of the porous CO 3 Ap were 1.8 ± 0.4 MPa and 55% ± 3.2%, respectively. Both porous and dense (control) CO 3 Ap showed excellent tissue response and good osteoconductivity. At 4 weeks after surgery, approximately 15% ± 4.9% of the tibial bone defect was filled with new bone when reconstruction was performed using porous CO 3 Ap; this amount was five times greater than that obtained with dense CO 3 Ap. At 12 weeks after surgery, for porous CO 3 Ap, approximately 47% of the defect was filled with new bone as compared to 16% for dense CO 3 Ap. Thus, the interconnected porous CO 3 Ap block is a promising artificial bone substitute material for the treatment of bone defects caused by large fractures or bone tumor resection. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 269–277, 2019..
6. Cheng Zhang, Koichiro Hayashi, Kunio Ishikawa, Enhancement of bone to polylactic acid plate bonding by carbonate apatite coating, Ceramics International, 10.1016/j.ceramint.2021.06.252, Vol.47, No.20, pp.28348-28356, 2021.10.
7. 柴原 啓吾, 林 幸壱朗, 石川 邦夫, 中島 康晴, 炭酸アパタイトハニカム人工骨に搭載されたチャネルと微細孔が分節型骨欠損の再建に与える影響と相互作用について, 日本整形外科学会雑誌, Vol.96, No.8, p.S1824, 2022.09.
8. Masaya Shimabukuro, Koichiro Hayashi, Ryo Kishida, Akira Tsuchiya, Kunio Ishikawa, Surface functionalization with copper endows carbonate apatite honeycomb scaffold with antibacterial, proangiogenic, and pro-osteogenic activities, Biomaterials Advances, 10.1016/j.bioadv.2022.212751, p.212751, 2022.03.
9. Koichiro Hayashi, Masaya Shimabukuro, Ryo Kishida, Akira Tsuchiya, Kunio Ishikawa, Structurally optimized honeycomb scaffolds with outstanding ability for vertical bone augmentation, Journal of Advanced Research, 10.1016/j.jare.2021.12.010, Vol.41, pp.101-112, 2022.11.
10. Keiko Kudoh, Naoyuki Fukuda, Kazuya Akita, Takaharu Kudoh, Natsumi Takamaru, Naito Kurio, Koichiro Hayashi, Kunio Ishikawa, Youji Miyamoto, Reconstruction of rabbit mandibular bone defects using carbonate apatite honeycomb blocks with an interconnected porous structure, Journal of Materials Science: Materials in Medicine, 10.1007/s10856-022-06710-2, Vol.34, No.1, 2022.12, Abstract

Carbonate apatite (CO3Ap) granules are useful as a bone substitute because they can be remodeled to new natural bone in a manner that conforms to the bone remodeling process. However, reconstructing large bone defects using CO3Ap granules is difficult because of their granular shape. Therefore, we fabricated CO3Ap honeycomb blocks (HCBs) with continuous unidirectional pores. We aimed to elucidate the tissue response and availability of CO3Ap HCBs in the reconstruction of rabbit mandibular bone defects after marginal mandibulectomy. The percentages of the remaining CO3Ap area and calcified bone area (newly formed bone) were estimated from the histological images. CO3Ap area was 49.1 ± 4.9%, 30.3 ± 3.5%, and 25.5 ± 8.8%, whereas newly formed bone area was 3.0 ± 0.6%, 24.3 ± 3.3%, and 34.7 ± 4.8% at 4, 8, and 12 weeks, respectively, after implantation. Thus, CO3Ap HCBs were gradually resorbed and replaced by new bone. The newly formed bone penetrated most of the pores in the CO3Ap HCBs at 12 weeks after implantation. By contrast, the granulation tissue scarcely invaded the CO3Ap HCBs. Some osteoclasts invaded the wall of CO3Ap HCBs, making resorption pits. Furthermore, many osteoblasts were found on the newly formed bone, indicating ongoing bone remodeling. Blood vessels were also formed inside most of the pores in the CO3Ap HCBs. These findings suggest that CO3Ap HCBs have good osteoconductivity and can be used for the reconstruction of large mandibular bone defects.

Graphical Abstract.
11. Masaya Shimabukuro, Koichiro Hayashi, Ryo Kishida, Akira Tsuchiya, Kunio Ishikawa, No-Observed-Effect Level of Silver Phosphate in Carbonate Apatite Artificial Bone on Initial Bone Regeneration, ACS Infectious Diseases, 10.1021/acsinfecdis.1c00480, Vol.8, No.1, pp.159-169, 2022.01.
12. Koichiro Hayashi, Akira Tsuchiya, Masaya Shimabukuro, Kunio Ishikawa, Multiscale Porous Scaffolds Constructed of Carbonate Apatite Honeycomb Granules for Bone Regeneration, Materials & Design, 10.1016/j.matdes.2022.110468, p.110468, 2022.02.
13. Koichiro Hayashi, Toshiki Yanagisawa, Masaya Shimabukuro, Ryo Kishida, Kunio Ishikawa, Granular honeycomb scaffolds composed of carbonate apatite for simultaneous intra- and inter-granular osteogenesis and angiogenesis, Materials Today Bio, 10.1016/j.mtbio.2022.100247, Vol.14, p.100247, 2022.03.
14. Tansza Setiana Putri, Sunarso, Koichiro Hayashi, Kanji Tsuru, Kunio Ishikawa, Feasibility study on surface morphology regulation of β-tricalcium phosphate bone graft for enhancing cellular response, Ceramics International, 10.1016/j.ceramint.2022.02.200, 2022.02.
15. Kunio Ishikawa, Pery Freitas, Ryo Kishida, Koichiro Hayashi, Akira Tsuchiya, Fabrication of vaterite blocks from a calcium hydroxide compact, Ceramics International, 10.1016/j.ceramint.2021.10.206, Vol.48, No.3, pp.4153-4157, 2022.02.
16. Pery Freitas, Ryo Kishida, Koichiro Hayashi, Akira Tsuchiya, Masaya Shimabukuro, Kunio Ishikawa, Fabrication and histological evaluation of porous carbonate apatite blocks using disodium hydrogen phosphate crystals as a porogen and phosphatization accelerator, Journal of Biomedical Materials Research Part A, 10.1002/jbm.a.37374, Vol.110, pp.1278-1290, 2022.02.
17. Koichiro Hayashi, Kunio Ishikawa, Endowing Osseointegration Ability to Bioinert Alumina by Carbonate Apatite Coating, Surfaces and Interfaces, 10.1016/j.surfin.2022.102617, p.102617, 2022.12.
18. Maab Elsheikh, Ryo Kishida, Koichiro Hayashi, Akira Tsuchiya, Masaya Shimabukuro, Kunio Ishikawa, Effects of pore interconnectivity on bone regeneration in carbonate apatite blocks, Regenerative Biomaterials, 10.1093/rb/rbac010, Vol.9, 2022.04, Abstract

Porous architecture in bone substitutes, notably the interconnectivity of pores, is a critical factor for bone ingrowth. However, controlling the pore interconnectivity while maintaining the microarchitecture has not yet been achieved using conventional methods, such as sintering. Herein, we fabricated a porous block using the crystal growth of calcium sulfate dihydrate, and controlled the pore interconnectivity by limiting the region of crystal growth. The calcium sulfate dihydrate blocks were transformed to bone apatite, carbonate apatite (CO3Ap) through dissolution–precipitation reactions. Thus, CO3Ap blocks with 15% and 30% interconnected pore volumes were obtained while maintaining the microarchitecture: they were designated as CO3Ap-15 and CO3Ap-30, respectively. At 4 weeks after implantation in a rabbit femur defect, new bone formed throughout CO3Ap-30, whereas little bone was formed in the center region of CO3Ap-15. At 12 weeks after implantation, a large portion of CO3Ap-30 was replaced with new bone and the boundary with the host bone became blurred. In contrast, CO3Ap-15 remained in the defect and the boundary with the host bone was still clear. Thus, the interconnected pores promote bone ingrowth, followed by replacement of the material with new bone. These findings provide a useful guide for designing bone substitutes for rapid bone regeneration.

.
19. Koichiro Hayashi, Toshiki Yanagisawa, Ryo Kishida, Kunio Ishikawa, Effects of Scaffold Shape on Bone Regeneration: Tiny Shape Differences Affect the Entire System, ACS Nano, 10.1021/acsnano.2c03776, 2022.07.
20. Keigo Shibahara, Koichiro Hayashi, Yasuharu Nakashima, Kunio Ishikawa, Effects of Channels and Micropores in Honeycomb Scaffolds on the Reconstruction of Segmental Bone Defects, Frontiers in Bioengineering and Biotechnology, 10.3389/fbioe.2022.825831, Vol.10, 2022.03, The reconstruction of critical-sized segmental bone defects is a key challenge in orthopedics because of its intractability despite technological advancements. To overcome this challenge, scaffolds that promote rapid bone ingrowth and subsequent bone replacement are necessary. In this study, we fabricated three types of carbonate apatite honeycomb (HC) scaffolds with uniaxial channels bridging the stumps of a host bone. These HC scaffolds possessed different channel and micropore volumes. The HC scaffolds were implanted into the defects of rabbit ulnar shafts to evaluate the effects of channels and micropores on bone reconstruction. Four weeks postoperatively, the HC scaffolds with a larger channel volume promoted bone ingrowth compared to that with a larger micropore volume. In contrast, 12 weeks postoperatively, the HC scaffolds with a larger volume of the micropores rather than the channels promoted the scaffold resorption by osteoclasts and bone formation. Thus, the channels affected bone ingrowth in the early stage, and micropores affected scaffold resorption and bone formation in the middle stage. Furthermore, 12 weeks postoperatively, the HC scaffolds with large volumes of both channels and micropores formed a significantly larger amount of new bone than that attained using HC scaffolds with either large volume of channels or micropores, thereby bridging the host bone stumps. The findings of this study provide guidance for designing the pore structure of scaffolds..
21. 石川 邦夫, 人工骨は自家骨を超えることができるか 人工骨としての炭酸アパタイトの基礎と臨床応用, 日本整形外科学会雑誌, Vol.95, No.2, p.S535, 2021.03.
22. Wee-Keat Cheah, Kunio Ishikawa, Radzali Othman, Fei-Yee Yeoh, Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review. , Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105B, 1232-1240, 2016.02.
23. Kunio Ishikawa, Aivaras Kareiva, Sol-gel synthesis of calcium phosphate-based biomaterials - A review., CHEMIJA, Vol. 31. No. 1. P. 25–41, 2020.02.
24. Kunio Ishikawa, Edita Garskaite, Aivaras Kareiva, Sol–gel synthesis of calcium phosphate-based biomaterials—A review of environmentally benign, simple, and effective synthesis routes., Journal of Sol-Gel Science and Technology , volume 94, pages551–572(2020), 2020.02.
25. 石川 邦夫, 顎骨再建材料ルネサンス~骨組成骨補塡材を中心に~, DE/211号(日本歯科理工学会誌/Vol.39 No.1) 特集/顎骨再建材料, 2020.01.
26. Kunio Ishikawa, Carbonate apatite bone replacement: Learn from the bone., Journal of the Ceramic Society of Japan, doi:10.2109/jcersj2.19042, 127 巻 9 号 p. 595-601, 2019.09.
27. 石川 邦夫, 骨と炭酸アパタイト人工骨と硫酸カルシウム, 硫酸と工業Sulphuric acid and industry, 2019.03.
28. 石川 邦夫, 驚異の人工骨補填材:炭酸アパタイト, (人工臓器-最新の進歩)人工臓器, 2018.12.
29. 石川 邦夫, 細胞3次元組織化のための材料:セラミックス, 遺伝子医学MOOK 別冊「細胞の3次元組織化に不可欠な最先端材料技術-再生医療,その支援分野(細胞研究,創薬研究)への応用と発展のために」, 2014.02.
30. Toshiki Miyazaki, Ishikawa Kunio, Yuki Shirosaki, Chikara Ohtsuki, Organic-Inorganic composites designed for biomedical application. , 2013.11.
31. 石川 邦夫, 用語解説:セラミックス, 再生医療, 2013.08.
32. 石川 邦夫, 人工骨置換材としての炭酸アパタイト, 2012.11.
33. Kien-Seng Lew,, Radzali Othman, Ishikawa Kunio, Fei-Yee Yeoh, Macroporous bioceramics: A remarkable material for bone regeneration. , Journal of Biomaterials Applications,, 2012.09.
34. Kien-Seng Lew, Radzali Othman, Ishikawa Kunio, Fei-Yee Yeoh, Macroporous bioceramics: a remarkable material for bone regeneration., 2011.08.
35. Ishikawa Kunio, Bone substitute fabrication based on dissolution-precipitation reaction. , Materials, 2010.02.
36. 石川邦夫, 骨リモデリングに完全調和するバイオセラミックス, バイオマテリアル27(4), 2009., 2009.04.
37. 石川邦夫, アパタイトと生命体, アパタイトフォーラム2, 2009.04.
38. 石川邦夫, バイオマテリアル研究の醍醐味, バイオマテリアル27(1), 2009., 2008.12.
39. 石川邦夫, 骨補填材の現在:アパタイトの嘘と本当―基礎編2―, インプラントジャーナル13,53-67、2003., 2008.12.
40. 今井庸二,平林茂,西山典宏,根本君也,武田昭二,本郷敏雄,石川邦夫,河合達志, 21世紀における,歯科材料の生物学的安全性について―とくに内分泌攪乱作用に関連して―, 歯科材料・器械21巻4号220-260頁,2002年., 2008.12.
41. 石川邦夫 , ブラストコーティングによるチタンのアパタイトコーティングとその生体組織反応 , Ceramics Japan 43, 731-738, 2008., 2008.04.
42. 石川邦夫, 歯科材料におけるセラミックスへの期待と展望、マテリアルインテグレーション, 歯科材料におけるセラミックスへの期待と展望、マテリアルインテグレーション, 2007.04.
43. 石川邦夫, 生体に学ぶ・骨組織と置換する機能系材料.マテリアル, 2007.04.
44. 石川邦夫, インプラント治療が変わる!!.The Journal of Dental Engineering, The Journal of Dental Engineering, 162, 24-26, 2006., 2006.04.
45. 松家茂樹,石川邦夫, 高強度セラミックスの材料学的特性とその評価, The Journal of Dental Engineering, 157, 1-4, 2006., 2006.04.
46. 石川邦夫, 歯科におけるナノテクノロジーの活用の現状と将来, 日本歯科評論66(3), 117-122, 2006., 2006.04.
47. 石川邦夫, 特集「セラミックスと細胞のナノインターフェイス制御」アパタイトセラミックスと細胞とのインターフェイスにおける相互作用, バイオマテリアル23(5), 348-352, 2005., 2005.04.
48. 石川 邦夫, 骨補填材の現在-その4-:アパタイトの嘘と本当―応用編2―, インプラントジャーナル15, 31-50, 2003., 2003.04.
49. 石川 邦夫, 骨補填材の現在-その3-:アパタイトの嘘と本当―応用編1―, インプラントジャーナル14, 49-65, 2003., 2003.04.
50. 伊藤敦夫、河村春生、池内正子、大串始、十河友、大塚誠、石川邦夫、神崎紀子、小沼一雄、 一ノ瀬昇, 化学ベクトルセラミックス―骨形成をコントロールする亜鉛徐放セラミックス―, 21(5), 383-388, 2003., 2003.04.
51. 石川邦夫, 生体組織工学と生体材料「骨再生を中心として」, Scientific Journal of Japan Institute for Advanced Dentistry, 9(3), 136-144,2003., 2003.04.
52. Kunio Ishikawa, Present situation and problems of dental materials, Corrosion Engineering 51, 449-469, 2002, 2002.04.
53. 石川邦夫, 骨補填材の現在:アパタイトの嘘と本当―基礎編―., インプラントジャーナル12,35-50、2002., 2002.04.
54. 石川邦夫, 歯科材料の現状と問題点, 材料と環境,51(8), 331-340, 2002, 2002.04.
55. 伊藤敦夫、池内正子、河村春生、大塚誠、石川邦夫、一ノ瀬昇, 亜鉛含有TCP., The Bone,439-442,15(5), 2001., 2001.04.
56. 石川邦夫, 骨とアパタイトとアパタイトセメント., Phosphorus letter 38, 14-20, 2000., 2000.04.
57. 石川邦夫, アパタイト系骨修復材料 , The Journal of Dental Engineering 134(7), 5-8, 2000., 2000.05.
58. 石川 邦夫, 硬組織再建、再生に向けた生体材料研究., 生体材料 :,18(3), 152-161, 2000., 2000.04.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。