Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Takeru Nose Last modified date:2018.10.12



Graduate School
Undergraduate School
Other Organization


E-Mail
Homepage
http://biomolchem.artsci.kyushu-u.ac.jp
Laboratory of Biomolecular Chemistry, Kyushu University .
Phone
092-802-6025
Fax
092-802-6025
Academic Degree
Ph. D
Country of degree conferring institution (Overseas)
No
Field of Specialization
Biochemistry
Total Priod of education and research career in the foreign country
00years03months
Outline Activities
○Management of KIKAN education

○Structure-activity relationship studies for receptor proteins and its ligands

○Bioactive peptide sciences
Research
Research Interests
  • SAR studies for repetitive peptides
    keyword : peptide
    2013.04.
  • Total risk assessment system for endocrine disrupting chemicals
    keyword : endocrine disrupting chemistry, Nuclear receptor, computer modeling
    1998.04Total risk assessment of endocrine diruptor.
  • Structural and biological analysis for the activation mechanism of G-protein coupled receptor.
    keyword : G-protein coupled receptor
    1994.04Structure-function study of the activation mechanism of GPCR.
Academic Activities
Reports
1. High Efficiency Analytical Study on the Structure-activity Relationships of Peptidergic GPCR Ligands.
Papers
1. Keitaro Suyama, Daiki Tatsubo, Wataru Iwasaki, Masaya Miyazaki, Yuhei Kiyota, Ichiro Takahashi, Iori Maeda, Takeru Nose, Enhancement of self-aggregation properties of linear elastin-derived short peptides by simple cyclization
strong self-aggregation properties of cyclo[FPGVG]n, consisting only of natural amino acids, Biomacromolecules, 10.1021/acs.biomac.8b00353, 19, 8, 3201-3211, 2018.02, Elastin-like peptides (ELP) consist of distinctive repetitive sequences, such as (VPGVG)n, exhibit temperature-dependent reversible self-assembly (coacervation), and have been considered to be useful for the development of thermo-responsive materials. Further fundamental studies evaluating coacervative properties of novel nonlinear ELPs could present design concepts for new thermo-responsive materials. In this study, we prepared novel ELPs, cyclic (FPGVG)n (cyclo[FPGVG]n, n = 1-5), and analyzed its self-assembly properties and structural characteristics. Cyclo[FPGVG]n (n = 3-5) demonstrated stronger coacervation capacity than the corresponding linear peptides. The coacervate of cyclo[FPGVG]5 was able to retain water-soluble dye molecules at 40°C, which implied that cyclo[FPGVG]5 could be employed as a base material of DDS (Drug Delivery System) matrices and other biomaterials. The results of molecular dynamics simulations and circular dichroism measurements suggested that a certain chain length was required for cyclo[FPGVG]n to demonstrate alterations in molecular structure that were critical to the exhibition of coacervation..
2. Daiki Tatsubo, Keitaro Suyama, Masaya Miyazaki, Iori Maeda, Takeru Nose, Stepwise Mechanism of Temperature-Dependent Coacervation of the Elastin-like Peptide Analogue Dimer, (C(WPGVG)3)2, Biochemistry, 10.1021/acs.biochem.7b01144, 57, 10, 1582-1590, 2018.03.
3. Keitaro Suyama, Suguru Taniguchi, Daiki Tatsubo, Iori Maeda, Takeru Nose, Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5, Journal of Peptide Science, 10.1002/psc.2876, 22, 236-243, 2016.03.
4. Iori Maeda, Suguru Taniguchi, Noriko Watanabe, Asako Inoue, Yuko Yamazaki, Takeru Nose, Design of Phenylalanine-Containing Elastin-Derived Peptides Exhibiting Highly Potent Self-Assembling Capability , Protein & Peptide Letters, 10.2174/092986652210150821170703, 22, 10, 939-939, 2015.08, In this study, we developed a series of Phe-containing elastin-derived peptide-analogs, (Phe-Pro-Gly-Val-Gly)n (n = 1–5) and analyzed their reversible coacervation properties. Compared to the native elastin-derived repeating peptide sequence ((Val-Pro-Gly-Val-Gly)10), one of the Phecontaining 5-mer repeating peptide sequences ((Phe-Pro-Gly-Val-Gly)5) clearly exhibited stronger coacervation properties. The coacervation of (Phe-Pro-Gly-Val-Gly)5 is nearly the same as that of polypeptides (Val-Pro-Gly-Val-Gly)n (n > 40). Although large molecular weights (>10,000 Da) are generally required for the coacervation of elastin-derived peptides, (Phe-Pro-Gly-Val-Gly)5 exhibited reversible coacervation properties despite its low molecular weight (MW = 2,305 Da). High performance liquid chromatography (HPLC) and circular dichroism (CD) analysis revealed that (Phe-Pro-Gly-Val-Gly)5 has high hydrophobicity and an ordered structure with a type II β-turn, which contributes to the strong coacervation ability of the peptide. In addition, (Phe-Pro-Gly-Val-Gly)5 exhibited an effective particle size distribution (60–70 nm) at body temperature (37°C) and a dispersed small particle size similar to that of the monomer peptides at low temperatures. These properties, along with its small size and simple design, render the peptide suitable for use in biomaterials, including drug-delivery carriers..
5. Iori Maeda, Suguru Taniguchi, Junko Ebina, Noriko Watanabe, Takao Hattori, Takeru Nose, Comparison between Coacervation Property and Secondary Structure of Synthetic Peptides, Ile-containing Elastin-derived Pentapeptide Repeats, Protein & Peptide Letters, 10.2174/0929866511320080007 , 20, 8, 905-910, 2013.08, A series of Ile-containing elastin-derived peptide-analogs, (Ile-Pro-Gly-Val-Gly)n (n=7–10) possessing remarkable and reversible coacervation property were newly synthesized. In comparison with the known elastin-derived peptideanalogs, which were so-called polypeptides, the obtained 35 to 50 mer peptides, (IPGVG)n (n=7–10) were significantly low molecular sized-polypeptides. However, they clearly exhibited coacervation property as same as the polypeptides did. Because of their low molecular size, spectrographic analyses of (IPGVG)n (n=7–10) became feasible to carry out. As results of secondary structural analyses by CD and FT-IR, it was found that the coacervation property of the peptides is clearly attributed to the ordered secondary-structures, mainly, type II β–turn..
6. Mitsuhiro Nishigori, Takeru Nose, Yasuyuki Shimohigashi, Highly Potent Binding and Inverse Agonist Activity of Bisphenol A Derivatives for Retinoid-related Orphan Nuclear Receptor RORg, Toxicol. Lett.,, 212, 2, 205-211, 2012.05.
7. Nose T., Tokunaga T., and Shimohigashi Y., Exploration of endocrine-disrupting chemicals on estrogen receptor α by the agonist/antagonist differential-docking screening (AADS) method: 4-(1-Adamantyl)phenol as a potent endocrine disruptor candidate, Toxicol. Lett.,, in press, 2009.11.
Educational
Educational Activities
I am engaged in the education of the research guidance concerning the structure-function biochemistry for the graduate of the doctor course, master course and bachelor course. I am also taking charge of the lecture of the biochemistry and the practice of the biochemistry experiment as an education of the undergraduate students.
Teaching classes:
1)KIKAN Education;
Kikan-Education Seminar, Interdisciplinary Collaborative Learning of Social Issues B, Elementary Inorganic Chemistry
2) Undergraduate School Education;
Biological chemistry III, Biochemistry Experiment (Bachelor Course of Department of Chemistry)
3) Graduate School Education;
Biochemistry lecture III (Masters Course of Department of Chemistry)