九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
秋山 良(あきやま りょう) データ更新日:2023.09.28

准教授 /  理学研究院 化学部門 複合領域化学講座


主な研究テーマ
溶液内の特に生体分子の分子認識機構、電子移動理論、水溶液の誘電的性質、
溶液構造とゆらぎ、溶液中での熱力学量の評価法、細胞質での混み合い問題、
同符号電荷間実効引力の理論および実験、巨大分子の拡散現象の理論的研究、選択的吸蔵の理論および実験、
キーワード:溶液論、混み合い問題、分子認識、分光学、生体分子、ソフトマター、高分子電解質、選択的吸蔵
2003.03.
研究業績
主要著書
1. 安池智一, 秋山 良, 改訂版 エントロピーからはじめる熱力学, 放送大学教育振興会(NHK出版), 2020.03.
2. 安池智一, 秋山 良, エントロピーからはじめる熱力学, 放送大学教育振興会(NHK出版), 2016.03.
主要原著論文
1. M. Takeda, K. Maruyama, R. Akiyama and T. Miyata, Integral equation study of effective attraction between like-charged particles mediated by cations: Comparison between IPY2 and HNC closures, EPL (Europhys Letter), doi: 10.1209/0295-5075/ac94f5, 140, 17001-p1-17001-p7, 2022.10, Effective interactions between like-charged particles immersed in an electrolyte solution were calculated using two integral equation theories, hypernetted-chain (HNC)-Ornstein-
Zernike (OZ) and ionic Percus-Yevick 2 (IPY2)-OZ. When the HNC-OZ theory was adopted, the electrolyte concentration dependence of the effective interaction showed a reentrant behavior. By contrast, the IPY2-OZ theory did not indicate the behavior. Monte Carlo simulations were performed for one of the model systems, and the results agreed qualitatively with those calculated using the HNC-OZ theory..
2. Tomoya Iwashita, Masaaki Nagao, Akira Yoshimori, Masahide Terazima, Ryo Akiyama, Usefulness of higher-order system-size correction for macromolecule diffusion coefficients: A molecular dynamics study, Chemical Physics Letters, 10.1016/j.cplett.2022.140096, 807, 140096-1-7, 2022.10, [URL].
3. Shota Arai, Akira Yoshimori, Yuka Nakamura, Ryo Akiyama, A Microscopic Theory for Preferential Solvation Effects on Viscosity, Journal of Physical Society of Japan, 10.7566/jpsj.91.094602, 91, 9, 094602-1-13, 2022.09, [URL].
4. Hiraiwa, Tetsuya; Akiyama, Ryo; Inoue, Daisuke; Kabir, Arif Md. Rashedul; Kakugo, Akira, Collision-induced torque mediates the transition of chiral dynamic patterns formed by active particles, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 10.1039/d2cp03879j, 2022.10, [URL].
5. Keiju Suda, Ayumi Suematsu, and Ryo Akiyama, Lateral depletion effect on two-dimensional ordering of bacteriorhodopsins in a lipid bilayer: A theoretical study based on a binary hard-disk model, Journal of Chemical Physics, https://doi.org/10.1063/5.0044399, 154, 204904-1-204904-11, 2021.05, [URL].
6. Suematsu, Ayumi; Akiyama, Ryo, Solvent effect for an effective attraction between like-charged macroions immersed in an electrolyte solution: The intensification mechanism of the effective attraction caused by the translational motion of solvent particles, Journal of Chemical Physics, https://doi.org/10.1063/5.0033874, 154, 3, 034902-1-034902-8, 2021.01, [URL].
7. Y. Tamura1, A. Yoshimori, A. Suematsu and R. Akiyama, Reentrant crystallization of like-charged colloidal particles in an electrolyte solution: Relationship between the shape of the phase diagram and the effective potential of colloidal particles, EPL (Europhys Letter), 10.1209/0295-5075/129/66001, 129, 66001-p1-66001-p7, 2020.04, The reentrant crystallization of like-charged colloidal particles in electrolyte solutions was studied to clarify the relationship between the shape of the phase diagram and the particle-particle effective potential. Coexisting densities were calculated at various electrolyte concentrations using the thermodynamic perturbation expansion method with effective one-component models. The effective potentials were obtained using an integral equation theory for liquids. Some model effective potentials were examined. The calculated results indicated that the reentrant behaviors of various acidic protein solutions observed in the experiments required not only the nonmonotonic dependence of the short-range attraction on the electrolyte concentration, but also the absence of a long repulsive tail..
8. Ayano Chiba, Akio Oshima, Ryo Akiyama, Confined Space Enables Spontaneous Liquid Separation by Molecular Size
Selective Absorption of Alkanes into a Polyolefin Cast Film, Langmuir, 10.1021/acs.langmuir.9b02509, 35, 52, 17177-17184, 2019.12, [URL], The depletion force has been used to explain phase separation phenomena in colloidal systems. Here, we showed that depletion force can explain not only phase separation of large and small colloidal particles but also preferential absorption of larger molecules from a mixture of large and small molecules in a liquid state. When a polyolefin cast film was immersed in a mixture of long and short normal alkanes, the longer molecules were selectively absorbed into the film. This experimental result was explained from the viewpoint of depletion force. The main finding was the use of confined space to emphasize the separation tendency caused by the force. In general, the increase in entropy may serve as a driving force to mix molecules. However, if sufficiently narrow pores are present, large and small molecules are separated naturally by size as the entropy increases. This finding will lead to size exclusion chromatography of low-mass molecules, similar to gel permeation chromatography of macromolecules. In order to demonstrate the effect of depletion force, we selected and experimented with a system based on a polyolefin isotactic poly(4-methyl-1-pentene) (P4MP1) film and a normal alkane mixture and realized high molecular selectivity. The P4MP1 film we used can be prepared simply by evaporating the solvent from the solution and casting the film. On the basis of the Asakura-Oosawa theory, we concluded that spontaneous and high molecular selectivity is attributed to the depletion force provided by the small sub-nanopores with uniform size in the film..
9. Ken Tokunaga, Ryo Akiyama, Molecular dynamics study of a solvation motor in a Lennard-Jones solvent, Physical Review E, 10.1103/PhysRevE.100.062608, 100, 6, 062608-1-062608-8, 2019.12, [URL], The motions of a solvation motor in a Lennard-Jones solvent were calculated by using molecular dynamics simulation. The results were analyzed considering the large spatial scale effects caused by the motion of the solvation motor. A reaction site was located on the surface of the solvation motor and the attraction between the reaction site and the solvent molecules was varied for 100 fs. The motion of the motor was driven by solvation changes near the reaction site on the motor. Two finite-size effects were observed in the motion. One was the hydrodynamic effect and the other was the increase in solvent viscosity caused by heat generation. The latter affected not only the displacement of the motor caused by the reaction but also the wave propagation phenomena. Both effects reduced the motor displacement. Heat generation affects the displacement, in particular for small systems. By contrast, the hydrodynamic effect remained even for large systems. An extrapolation method was proposed for the displacement..
10. Yuka Nakamura, Shota Arai, Masahiro Kinoshita, Akira Yoshimori, Ryo Akiyama, Reduced density profile of small particles near a large particle
Results of an integral equation theory with an accurate bridge function and a Monte Carlo simulation, Journal of Chemical Physics, 10.1063/1.5100040, 151, 4, 044506-1-044506-10, 2019.07, [URL], Solute-solvent reduced density profiles of hard-sphere fluids were calculated by using several integral equation theories for liquids. The traditional closures, Percus-Yevick (PY) and the hypernetted-chain (HNC) closures, as well as the theories with bridge functions, Verlet, Duh-Henderson, and Kinoshita (named MHNC), were used for the calculation. In this paper, a one-solute hard-sphere was immersed in a one-component hard-sphere solvent and various size ratios were examined. The profiles between the solute and solvent particles were compared with those calculated by Monte Carlo simulations. The profiles given by the integral equations with the bridge functions were much more accurate than those calculated by conventional integral equation theories, such as the Ornstein-Zernike (OZ) equation with the PY closure. The accuracy of the MHNC-OZ theory was maintained even when the particle size ratio of solute to solvent was 50. For example, the contact values were 5.7 (Monte Carlo), 5.6 (MHNC), 7.8 (HNC), and 4.5 (PY), and the first minimum values were 0.48 (Monte Carlo), 0.46 (MHNC), 0.54 (HNC), and 0.40 (PY) when the packing fraction of the hard-sphere solvent was 0.38 and the size ratio was 50. The asymptotic decay and the oscillation period for MHNC-OZ were also very accurate, although those given by the HNC-OZ theory were somewhat faster than those obtained by Monte Carlo simulations..
11. Ayumi Suematsu, Takuto Sawayama, and Ryo Akiyama, Effective potential between negatively charged patches on acidic proteins immersed in various electrolyte solutions, The Journal of Chemical Physics, doi: 10.1063/1.5038912, 149, 074105-1-8, 2018.08, Effective interactions between O-sized anions in various electrolyte solutions were calculated by using
the integral equation theory with some simple models. The results indicated that only multivalent
cations mediated a strong effective attraction between O-sized anions at a certain concentration. The
effective interaction turned from repulsive to attractive as the electrolyte concentration increased,
and the effective attraction decreased when more electrolyte was added. Moreover, the effective interactions between O-sized anions in the electrolyte solution did not present a long repulsive tail, although the effective attraction caused by the divalent cations appeared. By contrast, the effective attraction mediated by monovalent cations and the reentrant behavior did not appear and the effective interaction was basically repulsive. These behaviors agree with the experimental results for reentrant condensation of acidic proteins in various electrolyte solutions. The calculated results suggest that the dissociated carboxylic acidic groups on the proteins form attractive patches between proteins under certain concentration conditions..
12. 久保田 陽二, Akira Yoshimori, Nobuyuki Matubayasi, Makoto Suzuki, Ryo Akiyama, Molecular dynamics study of fast dielectric relaxation of water around a molecular-sized ion, JOURNAL OF CHEMICAL PHYSICS, 10.1063/1.4769972, 137, 22, 224502-1-224502-4, 2012.12.
13. Ryo Akiyama, and Ryo Sakata , An Integral Equation Study of Reentrant Behavior in Attractive Interactions between Like-Charged Macroions Immersed in an Electrolyte Solution, J. Phys. Soc. Jpn., 10.1143/JPSJ.80.123602, 80, 123602, 2011.12.
14. Yoji Kubota and Ryo Akiyama, Fine Structure of the Dielectric Response to a Molecular-Sized Ion in Water, J. Phys. Chem. Lett., 10.1021/jz200571f, 2, 13, 1588–1591, 2011.06, [URL].
15. Ryo Akiyama, Yasuhito Karino, Hokuto Obama, Ayako Yoshifuku, Adsorption of xenon on a protein arising from the translational motion of solvent molecules, Phys. Chem. Chem. Phys. , 10.1039/b921314g, 12, 3096-3101, 12, 3096-3101 (Communication), 2010.03, [URL].
16. Ryo Akiyama, Naohiko Fujino, Kouhei Kaneda, and Masahiro Kinoshita, Interaction between like-charged colloidal particles in aqueous electrolyte solution:
Attractive component arising from solvent granularity, Cond. Matt. Phys., 10, 587-596 , 2007.12, [URL].
17. Masahiro Kinoshita, Yuichi Harano, and Ryo Akiyama, Changes in thermodynamic quantities upon contact of two solutes in solvent under isochoric and isobaric conditions, J. Chem. Phys., 125, 244504-1-7 , 2006.12.
18. Ryo Akiyama, Yasuhito Karino, Yasuhiro Hagiwara, Masahiro Kinoshita, Remarkable Solvent Effects on Depletion Interaction in Crowding Media:
Analyses by the Integral Equation Theories, J. Phys. Soc. Jpn., 75, 064804-1-7 , 2006.05.
19. Merchant, K.A.; Noid, W.G.; Akiyama, R; Finkelstein, I.; Goun, A.; McClain, B.L.; Loring, R.F.; Fayer,M.D., Myoglobin-CO Substate Structures and Dynamics: Spectrally Resolved Stimulated Vibrational Echoes and Molecular Dynamics Simulations, J. Am. Chem. Soc., (2003) Vol.125, p.13804., 2003.11.
20. Ryo Akiyama and Roger F. Loring, Quantum Solvent and Solute Effects in the Infrared Vibrational echo, J. Phys. Chem. A, (2003) Vol.107, p.8024, 2003.10.
21. Ryo Akiyama and Roger F. Loring, Vibrational Echoes for Classical and Quantum Solutes,, J. Chem. Phys., Vol. 116, p.4655(2002)., 2002.01.
22. Ryo Akiyama, Masahiro Kinoshita, and Fumio Hirata:, Free energy profiles of electron transfer at water-electrode interface
studied by the reference interaction site model theory, Chem. Phys. Lett., Vol.305, p.251(1999)., 1999.01.
23. Ryo Akiyama and Fumio Hirata, Theoretical Study for Water Structure at Highly Ordered Surface: Effect of
Surface Structure, J. Chem. Phys., Vol.108, p.4904 (1998)., 1998.01.
24. Ryo Akiyama, Akira Yoshimori, Toshiaki Kakitani, Yasushi Imamoto, Yoshinori Shichida and Yasuyo Hatano, Analysis of Excited State Dynamics of 13-trans-Locked-Bacteriorhodopsin, J. Phys. Chem. A, Vol. 101, p.412 (1997)., 1997.01.
25. Ryo Akiyama, Toshiaki Kakitani, Yasushi Imamoto, Yoshinori Shichida and Yasuyo Hatano, Bacteriorhodopsin Analyzed by the Fourier Transform of Optical Absorption Spectra,, J. Phys. Chem., Vol. 99, 7147(1995)., 1995.01.
主要総説, 論評, 解説, 書評, 報告書等
1. 秋山 良, エントロピー駆動実効引力相互作用に関する研究, 溶液化学研究会誌, Vol.1, 8-16(2022), 2022.04.
2. 千葉文野、秋山 良, 高分子P4MP1膜への低分子混合溶液からの選択的分子吸蔵
Selective Molecular Absorption from Low Molecular Weight Mixed Solution to a
Polymer P4MP1 Film
, 高圧力の科学と技術, https://doi.org/10.4131/jshpreview.31.82, Vol.31, No.2, 82-89(2021), 2021.10.
3. 秋山 良, 末松 安由美, 液体の積分方程式理論を用いた電解質溶液内の同符号電荷間実効引力相互作用の研究, 分子シミュレーション学会誌"アンサンブル", Vol.23, No.2, p.p. 103 - 112, 2021.04.
4. Hisashi Okumura, Masahiro Higashi, Yuichiro Yoshida, Hirofumi Sato, Ryo Akiyama, Theoretical approaches for dynamical ordering of biomolecular systems, Elsevier, 10.1016/j.bbagen.2017.10.001, BBA (Biochimica et Biophysica Acta) - General Subjects 1862 (2018) 212–228 (査読あり), 2018.02, [URL], Background Living systems are characterized by the dynamic assembly and disassembly of biomolecules. The dynamical ordering mechanism of these biomolecules has been investigated both experimentally and theoretically. The main theoretical approaches include quantum mechanical (QM) calculation, all-atom (AA) modeling, and coarse-grained (CG) modeling. The selected approach depends on the size of the target system (which differs among electrons, atoms, molecules, and molecular assemblies). These hierarchal approaches can be combined with molecular dynamics (MD) simulation and/or integral equation theories for liquids, which cover all size hierarchies. Scope of review We review the framework of quantum mechanical/molecular mechanical (QM/MM) calculations, AA MD simulations, CG modeling, and integral equation theories. Applications of these methods to the dynamical ordering of biomolecular systems are also exemplified. Major conclusions The QM/MM calculation enables the study of chemical reactions. The AA MD simulation, which omits the QM calculation, can follow longer time-scale phenomena. By reducing the number of degrees of freedom and the computational cost, CG modeling can follow much longer time-scale phenomena than AA modeling. Integral equation theories for liquids elucidate the liquid structure, for example, whether the liquid follows a radial distribution function. General significance These theoretical approaches can analyze the dynamic behaviors of biomolecular systems. They also provide useful tools for exploring the dynamic ordering systems of biomolecules, such as self-assembly. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato..
5. 久保田 陽二, 秋山 良, 分子スケールの外場で測る誘電率 -溶質分子周囲の水が作り出すポテンシャル揺らぎ-, 分子シミュレーション研究会会誌"アンサンブル", Vol.15, No.1, p.p. 33 - 41, 2013.01.
6. 秋山良, Asakura-Oosawaモデルからはじめる定積過程と定圧過程の違い, 分子シミュレーション研究会会誌"アンサンブル", Vol.13, No.2, p.p. 57-65, 2011.04.
7. 秋山良, 青少年のためのAsakura-Oosawa理論入門, 生物物理, 51(1), p.p.036-040, (2011), 2011.01.
8. 秋山良、狩野康人、木下正弘, 溶媒分子の並進運動由来の巨大分子間引力相互作用と熱測定, 熱測定, 33(3), p.p.104-113, (2006), 2006.06.
主要学会発表等
1. Ryo Akiyama*, Theoretical Study of Effective Attraction between Like-Charged Particles and the Reentrant Condensation Behavior, The 4th International Conference on Material Research and Innovation (ICMARI 2022), 2022.12.
2. 秋山良, エントロピー駆動の実効相互作用:膜と分離, 電気化学会第89回大会, 2022.03.
3. 秋山良, Studies on Effective Attractive Interactions Driven by Entropy, エントロピー駆動実効引力相互作用に関する研究, 第43回 溶液化学シンポジウム, 2021.10.
4. Tomoya Iwashita, Msaaki Nagao, Akira Yoshimori, Masahide Terazima and Ryo Akiyama*, Diffusion coefficient of one macromolecule in an aqueous solution: the system size dependence of the viscosity in the estimation method using MD simulations, The 3rd International Conference on Material Research and Innovation (ICMARI 2021), 2021.12.
5. 秋山良, Asakura-Oosawa 理論とその広がり, Variations on a Theory by Asakura and Oosawa, 日本生物物理学会 第58回 年会, 2020.09.
6. Ryo Akiyama, Statistical Mechanics Study of Separation of Inert Solvent Mixtures by a Porous Material, The 2nd International Conference on Material Research and Innovation (ICMARI 2019), 2019.12.
7. Ryo Akiyama, Asakura-Oosawa theory: On the Origin of Excluded Volume Effects in a Crowding Media and the Progress, the 5th International Conference on Molecular Simulation (ICMS2019), 2019.11.
8. Ayano Chiba, Akio Oshima, Kenzaburo Okubo, and Ryo Akiyama, Separation of inert solvent mixtures accentuated by confined spaces, 6th Japan-Korea International Symposium on Material Science and Technology 2019 (JKMST2019), 2019.08.
9. Ryo Akiyama, Effective attraction between negatively charged sites on proteins and ordering of proteins in an electrolyte solution, The 4th International Symposium “Dynamical Ordering of Biomolecular Systems for creation of integrated functions”(新学術領域研究『動的秩序と機能』第4回国際シンポジウム), 2015.11.
10. Ryo Akiyama, Spatiotemporal dynamic ordering regulated by ATP hydrolysis and effective attraction between negatively charged sites in a biofluid, The 53rd Annual Meeting of the Biophysical Society of Japan, Formation of spatiotemporal dynamic ordering mediated by ATP hydrolysis (新学術 領域研究『動的秩序と機能』共催シンポジウム), 2015.09.
11. 秋山 良, 静電相互作用による巨大分子構造形成とイオン交換による制御, 日本化学会 第95回春季年会, 2015.03.
12. 秋山 良, Association of Actin Monomers and Effective Attraction between Like-Charged Colloidal Particles Mediated by Multivalent Cations, 第52回日本生物物理学会年会, 2014.09.
13. Ryo Akiyama, Shingo Fujihara, Takuto Sawayama, Akira Yoshimori, Interaction between like-charged particles and attractive patches on like-charged proteins, International Meeting on Application of Statistical Mechanics of Molecular Liquid on Soft Matter, 2014.09.
14. 秋山 良, Hydration dynamics and dielectric relaxation of water around an ion, Symposium on Hydrationand ATP Energy 2013, 2013.03.
15. 久保田 陽二, Akira Yoshimori, Nobuyuki Matubayasi, Makoto Suzuki, 秋山 良, Slow Rotational and Fast Dielectric Relaxation of Water around an Ion: A Molecular Dynamics Study, 4th France- Japan Joint Seminar, 2013.01.
16. 秋山 良, 分子動力学シミュレーションで“観測”されたハイパーモバイル水, 合同公開シンポジウム ゆらぎと水 - 生命のエネルギーと機能 の分子機構を探る, 2012.09.
17. 秋山 良, 朝倉―大沢理論から見渡す生体分子間の実効相互作用, 2012年 生物物理若手の会夏の学校, 2012.09.
18. 秋山 良, 同符号のマクロイオン間の強い引力とリエントラントな電解質濃度依存性, 低次元系光機能材料研究会」第1回サマーセミナー(兼 西日本 ナノシート研究会第1回シンポジウム), 2012.07.
19. 久保田 陽二, Akira Yoshimori, Nobuyuki Matubayasi, Makoto Suzuki, 秋山 良, Fast Dielectric Relaxation of Water around an Ion, 6th Mini- Symposiumon Liquids, 2012.06.
20. 秋山良 , 同符号マクロイオン間の実効引力とSupraparticle Chemistry, 日本化学会第92回春季年会(「高次分子システムのための分子科学:実験と理論の挑戦」(先端ウォッチング講演会)), 2012.03.
21. Ryo Akiyama, Reentrant Behavior in Attractive Interaction between Like-Charged Colloidal Particles Immersed in Electrolyte Solution: a Theoretical Study and a Simple Picture, Seminar uber BioNano-Physik / Medizinische Physik at University of Tuebingen, 2011.11.
22. 秋山良 , 水中の溶質が感じる静電ポテンシャルのゆらぎ, 第15回分子シミュレーション夏の学校, 2011.09.
23. 秋山良 , 単純なモデルで考える定積過程と定圧過程:分子シミュレーションの課題と実験の課題, 第15回分子シミュレーション夏の学校, 2011.09.
24. 秋山良 , 同符号マクロイオン間の引力相互作用とリエントラントな挙動:生物化学的なコンテクストで, 愛媛大学理学部物理教室談話会, 2011.08.
25. Ryo Akiyama, Attractive interaction between like-charged macromolecules in an electrolyte solution and motion of amoeba, Department Seminar (Virginia Commonwealth University) , 2011.03.
26. 秋山良, 電子雲が作る共有結合とイオン雲が作る”共有結合”, 九重分光学関連夏季セミナー, 2010.07.
27. 秋山良, 対イオンがつくる同符号マクロイオン間の“共有結合”とアクチン分子間相互作用:
HNC-OZ方程式の解, 九州工業大学 情報工学部 生命情報工学科 学科講演会, 2009.12.
28. 秋山良, van der Waals描像と溶液内での生体分子間相互作用, 新潟大学 理学部 自然環境科学科 コロキウム, 2009.06.
29. 秋山良, タンパク質分子間相互作用における水の並進運動効果と熱力学量, 生物物理学会第46回年会, 2008.12, [URL].
30. 秋山良, 溶媒分子の粒子性と巨大分子間実効相互作用, 第22回分子シミュレーション討論会, 2008.11, [URL].
31. R. Akiyama, Effective interaction between like-charged colloidal particles in electrolyte solution: Attractive component arising from solvent granularity, International Symposium on Structure and Reaction Dynamics of Ionic Liquids in Kanazawa, 2008.09, [URL].
32. 秋山良, 溶媒分子の”枯渇”と生体分子間相互作用-水のあたり前な溶媒効果と想定外の結果-, 第3回LSWシンポジウム ソフト&ウェットマターにおける水の役割 , 2008.01, [URL].
33. 秋山良, 鷹揚生物物理化学, 分子科学若手の会 夏の学校2007, 2007.08, [URL].
34. R. Akiyama , Crowding Problems in Cytoplasm and Interaction Arising from Translational Motion of Solvent Molecules, International mini-symposium on liquids, 2007.05, [URL].
35. 秋山 良, 細胞質での混み合い問題と溶媒分子の並進運動, 日本物理学会秋季大会, 2006.09.
36. 秋山 良, ◯、o、。からはじめる物理化学:細胞質での生体分子の混み合い問題と溶媒効果, 物理化学セミナー, 2006.09.
37. 秋山良, 赤外振動エコー実験と分子動力学実験に基づく一酸化炭素結合ミオグロビンの
A Substatesの構造とダイナミクス, 生理学研究所 生体ダイナミクス研究会, 2003.03.
学会活動
所属学会名
分子シミュレーション研究会
日本化学学会
日本生物物理学会
日本物理学会
学協会役員等への就任
2019.06~2021.06, 日本生物物理学会, 代議員.
2019.06~2021.06, 日本生物物理学会, 理事.
2018.01~2018.12, 日本生物物理学会, 分野別専門委員.
2013.04, 公益財団法人 新世代研究所, 水和ナノ構造研究会 委員.
2013.04, 西日本ナノシート研究会, 組織委員.
2011.04~2014.03, 分子シミュレーション研究会, 幹事.
2008.03~2009.02, 日本化学会九州支部, 幹事.
2005.05~2006.04, 日本物理学会, 領域12(化学物理)世話人.
学会大会・会議・シンポジウム等における役割
2022.07.09~2022.07.09, 15th Mini-Symposium on Liquids, 座長.
2023.06.10~2023.06.11, 16th International Mini-Symposium on Liquids, 主催.
2022.07.09~2022.07.09, 15th Mini-Symposium on Liquids, 主催.
2021.06.26~2021.06.26, 14th International Mini-Symposium on Liquids, 主催.
2019.12.16~2019.12.18, The 2nd International Conference on Material Research and Innovation (ICMARI 2019), 座長(Chairmanship).
2017.09.20~2017.09.20, 第55回日本生物物理学会, シンポジウム企画(Dynamical ordering of biomolecular systems for creation of integrated functions: Dynamics Made of Ordering and Ordering Made from Dynamics).
2019.06.29~2019.06.30, 13th International Mini-Symposium on Liquids, 座長(Chairmanship).
2019.06.29~2019.06.30, 13th International Mini-Symposium on Liquids, 主催.
2018.06.30~2018.07.01, 12th International Mini-Symposium on Liquids, 座長(Chairmanship).
2018.06.30~2018.07.01, 12th International Mini-Symposium on Liquids, 主催.
2017.09.19~2017.09.21, 第55回日本生物物理学会, 現地委員.
2017.10.14~2017.10.14, 11th Mini-Symposium on Liquids, 座長(Chairmanship).
2017.10.14~2017.10.14, 11th Mini-Symposium on Liquids, 主催.
2016.10.15~2016.10.15, 10th Mini-Symposium on Liquids, 主催.
2016.10.15~2016.10.15, 10th Mini-Symposium on Liquids, 座長(Chairmanship).
2015.11.30~2015.12.02, 第29回分子シミュレーション討論会, 座長(Chairmanship).
2015.11.22~2015.11.23, The 4th International Symposium “Dynamical Ordering of Biomolecular Systems for creation of integrated functions”(新学術領域研究『動的秩序と機能』第4回国際シンポジウム), 現地委員.
2015.07.04~2015.07.04, 9th Mini-Symposium on Liquids, 主催.
2015.07.04~2015.07.04, 9th Mini-Symposium on Liquids, 座長(Chairmanship).
2015.03.21~2015.03.24, 日本物理学会第70回年次大会, シンポジウム企画(プロトネーション イントゥ ダークネス: 生体分子機能理解の為の水素位置情報)3月21日.
2015.03.21~2015.03.24, 日本物理学会 第69回年次大会, 座長(Chairmanship).
2014.11.12~2014.11.14, 溶液化学シンポジウム, 現地委員(プログラム委員).
2014.11.12~2014.11.14, 第28回分子シミュレーション討論会, 座長(Chairmanship).
2014.07.05~2014.07.05, 8th Mini-Symposium on Liquids, 主催.
2014.07.05~2014.07.05, 8th Mini-Symposium on Liquids , 座長(Chairmanship).
2014.03.27~2014.03.30, 日本物理学会第69回年次大会, シンポジウム企画(『がら空き』と『混み合い』の違い:細胞質の液体論)3月27日.
2014.03.27~2014.03.30, 日本物理学会 第69回年次大会, 座長(Chairmanship).
2014.03.05~2014.03.05, 第141回量子生命科学セミナー『ソフトマターと凝縮系科学の最前線』, 座長(Chairmanship).
2013.07.07~2013.07.12, 33rd International Conference on Solution Chemistry, 座長(Chairmanship).
2013.07.05~2013.07.06, 7th Mini-Symposium on Liquids, 主催.
2013.07.05~2013.07.05, 7th Mini-Symposium on Liquids (International), 座長(Chairmanship).
2013.01.28~2013.01.31, The 17th East Asian Workshop on Chemical Dynamics, 座長(Chairmanship).
2012.11.01~2013.07.11, 溶液化学国際会議, セッション担当委員.
2012.11~2012.11, 分子シミュレーション討論会, 主催.
2012.06.23~2012.06.23, 6th Mini-Symposium on Liquids, 主催.
2012.06.23~2012.06.23, 6th Mini-Symposium on Liquids, 座長(Chairmanship).
2012.03.07~2012.03.09, 新学術領域研究「水を主役としたATPエネルギ―変換」第4回全体会議, 座長(Chairmanship).
2011.09.07~2011.09.09, コロイドおよび界面化学討論会, シンポジウム企画(蛋白質/水界面の熱力学とATPエネルギ―)9月7日.
2011.09.07~2011.09.09, 第63回コロイドおよび界面化学討論会, 座長(Chairmanship).
2011.09.02~2011.09.08, 7th Congress of the International Sciety for Theoretical Chemical Physics, セッション担当, 提案(協力のみ).
2011.09.02~2011.09.08, 7th Congress of the International Society for Theoretical Chemical Physics , 座長(Chairmanship).
2011.06.25~2011.06.26, 5th International Mini-Symposium on Liquids, 主催.
2011.06.25~2011.06.26, 5th International Mini-Symposium on Liquids, 座長(Chairmanship).
2010.06.27~2010.06.27, 共溶媒効果に関する勉強会, 企画、運営.
2010.06.27~2010.06.27, 共溶媒効果に関する勉強会, 座長(Chairmanship).
2010.06.26~2010.06.26, 4th Mini-Symposium on Liquids, 企画、運営.
2010.06.26~2010.06.26, 4th Mini-Symposium on Liquids, 座長(Chairmanship).
2010.03.20~2010.03.23, 日本物理学会, シンポジウム企画(溶媒に着目した蛋白質溶液の熱力学ー課題と落とし穴ー)3月22日.
2010.03.20~2010.03.23, 日本物理学会 第65回年次大会(一件目), 座長(Chairmanship).
2010.03.20~2010.03.23, 日本物理学会 第65回年次大会(二件目), 座長(Chairmanship).
2010.03.08~2010.03.10, International Symposium on Hydration and ATP Energy, 企画、運営 (Organizin and Program Committee).
2010.03.08~2010.03.10, International Symposium on Hydration and ATP Energy, 座長(Chairmanship).
2009.12.18~2009.12.18, ロマンティック モレキュラー サイエンス ~ from IMS to IMS ~ , 企画、運営.
2009.12.18~2009.12.18, ロマンティック モレキュラー サイエンス ~ from IMS to IMS ~, 座長(Chairmanship).
2009.09.25~2009.09.28, 日本物理学会 2009年 秋季大会, 座長(Chairmanship).
2009.06.20~2009.06.20, 3rd Mini-Symposium on Liquids, 企画、運営.
2009.06.20~2009.06.20, 3rd Mini-Symposium on Liquids, 座長(Chairmanship).
2009.05.29~2009.05.29, The 19th Joint Seminar of Busan Branch of the Korean Chemical Society and the Kyushu Branch of the Chemical Society of Japan, 座長(Chairmanship).
2008.10.03~2008.10.03, 2nd Mini-Symposium on Liquids, 企画、運営.
2008.10.03~2008.10.03, 2nd Mini-Symposium on Liquids, 座長(Chairmanship).
2008.09.07~2008.09.09, 第61回コロイドおよび界面化学討論会, 学会実行委員(シンポジウム企画).
2008.09.07~2008.09.09, 第61回コロイドおよび界面化学討論会, 座長(Chairmanship).
2008.01~2008.01, 第3回LSWシンポジウム ソフト&ウェットマターにおける水の役割, 座長(Chairmanship).
2007.11~2007.11, 溶液化学研究会, シンポジウム現地委員.
2007.09~2007.09, 日本物理学会 第62回 年次大会, 座長(Chairmanship).
2005.11~2005.11, 第27回 溶液化学シンポジウム, 座長(Chairmanship).
2004.03~2004.03, 日本物理学会, 学会実行委員.
学会誌・雑誌・著書の編集への参加状況
2020.09, Physica A, 国際, 編集委員.
2020.01~2021.06, Biophysics and Physicobiology(BPPB), 国際, 編集委員.
2020.05, 生物物理, 国内, 編集委員.
2018.01~2018.12, Biophysics and Physicobiology(BPPB), 国際, Advisory Board.
2013.05~2014.07, Journal of Molecular Liquids, 国際, ゲストエディター.
2011.05~2012.08, Journal of Physical Society of Japan Supplement, 国際, 企画及びその責任者.
2011.04~2013.04, 分子シミュレーション研究会”アンサンブル”, 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2022年度 10      10 
2021年度 12      12 
2020年度     10 
2019年度    
2018年度      
2017年度      
2016年度      
2015年度    
2014年度      
2013年度      
2012年度      
2011年度      
2010年度      
2009年度      
2008年度      
2007年度      
2005年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
KIAS (Korea Institute For Advanced Study), Korea, 2023.05~2023.05.
Hotel Conrad Bangkok, Chulalongkorn University, Kasetsart University, Mahidol University, Thailand, 2023.03~2023.03.
The Emerald Hotel, Thailand, 2022.12~2022.12.
Helsinki University, Finland, 2023.02~2022.02.
National University of Singapore, Singapore, 2019.12~2019.12.
VISTEC (Vidyasirimedhi Institute of Science and Technology), Thailand, 2019.01~2019.01.
Kasetsart University, Thailand, 2019.01~2019.01.
VISTEC (Vidyasirimedhi Institute of Science and Technology), Thailand, 2019.01~2019.01.
National Taiwan University, Taiwan, 2019.01~2019.01.
TSRC workshop(Ah Haa School fort the Arts), UnitedStatesofAmerica, 2019.01~2019.01.
National Taiwan University, Taiwan, 2018.10~2018.10.
Cankarjev dom (Ljubljana), Slovenia, 2017.07~2017.07.
National Taiwan University of Science and Technology, Taiwan, 2015.07~2015.07.
カリフォルニア大学バークレー校, UnitedStatesofAmerica, 2014.01~2014.01.
Tuebingen University, FRIAS (Freiburg University), Germany, Germany, 2014.03~2014.03.
the University of Lisbon (Lisbon), Portugal, 2014.07~2014.07.
Tuebingen University, Germany, Germany, 2014.07~2014.07.
カリフォルニア大学バークレー校, UnitedStatesofAmerica, 2013.01~2013.01.
国立彰化教育大学, 国立台湾大学, 国立清華大学, 国立中山大学, Taiwan, 2013.03~2013.03.
カリフォルニア大学バークレー校, UnitedStatesofAmerica, 2012.01~2012.01.
Tuebingen University, TU Munich, Germany, 2012.09~2012.10.
Tuebingen University, Germany, 2012.10~2012.10.
University of Albata, Cornell University, Canada, UnitedStatesofAmerica, 2012.08~2012.08.
カリフォルニア大学バークレー校, UnitedStatesofAmerica, , , 2011.01~2011.01.
ブリティッシュコロンビア大(カナダ), コーネル大(アメリカ), ヴァージニア コモンウェルス大(アメリカ), Canada, UnitedStatesofAmerica, UnitedStatesofAmerica, 2011.03~2011.03.
Max-Plunck Institute (ポツダム,  ドイツ), Eberhard-Karls-Universität Tübingen (テュービンゲン, ドイツ), Friedrich-Alexander Universität Erlangen-Nürnberg (エルラーゲン, ドイツ), Germany, 2011.11~2011.11.
カリフォルニア大学バークレー校, UnitedStatesofAmerica, , , 2010.01~2010.01.
Cibico Centro, Spain, , , 2010.09~2010.09.
Hilton Wikiki, UnitedStatesofAmerica, , , 2010.12~2010.12.
ラトガース大学, UnitedStatesofAmerica, UnitedStatesofAmerica, , 2008.12~2008.12.
ゲーテ大学, Citta del Mare, Germany, Italy, , 2007.07~2007.07.
コーネル大学, ラトガース大学, UnitedStatesofAmerica, UnitedStatesofAmerica, , 2007.12~2007.12.
コーネル大学, ラトガース大学, コロンビア大学, UnitedStatesofAmerica, UnitedStatesofAmerica, UnitedStatesofAmerica, 2005.05~2005.05.
コーネル大学, ハーバード大学, UnitedStatesofAmerica, UnitedStatesofAmerica, 2003.12~2003.12.
コーネル大学, UnitedStatesofAmerica, 2000.09~2003.02.
外国人研究者等の受入れ状況
2018.06~2018.07, 2週間未満, Geneva University, Slovenia, .
2018.06~2018.07, 2週間未満, Purdue University, UnitedStatesofAmerica, .
2018.06~2018.07, 2週間未満, Bristol University, UnitedKingdom, .
2018.06~2018.07, 2週間未満,  Tuebingen University, Austria, .
2018.11~2018.11, 2週間未満, Katholieke Universiteit Leuven, Belgium, .
2016.01~2016.01, 2週間未満, AIMR, Tohoku University, UnitedKingdom, 九州大学.
2015.01~2015.01, 2週間未満, Tuebingen University (ドイツ), China, 九州大学.
2013.07~2013.07, 2週間未満, Katholieke Universiteit Leuven, Belgium, .
2013.07~2013.07, 2週間未満, Tuebingen University (ドイツ), China, .
2013.07~2013.07, 2週間未満, Friedrich-Alexander Universität Erlangen-Nürnberg, Australia, .
2013.03~2013.03, 2週間未満, Tuebingen University (ドイツ), Austria, .
2013.03~2013.03, 2週間未満, Peking University , China, .
2011.11~2011.11, 2週間未満, Department of Chemistry, Kyoto University, UnitedKingdom, 日本学術振興会.
2011.09~2011.09, 2週間未満, Friedrich-Alexander Universität Erlangen-Nürnberg, Austria, .
2011.06~2011.06, 2週間未満, University of California Berkeley , UnitedStatesofAmerica, 科研費.
2008.10~2008.10, 2週間未満, Max-Planck-Institut fur Metallforschung, ITAP, Universitat Stuttgart, Austria, 2nd Mini-Symposium on Liquids.
2007.05~2007.05, 2週間未満, Katholieke Universiteit Leuven, Belgium, 日本学術振興会.
2007.05~2007.05, 2週間未満, Cornell University, UnitedStatesofAmerica, 日本学術振興会.
2006.11~2006.12, 2週間未満, Max-Planck-Institut fur Metallforschung, ITAP, Universitat Stuttgart, Austria, 学内資金.
受賞
溶液化学研究会 学術賞, 溶液化学研究会, 2021.10.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2023年度~2025年度, 基盤研究(C), 分担, 液相分離と気相分離:ナノ細孔による選択的分子吸着の研究.
2022年度~2024年度, 基盤研究(C), 分担, 高分子フィルムに対する有機溶媒の優先透過および吸蔵現象.
2021年度~2022年度, 挑戦的研究(萌芽), 分担, 真空中の液滴で挑む過冷却液体の未踏領域.
2019年度~2021年度, 基盤研究(C), 分担, エントロピー駆動の物質分離法:結晶空隙を用いた低分子サイズ排除クロマトグラフィー.
2019年度~2022年度, 基盤研究(B), 代表, タンパク質の異常な拡散係数変化から問われる流体力学半径の意味.
2018年度~2020年度, 基盤研究(A), 分担, 生体分子機械による革新的動力システムの合理設計.
2018年度~2020年度, 基盤研究(C), 分担, 電気二重層相互作用の起源をあらためて問い質す.
2016年度~2017年度, 新学術領域研究, 代表, 多価カチオン媒介型実効引力に注目した蛋白質溶液の相挙動と動的秩序構造制御機構.
2016年度~2019年度, 基盤研究(C), 分担, Stokes抵抗の微視的な理論.
2015年度~2017年度, 基盤研究(C), 代表, 弱結合条件下の荷電タンパク質間実効相互作用と相挙動における溶媒分子の役割.
2014年度~2015年度, 新学術領域研究, 代表, 多価カチオンによって媒介される酸性蛋白質間引力の制御と動的秩序構造.
2009年度~2011年度, 基盤研究(C), 分担, 大きな疎水物質の拡散.
2008年度~2012年度, 新学術領域研究, 代表, 溶質分子が作り出す水の状態変化と水からの反作用(水を主役としたATPエネルギー変換(計画研究)).
2008年度~2012年度, 新学術領域研究, 分担, 水を主役としたATPエネルギー変換(総括班).
競争的資金(受託研究を含む)の採択状況
2007年度~2007年度, 科学技術試験研究委託業務, 分担, 次世代ナノ統合シミュレーションソフトウェアの研究開発.
共同研究、受託研究(競争的資金を除く)の受入状況
2012.04~2013.03, 代表, 対イオン共有による電解質溶液中の同符号巨大分子間相互作用.
2010.04~2010.09, 代表, 静電ポテンシャルの揺らぎの非線形性と電極反応.
2009.10~2010.03, 代表, 静電ポテンシャルの揺らぎの非線形性と電極反応.
2009.04~2009.09, 代表, 静電ポテンシャルの揺らぎの非線形性と電極反応.
2007.04~2008.03, 代表, 固体表面の液体構造と化学反応.
2004.10~2005.11, 代表, 生体システムにおける非特異的エントロピー駆動引力相互作用の液体論的研究.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。