Kyushu University Academic Staff Educational and Research Activities Database
List of Presentations
Shoichi Kiyokawa Last modified date:2023.11.27

Associate Professor / Dynamics, Structure and Evolution of the Earth and Planets / Department of Earth and Planetary Sciences / Faculty of Sciences


Presentations
1. , [URL].
2. Mitasari Awalina、Kiyokawa Shoichi, Formation of modern iron-ooidal sands in a shallow-marine hydrothermal environment at Nagahama Bay, Satsuma Iwo-Jima Island, Japan, 日本地質学会, 2021.09.
3. Stratigraphic and Lithological characteristics of the 3.1Ga Cleaverville banded iron Formation: DXCL drilling result in Pilbara Australia..
4. Tectonic-sedimentation reconstruction of Neoproterozoic metavolcanic sequences; the El-Dabbah area, Central Eastern Desert, Egypt.
5. Timing of sedimentation of the Cleaverville Formation, coastal Pilbara terrane, Pilbara, Western Australia: new age dating, identified post-accretion pull-apart system and DXCL drilling result..
6. Kiyokawa, S., Ito, T., Ikehara M., Yamaguchi K. Onoue T., Horie K., Yoshimaru Y., Miki T., Takehara, M. , Tetteh, G.M. ; Nyame, F.K.,, Sedimentary environment and tectonic deformations of the Neoproterozoic Iron formation at the Wadi El-Dabbah greenstone sequence, Central Eastern Desert, Egypt, AGU fall meeting, 2017.12.
7. Kiyokawa, S., Ito, T. , Ikehara M., Yamaguchi K., Onoue T., Horie K., Yoshimaru Y., Miki T., Takehara, M., Tetteh, G.M., Nyame, F.K., Archean-Proterozoic Deeper Oceanic Environment: Pilbara (DXCL), Barbarton (Komati Section) Ghana(GHB) Results., 4th International Geoscience Symposium "Precambrian World 2017" in Fukuoka , 2017.03.
8. Kiyokawa, S., Ito, T., Ikehara M., Yamaguchi K. Onoue T., Horie K., Yoshimaru Y., Miki T., Takehara, M. , Tetteh, G.M. ; Nyame, F.K., , Reconstruction of the Paleoproterozoic deeper ocean environment: Preliminary Report of the Ghana Birimian Greenstone Belt Drilling Project (GHB)., AGU fall meeting, 2016.12.
9. 清川 昌一, Restoreation environment of Archean/Proterozoic Deep Ocean Floor: REAP project., 3rd International Geoscience Symposium: Project A in Korea,, 2015.03, In the earth history, deep sea ocean-floor preserved hint to understand environmental condition in their stratigraphic characteristics and these sediments. When we reconstructed Archean-Proterozoic environments, deep ocean sequence is good key sequence to recognized the surface environment. Many place have been reported of the black chert to Iron rich sediments above volcanic sequence.
Following area, we researched detail about stratigraphy at the oceanic sequence. These area preserved deeper sedimentary environment at that ages.
[Archean] 1) Dixon Island-Cleaverville formations in West Pilbara, Australia, 2) Mappepe Formation in Barberton, South Africa. Especially, we did scientific drilling in Pilbara, which is called “ DXCL drilling project”, at 2007 and 2011 summer.
[Proterozoic] 1) Cape three point, Ashanti belt, Ghana, 2) Cape Smith belt, Quebec, Canada, 3) Flin Flon belt, Manitoba, Canada, 4) El Dabbah iron formation, East Egypt.
A systematic combinations of geological, sedimentological, geochemical, and geobiological approaches will be applied to the fresh samples along the coast, mine and drilling core. We will understand the influence of submarine hydrothermal activity on the biological and chemical evidence and take original depositional environmental information at the time. Here we shows overview of our projects and some result such as DXCL drilling, Mappepe formation and Ghana Greenstone Project.
.
10. 清川 昌一, 伊藤 孝, Frank K. Nyame, Reconstructed Oceanic Sedimentary Sequence in the Cape Three Points Area, Southern Axim-Konongo (Ashanti) Greenstone Belt in the Paleoproterozoic Birimian of Ghana. , AGU, 2014.12, The Birimian greenstone belt likely formed through collision between the West African and Congo Cratons ~2.2 Ga. Accreted greenstone belts that formed through collision especially during the Palaeoproterozoic are usually not only good targets for preservation of oceanic sedimentary sequences but also greatly help understand the nature of the Paleoproterozoic deeper oceanic environments. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Axim-Konongo (Ashanti) greenstone belt in Ghana where excellently preserved Paleoprotrozoic deeper oceanic sedimentary sequences extensively outcrop. Kwtakor zone (> 150m) is the thickest volcaniclastic sequence and has fining upward sections. Akodaa zone (> 150m) consists of finer bed of volcaniclastics with black shales and has fining upward character. This continuous sequence indicate distal portion of submarine volcaniclastic section in an oceanic island arc between the West African and Congo Cratons..
11. 清川 昌一, 伊藤孝, 池原実, 山口耕生, 尾上哲治, 菅沼悠介, 寺司周平, 相原悠平, 三木翼, 32-31億年前の海底堆積層解析:DXCL掘削からみられる海洋環境と縞状鉄鉱層形成., 日本地質学会, 2014.09, .2-3.1 Ga Dixon Island (DX)-Cleaverville (CL) formations are well-preserved black shale to banded iron formation sequences; only affected by low-grade metamorphism without intensive deformation. We performed DXCL drilling projects (Yamaguchi et al., 2009, Kiyokawa et al., 2012a) which had been done two times drillings of DXCL-1 at 2007 and DXCL-2 at 2011. These drilling projects selected two sites; CL site at the CL Formation, and DX site at the upper DX Formation. DXCL result shows coarsening and thickening upward black shale–BIF sequences, representing an oceanic small depression environment that is identified by accreted immature island arc setting (Kiyokawa et al., 2006, 2012b)..
12. 清川 昌一, 伊藤孝, 池原実, 山口耕生, 尾上哲治, 菅沼悠介, 寺司周平, 相原悠平, 三木翼, Mesoarchean oceanic floor environment at sedimentary sequences in the Dixon Island =Cleaverville Formation, Pilbara Australia: results of the DXCL drilling projet. , 21st General Meeting of IMA South Africa 2014,, 2014.09, .2-3.1 Ga Dixon Island (DX)-Cleaverville (CL) formations are well-preserved black shale to banded iron formation sequences; only affected by low-grade metamorphism without intensive deformation. We performed DXCL drilling projects (Yamaguchi et al., 2009, Kiyokawa et al., 2012a) which had been done two times drillings of DXCL-1 at 2007 and DXCL-2 at 2011. These drilling projects selected two sites; CL site at the CL Formation, and DX site at the upper DX Formation. DXCL result shows coarsening and thickening upward black shale–BIF sequences, representing an oceanic small depression environment that is identified by accreted immature island arc setting (Kiyokawa et al., 2006, 2012b)..
13. Shoichi Kiyokawa, T. Ito, M. Ikehara, K.E. Yamaguchi, K. Horie, M. Takehara, S. Aihara, T. Miki, Mesoarchean Banded Iron Formation sequences in Dixon Island-Cleaverville Formation, Pilbara Australia: Oxygenic signal from DXCL project. , AGU, 2013.12, [URL].
14. Shoichi Kiyokawa, T. Ito, M. Ikehara, Y. Aihara, T. Miki, Oceanic sedimentary sequences in Mesoarchean Dixon Island-Cleaverville Formation, Pilbara Australia: Result of DXCL drilling project., Archean symposium, 2013.11.
15. , [URL].
16. 清川 昌一, 伊藤孝, 池原実, 山口耕生, 堀江憲路, 坂本 亮, 竹原 真美, 相原悠平, Reconstructed of mesoarchean oceanic sedimentary environments: result of DXCL drillings, 34th International Geology Congress, 2012.08, [URL].
17. , [URL].
18. Archean ocean floor environment.
19. , [URL].
20. , [URL].
21. IODP post cruse meeting.
22. International Symposium on Material Science and History of Earth and Sister Planets
March 29-31 2006 Okayama University of Science.
23. 3.2-Ga Dixon Island Formation VS. 3.5-Ga Marble Bar Chert: Stratigraphic correlation of the volcano-hydrothermal sequences in the Pilbara, Australia..
24. Geology of Koshiki Island, Kyushu, Japan.
25. Impact related mega gravity flow in western Cuba..
26. continental grustal evolution and oceanic sedimentation: Australia Pilabara.
27. An example of colcano-hydrothermal sequence in Middle Archean: 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia.
28. An example of colcano-hydrothermal sequence in Middle Archean: 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia.
29. Middle Archean Volcano-hydrothermal sequence: 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia.
30. Archean hydrothermal sedimentary environment and early life..