九州大学 研究者情報
論文一覧
清川 昌一(きよかわ しよういち) データ更新日:2023.11.27

准教授 /  理学研究院 地球惑星科学部門 固体地球惑星科学


原著論文
1. Shoichi Kiyokawa, Masaru Yasunaga, Ayako Yamamoto, Daisaku Kaneko, Yuta Ikebata, Noriko Hasebe, Yukiyasu Tsutsumi, Mami Takehara, Kenji Horie. , Stratigraphic reconstruction of the lower–middle Miocene Goto Group, Nagasaki Prefecture, Japan. , Island arc, https://doi.org/10.1111/iar.12456, 1-39, https://doi.org/10.1111/iar.12456, 2022.08, [URL].
2. Kento Motomura, Kenji Horie, Minoru Ikehara, Takashi Sano, Mami Takehara, Shoichi Kiyokawa., The nitrate-limited freshwater environment of the late Paleoproterozoic Embury Lake Formation, Flin Flon belt, Canada. Chemical Geology., Chemical Geology, https://doi.org/10.1016/j.chemgeo.2022.121234, 616, 20, 1-12, Volume 616, 20 January 2023, 121234, 2023.01, [URL].
3. Kento Motomura, Shoichi Kiyokawa, Minoru Ikehara, Takashi Sano, Wouter Bleeker, Kentaro Tanaka, Tsubasa Miki, Yuji Sano., Redox fluctuation and δ13Corg-δ34S perturbations recorded in the 1.9 Ga Nuvilik Formation of the Cape Smith belt, Canada., Precambrian Research, https://doi.org/10.1016/j.precamres.2021.106191, 359, 1-12, 2021.02.
4. Shoichi Kiyokawa, Takashi Kuratomi, Tatsuhiko Hoshino, Shusaku Goto, Minoru Ikehara, Hydrothermal formation of iron-oxyhydroxide chimney mounds in a shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan, Geological Society of America Bulletin, https://doi .org/10.1130/B35782.1., 133, 9-10, 1890-1908, 2021.09, Hydrothermal iron-oxyhydroxide chimney mounds (iron mounds) have been discovered in a fishing port in Nagahama Bay, located on the southwest coast of Satsuma Iwo-Jima Island, south of Kyushu Island, Japan. In the fishing port uncovered ~1.0 m-high iron mounds in shallow waters formed under relatively calm conditions. Typically, the fishing port has orange-colored turbid waters that mix with outer ocean waters during high tide. Colloidal iron-oxyhydroxides form due to the oxidation of ferrous iron in hydrothermal waters (pH = 5.5; temperature = 55°C) as they mix with seawater.
The mounds are made of two types of material: hard, dark brown-orange, high-density material; and soft, brownish orange-yellow, low-density material. Computed Tomography (CT) scans of the harder iron mound material reveal a cabbage-like structure comprising micro-pipe structures with diameters of 2–5 mm. These micro-pipes have relatively hard walls made of iron oxyhydroxides (FeOH) and are identified as discharge pipes. Nucleic acid staining genetic sequencing and SEM observations suggest that the mounds formed mainly from bacterial stalks with high concentrations of FeOH colloidal matter. In the harder parts of the mounds, these ‘fat stalks’, which contain oxyhydroxide colloidal aggregates, are entwined and concentrated. The softer material contains twisted stalk-like structures, which are coated with FeOH colloidal particles. DNA examination of the iron mounds reveals the presence of iron oxidizing bacteria, especially at the mound surface.
We estimate that the iron mounds accumulated at a rate of ~1,700 tons/1000 m2/year. This is an order of magnitude higher than the rate of FeOH sedimentation via chemical precipitation of FeOH colloids within the fishing port. This suggests that biogenic activity, resulting in the production of entwined FeOH stalks, leads to the rapid accumulation of FeOH beds and that biogenic activity within the water mass rich in FeOH colloids is an efficient means of generating thick iron-rich sedimentary sequences. As such, we propose that some ancient iron formations may have also formed through the biogenic production of FeOH stalks rather than solely through chemical sedimentation in a water mass rich in FeOH colloids. It appears that these rapidly forming biogenic FeOH iron mounds distributed wide area of ocean floor are also relatively protected from erosion and diagenetic alteration (reduction). Previous studies have reported that ancient iron formations were commonly deposited in deeper environments via direct iron oxidation from the water column in ferruginous ocean; however, There are several hydrothermal vents inflows preserved with FeOH that would have formed appropriate redox boundary conditions in an otherwise anoxic ocean. Under these conditions, iron mound mat-type sedimentary deposits might have formed and been well-preserved and affected by early diagenesis where higher heat flow occurred in the Archean ocean. The FeOH mounds in Nagahama bay shows an example of the iron formation sedimentary environment and leaves important information for estimating the past depositional state of iron formations..
5. Kosuke T. Goto, Yasuhito Sekine, Takashi Ito, Katsuhiko Suzuki, Ariel D. Anbar, Gwyneth W. Gordon, Yumiko Harigane, Teruyuki Maruoka, Gen Shimoda, Teruhiko Kashiwabara, Yutaro Takaya , Tatsuo Nozaki, James R. Hein. George M. Tetteh, Frank K. Nyame, Shoichi Kiyokawa, Progressive ocean oxygenation at ~2.2 Ga inferred from geochemistry and molybdenum isotopes of the Nsuta Mn deposit, Ghana, Chemical Geology, https://doi.org/10.1016/j.chemgeo.2021.120116, 567, 120116, 2020.07.
6. Shoichi Kiyokawa, Thematic section: Special topics in 4th IGS ‘Precambrian World 2’, Island Arc, DOI: 10.1111/iar.12360, e12360, 1-4, 2020.05.
7. Maekawa, T., Kiyokawa, S., Maeda, H., Tanaka, G., Costa, J. E. F., and Freitas, A. T., First report of early Permian albaillellarian radiolarians from East Timor, Paleontological Research, doi:10.2517/2020PR009., 25, 1, 32-40, 2020.05.
8. Shoichi Kiyokawa, Taishi Suzuki, Hanaa Abdenaby El-Dokouny, Maher Dawoud, Mohamed Mahmoud Abuelhasan,, Tectonic and sedimentary history of the neoproterozoic metavolcanic–volcaniclastic rocks of the El-Dabbah Group, Central Eastern Desert, Egypt., Journal of African Earth Sciences, https://doi.org/10.1016/j.jafrearsci.2020.103807, 165, 1-17, 2020.03.
9. Shoichi Kiyokawa, Taishi Suzuki, Kenji Horie, Mami Takehara, Hanna A. El-Dokouny, Maher Dawoud, Mohamed M. Abuelhasan,, Stratigraphy, petrology, and geochemistry of a Neoproterozoic banded iron sequence in the El-Dabbah Group, Central Eastern Desert, Egypt., Journal of African Earth Sciences, https://doi.org/10.1016/j.jafrearsci.2020.103807, 165, 1-16, 2020.02.
10. Kento Motomura, Shoichi Kiyokawa, Minoru Ikehara, Kentaro Tanaka, Yuji Sano, Geochemical constraints on the depositinal environment of the 1.84 Ga Embury Late Formation, Flin Flon Belt, Canada., Island arc, DOI: 10.1111/iar.12324, 334, 105475, 1-11, 2020.02.
11. Shoichi Kiyokawa, Yuhei Aihara, Mami Takehara, Kenji Horie, Timing and development of sedimentation of the Cleaverville Formation and a post-accretion pull-apart system in the Cleaverville area, coastal Pilbara Terrane, Pilbara, Western Australia, Island arc, DOI: 10.1111/iar.12324, 334, 105475, 1-23, 2019.10.
12. Tsutomu Ota, Yuhei Aihara, Shoichi Kiyokawa, Ryoji Tanaka, Eizo Nakamura,, Tourmaline in a Mesoarchean pelagic hydrothermal system: Implications for the habitat of early life., Precambrian Research, 10.1111/ iar.12182, 334, 105475, 1-17, 2019.10.
13. 鈴木大志・清川昌一・伊藤孝, 縞状鉄鉱層のEPMA 元素マッピング:エジプト東砂漠地帯エルダバァ層鉄鉱層と他地域の鉄鉱層との比較., 茨城大学教育学部紀要(自然科学), 第67号,, 第67号, 57-76, 2018.07, [URL].
14. 元村健人・清川昌一.伊藤孝・Dave PRICE, 19 億年前の深海底堆積岩の特徴:カナダ・フリンフロン帯における掘削コアTS07-01 の岩石記載-3, 茨城大学教育学部紀要(自然科学), 第67号,, 第67号, 57-76, 2017.07, [URL].
15. 鈴木大志・清川昌一・伊藤孝, 縞状鉄鉱層のEPMA 元素マッピング:エジプト東砂漠地帯エルダバァ層鉄鉱層と他地域の鉄鉱層との比較., 茨城大学教育学部紀要(自然科学), 第67号,, 第67号, 37-55, 2017.07, [URL].
16. 吉丸 慧・清川昌一・伊藤 孝・堤 之恭, ブラジル中原生代の鉄鉱層: Espinhaço超層群Itapanhoacanga Formationの岩相層序と砕屑性ジルコンU-Pb年代について, 茨城大学教育学部紀要(自然科学), 第66号,, 第66号, 77-92, 2016.04, [URL].
17. Takehara M, Horie K, Tani K, Yoshida T, Hokada T, Kiyokawa S, Timescale of magma chamber processes revealed by U-Pb ages, trace element contents and morphology of zircons from the Ishizuchi caldera, Southwest Japan Arc, The Island Arc, 10.1111/ iar.12182, 1-14, e12182, 2017.10.
18. Golozubov V.V., Kasatkin S.A., Yokoyama K., Tsutsumi Y., and Kiyokawa S.,, Miocene Dislocations during the Formation of the Sea of Japan Basin: Case Study of Tsushima Island., Geotectonics,, 51, 4, 412-427, 2017.06.
19. Takashi Sano, Motomaro Shirao, Kenichiro Tani, Yukiyasu Tsutsumi, Shoichi Kiyokawa, Toshitsugu Fujii, Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu–Bonin Arc, Japan., Journal of Volcanology and Geothermal Research, 319, 1, 52-65, 2016.01.
20. 佐藤 峰南, 白井直樹, 海老原充, 尾上哲治, 清川 昌一, Sedimentary PGE signatures in the Late Triassic ejecta deposits from Japan: Implications for the identification of impactor., Palaeogeography, Palaeoclimatology, Palaeoecology,, doi:10.1016/j.palaeo.2015.11.015, 442, 15, 145-154, 2015.11.
21. 倉冨 隆, 清川 昌一, 鉄酸化バクテリアが関与した熱水環境の鉄酸化堆積物, 地球科学, 69, 3, 145-154, 2015.06, Iron oxide deposits were often associated with iron oxidizing bacteria that get energy from
oxidizing ferrous ion. These bacteria accelerate iron oxidizing by excreting unique organic structures that
adsorb ferrihydrites. They form mat-like ferrihydrites in iron-rich hydrothermal environments of different
depths of the oceans around the world. The process in the microbial mat associated with the modern
hydrothermal activity can be regarded as a type of the biomineralization. Comparisons in iron oxide fabrics
and bacterial habits in different hydrothermal settings improve our understanding for the formational
mechanisms of iron oxides, including a wide range of ancient deposits, such as the Precambrian banded
iron formations (BIFs) and oolitic iron ore. Previous studies have linked the BIFs with the long-term global
environment changes, such as increasing oxygen level. Iron oxidizing bacteria was potential for forming
the BIFs. Assuming that a single cell can oxidize Fe of 1.1 x 10-11 mole/year, activity of the iron oxidizing
bacteria with the abundance of 5.7 x 104 cell/cm3 could generate the Precambrian BIFs. The biomineralization
of the iron oxidizing bacteria was an important process forming the iron ores..
22. 三木 翼, 清川 昌一, 硫黄同位体を用いた太古代と古原生代の環境復元について, 地球科学, 69, 3, 2015.06, Sulfur isotopic studies are very important to reconstruct the Archean - Proterozoic environment. For example, the early Earth’s seawater sulfate level, which is thought to have close relationship with contemporary atmospheric oxygen level, can be estimated by analyzing sulfur isotopic ratio. Here, we show studies especially about the estimation of ancient seawater sulfate level and summarize the trend of studies so far. It is well known that the size of a gap of isotopic ratio between sulfate and sulfide in stratum depends on the sulfate reduction rate and seawater sulfate levels. For quantifying the sulfate levels, incubation experiments of sulfate reducing bacteria or model calculations have been in progress. However, different researchers have represented different arguments because of various methods or approaches. Looking at the trend of isotopic studies in recent years, the view in which Archean sulfate level (
23. 吉丸 慧, 清川 昌一, 伊藤孝, 堤之恭, 南西ガーナBirimian帯Kumashi 層群における砂岩層砕屑ジルコンU-Pb年代.
U-Pb age of detrital zircons from Kumasi Group sandstone
in Birimian belt, southwestern Ghana, 茨城大学教育学部紀要(自然科学),第65号,, 第65号, 47-56, 2015.04, The Birimian greenstone belt, southwestern Ghana, is mainly composed of mid to deep oceanic
sedimentary sequence of metavolcanic rocks (Sefwi Group) and metasedimentary rocks (Kumasi Group,
(2130-2070 Ma) also occurred. We measured U-Pb ages on detrital zircon grains from Kumasi group sandstone
with LA-ICP-MS to improve the understanding of the crustal evolution. The results for 43 samples indicated a
single peak of 2163 Ma, coinciding with the age of granitic intrusions, implying that Kumasi Group
sedimentation occurred after erosion and weathering of these granitic rocks..
24. Shoichi Kiyokawa, Takuya Ueshiba, Rapid sedimentation of iron oxyhydroxides in an active hydrothermal shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan. , Sedimentary Geology, http://dx.doi.org/10.1016/j.sedgeo.2015.01.010, 319, 98-113, 2015.01.
25. 星野 辰彦, 倉富 隆, 室野 ゆき, 堀 ともゆき, 大岩根尚, 清川 昌一, 稲垣ふみお, Ecophysiology of Zetaproteobacteria Associated with Shallow Hydrothermal Iron-Oxyhydroxide Deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan., Frontiers Microbiology, http://dx.doi.org/10.3389/fmicb.2015.01554, 11, 2015.01.
26. Shoichi Kiyokawa, Shoichiro Koge, Takashi Ito, Minoru Ikehara, An ocean-floor carbonaceous sedimentary sequence in the 3.2-Ga Dixon Island Formation, coastal Pilbara terrane, Western Australia. , Precambrian Research, http://dx.doi.org/10.1016/j.precamres.2014.09.014, 255, 123-143, 2014.11, tThe Dixon Island Formation of the Pilbara terrane, Western Australia, extends from Cleaverville Beachto the Dixon Island coast, and is the only example worldwide of a coastal outcrop of a 3.2–3.1 Ga low-grade greenstone belt. The Dixon Island Formation was situated in an immature island arc setting andcomprises siliceous, carbonaceous deep-water sediments that contain evidence for hydrothermal andmicrobial activity. The extensive outcrop along the coastline makes it possible to examine in detail thecharacteristics of Mesoarchean sedimentation in a hydrothermal environment. This study focuses on acontinuously exposed carbonaceous, black chert succession in the central part of the northern coastlineoutcrop on Dixon Island. At this site, a 20-m-thick, carbonaceous, black chert sequence conformablyoverlies basement rocks of highly altered komatiite–rhyolite tuffs. The black chert sequence formedwell-bedded black chert with carbonaceous peloidal matter and fragmented grains, and the sequence ishomogeneous and finely laminated. In this sequence, evidence of low-temperature hydrothermal fluid,sediments and alteration stractures are well preserved in the lowermost section, indicating that high lev-els of hydrothermal activity occurred on the ocean floor during deposition. In particular, swarms of blackchert veins provide evidence of post-volcanic hydrothermal activity that released organic matter andsilica to the ocean. The carbonaceous peloidal textures and 13Corgvalues of sediments located just abovethe basement, which hosts the vein swarms, suggest that the veins were the conduits for hydrothermalfluid which contained organic-rich silica material and that flowed onto the seafloor to form the homo-geneous carbonaceous cherts along with hydrothermal-related sediment. The 13Corgvalues of organicmatter in the black cherts range from −42‰ to −22‰ (average = −31.9‰; n = 313). Lighter 13C values(−35‰ to −42‰) characterize carbonaceous laminated black chert located ∼5 m above the basement,where biogenic structures (e.g. biomat bed, microfossil structures) are found. The lighter 13C valuesmight be related to methanotrophic micro-organic activity within the sediments during hydrothermalactivity. In summary, we reconstructed the sedimentary environment upon a Mesoarchean hydrothermalocean floor that was a site of microbial activity and local methanogenesis.© 2014 Elsevier.
27. 伊藤 孝, 清川 昌一, 地球科学情報の市民への広報に関する事例研究−3:台湾における地球科学情報の広報,, 茨城大学教育学部紀要(自然科学),, 第63号, 401-413, 2014.04, [URL], 台湾の地球科学的な背景を簡潔に述べると共に,集集地震を契機に作られた921 地震
教育園を中心に,台湾における地球科学的情報がどのように広報されているという点に着目し,そ
の特徴的な試みについて紹介する。.
28. 蓑和 雄人, 清川 昌一, 伊藤孝, 薩摩硫黄島長浜湾における海水の連続観測:2013年6月16日〜29日の温度・濁度・pH・電気伝導度・溶存酸素量の深度別変化, 茨城大学教育学部紀要(自然科学),第63号,75−91., 第63号, 75-91, 2014.04, The Nagahama bay of Satsuma Iwo-Jima Island, Kagoshima Japan, is preserved unique hot spring
accompanied iron oxyhydroxides sedimentation. We observed the profiles of temperature, turbidity, pH,
electric conductivity and dissolved oxygen by multiple sensor in orange-colored Fe-rich water of fishing
port, where active discharge of hot spring is occurring, to understand relationship between Fe-rich water
and outer ocean water. Measurements were carried out 10cm intervals vertically at 4 locations during
16-29th, June 2013 and the mixing pattern between Fe-rich water and outer ocean water was monitored
clearly..
29. 伊藤 孝・清川昌一, 地球科学情報の市民への広報に関する事例研究−3:台湾における地球科学情報の広報, 茨城大学教育学部紀要(教育科学) 第63号,, 第63号, 401-413, 2014.04.
30. 蓑和雄人・清川昌一・伊藤 孝, 薩摩硫黄島長浜湾における海水の連続観測−2:2013年8月26日~9月7日の温度・濁度・pH・電気伝導度・溶存酸素量の深度別変化,, 茨城大学教育学部紀要(教育総合), 増刊号,, 増刊号, 521-531, 2014.04.
31. Maeno F., K. Suzuki, S. Kiyokawa, Kikai caldera and southern Kyushu: products of a large silicic magmatic system. IAVCEI 2013 Field Trip Guide B6, 国際火山学会 IAVCEI  火山, 58, 2, 1-26, 2013.06.
32. 清川 昌一, 相原悠平, Chris. Bohm, 坂本亮, 伊藤孝, 約28億年前カナダ・ウティクレイクグリーンストーン帯ミスタウ地域における熱水脈の産状と岩石記載, 茨城大学教育学部紀要(自然科学),第62号,37−45., 62, 37-45, 2013.04.
33. Shoichi Kiyokawa, Takashi Ito, Minoru Ikehara, Kosei Yamaguchi, Yusuke Suganuma, Preliminary report on the Dixon Island – Cleaverville Drilling Project, Pilbara Craton, Western Australia. , Geological Survey of Western Australia, Record 2012/14, 14, 1-39, 2012.05.
34. Ueshiba T., Kiyokawa S., , Long-term observations of iron-oxyhydroxide-rich reddish-brown water in Nagahama Bay, Satsuma Iwo-Jima Island, Kagoshima, Japan, , Memoirs of the faculty of sciences, Kyushu University, Series. D, Earth and Planetary Science,, 2012.05.
35. SHOICHI KIYOKAWA, TOMOMI NINOMIYA, TOMOAKI NAGATA, KAZUMASA OGURI, TAKASHI ITO, MINORU IKEHARA, KOSEI E. YAMAGUCHI, Effects of tides and weather on sedimentation of iron-oxyhydroxides in a
shallow-marine hydrothermal environment at Nagahama Bay, Satsuma
Iwo-Jima Island, Kagoshima, southwest Japan, The Island Arc, doi:10.1111/j.1440-1738.2012.00808, 2012.05.
36. Kiyokawa S., Ito, T., Ikehara, M., Yamaguchi, K.E., Koge S. and Sakamoto, R.,, Lateral variations in the lithology and organic chemistry of a black shale sequence on the Mesoarchean sea floor affected by hydrothermal processes: the Dixon Island Formation of the coastal Pilbara Terrane, Western Australia., The Island Arc, doi:10.1111/j.1440-1738.2012.00811, 2, 1-45, 2012.05.
37. Hisashi Oiwane, Shoichi Kiyokawa, Satoshi Tonai, Yukiyasu Nakamura, Hidekazu Tokuyama, Geomorphological development of the Goto Submarine Canyon, northeastern East China Sea, Marin Geology,, 288, 49-60, 2011.10.
38. Satoshi Tonai, Shoichi Kiyokawa, Yusuke suganuma, Juichiro Ashi, Hisashi Oiwane, Differential timing of vertical-axis block rotations in the northern Ryukyu Arc: Paleomagnetic evidence from the Koshikijima Islands, Japan, Tectonophysics,, 497, 71-84, 2011.01.
39. Yamaguchi K., Kiyokawa S., Ito T., Ikehara M., Kitajima F. and Suganuma Y., Clues of Early life: Dixon Island – Cleaverville Drilling Project (DXCL-dp) in the Pilbara Craton of Western Australia, Scientific Drilling, 7, 34-37, 2009.07.
40. Kiyokawa S. and Yokoyama K, Provenance of turbidite sands from IODP EXP 1301 in the northwestern Cascadia Basin, western North America., Marin geology, 10.1016/j.margeo.2009.01.003, 260, 19-29, 2009.07.
41. Tomomi Ninomiya and Shoichi Kiyokawa, Periodic Measurement of Seawater During a Tidal Cycle in Nagahama Bay, Satsuma Iwo-jima Island, Kagoshima, Japan, Mem. Fac. Sci., Kyushu Univ., Ser. D, Earth & Planet. Sci, 2009.02.
42. 藤内智士,大岩根尚,清川昌一,, 鹿児島県甑島列島北部地域の地質構造と古応力解析, 日本地質学会, 2008.11.
43. 高下将一郎,清川昌一,伊藤孝,池原実,北島富美雄, 西オーストラリア・ピルバラ・デキソンアイランド層の地質8 :黒色チャート部層の全有機炭素量と炭素同位体比の岩相・側方変化, 茨城大学教育学部紀要(自然科学), 57号, 57号, 2008.06.
44. 高下将一郎・清川昌一・伊藤 孝・池原 実, 西オーストラリア・ピルバラ・デキソンアイランド層の地質9:デキソンアイランドDX-A・D・E・F地域の地質, 茨城大学教育学部紀要(自然科学), 57号, 57号, 2008.06.
45. 清川昌一・稲本雄介・伊藤 孝・池原 実・北島富美雄, 太古代海底熱水系の地質1:南アフリカ・バーバートン帯中の33億年前マサウリ亜層の岩相と全有機炭素量および炭素同位体比,, 茨城大学教育学部紀要(自然科学), 57号, 57号, 2008.06.
46. 大岩根尚, 藤内智士, 清川昌一, 徳山英一, 北部沖縄トラフと甑島列島北部の構造発達史, 堆積学研究, no.64, 2007.06.
47. 安永 雅, 清川昌一, 植村和彦, 長崎県五島列島中部(若松島の新第三系五島層群の岩相層序と植物化石の産出について, 堆積学研究 , 2007.06.
48. 清川昌一, ベリース国に産する白亜紀・第三紀境界周辺層,アルビオン層:
チチュル ブクレー タに近接したイジェクター堆積物, 日本地質学会, vol. 112, No 12, p 730-748, 2006.12, [URL].
49. 清川昌一・片上亜美・池原実・伊藤孝・北島富美雄, 西オーストラリア・ピルバラ・デキソンアイランド層の地質—7—DX B e-4, e-5の岩相と有機炭素量および有機物炭素同位体比, 茨城大学教育学部紀要(自然科学), 57号, 55号29-39, 2006.06.
50. 藤内智士,板谷轍丸,大岩根尚,清川昌一, 甑島列島北部地域における層序と構造発達史, 堆積学研究 , no.64, 2006.06.
51. Kiyokawa S. T. Ito, M. Ikehara and F. Kitajima, Middle Archean volcano-hydrothermal sequence: bacterial microfossil- bearing 3.2-Ga Dixon Island Formation, coastal Pilbara terrane, Australia., GSA Bulltin, v.118, no.1/2, 2006.01.
52. R. Tada., M. A. Iturralde-Vinent., T. Matsui., E. Tajika., T. Oji., K. Goto., Y. Nakano., H. Takayama., S. Yamamoto., S. Kiyokawa., K. Toyoda., D. Garcia-Delgado., C. Diaz-Otero., R. Rojas-Consuegra, K/T boundary deposit in the proto-Caribbean basin. American association of petroleum Geologists Memoir, American association of petroleum Geologists Memoir, Vol. 79, 582-604, 2004.01.
53. R. Tada., M. A. Iturralde-Vinent., T. Matsui., E. Tajika., T. Oji., K. Goto., Y. Nakano., H. Takayama., S. Yamamoto., S. Kiyokawa., K. Toyoda., D. Garcia-Delgado., C. Diaz-Otero., R. Rojas-Consuegra.,, K/T boundary deposit in the proto-Caribbean basin, American association of petroleum Geologists Memoir,, Vol. 79, 582-604, 2003.12.
54. Shoichi Kiyokawa, A. Taira, T. Byrne, S. Boweing, Y. Sano, Structural evolution of the middle Archean coastal Pilbara terrane, Western Australia, tectonics, 10.1029/2001TC001296, 21, 5, vol.21, No. 5, p. 1-24,, 2002.10.
55. Shoichi, Kiyokawa, R. Tada, M.Iturralde, etc., Cretaceous-Tertiary boundary sequence in the Cacarajicara Formatin, western Cuba: An impact-related, high-energy, gravity flow deposit, Geological Society of America special paper 356, 356, 125-144, 2002.08.
56. Shoichi Kiyokawa, Asahiko Taira, The Cleaverville group in the West Plibara coastal Granitoid-greenstone Terrain of Western Australia:an exaple of mid-Archean immature oceanic island-arc succession, Precambrian Research, 1998.12.
57. Kiyokawa S.,, Geology of the Idonnappu Belt, central Hokkaio, Japan - Evolution of a Cretaceous accretionary complex., Tectonics, vol.11, No. 6, p. 1180-1206, 1992.12.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。