Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Tsutomu Katayama Last modified date:2024.02.01



Undergraduate School


E-Mail *Since the e-mail address is not displayed in Internet Explorer, please use another web browser:Google Chrome, safari.
Homepage
https://kyushu-u.elsevierpure.com/en/persons/tsutomu-katayama
 Reseacher Profiling Tool Kyushu University Pure
http://bunsei.phar.kyushu-u.ac.jp/
Phone
092-642-6641
Fax
092-642-6646
Academic Degree
Ph.D.
Country of degree conferring institution (Overseas)
No
Field of Specialization
Molecular Biology, Biochemistry, Molecular Genetics
Total Priod of education and research career in the foreign country
03years06months
Outline Activities
In E. coli, DnaA protein initiates chromosomal DNA replication. Our group revealed that this protein is inactivated by timely and direct interaction with DNA polymerase III holoenzyme, the chromosomal replicase, in a manner dependent on its conformational change concomitant with nucleotide-polymerizing activity. We named this regulatory system RIDA. In cell cycle, DnaA protein is most likely inactivated by RIDA after initiation, then reactivated before the next round of replication cycle. ADP-DnaA can be reactivated by DARS (DnaA-Reactivating Sequence), which promotes exchange of DnaA-bound nucleotide from ADP- to ATP. We investigate molecular mechanisms in this DnaA-activity cycle by applying molecular genetics, biochemistry, and structural biology.
Research
Research Interests
  • Structure and functional molecular mechanism in replicational initiation complexes
    keyword : Replication initiation, DnaA, oriC, Cell cycle, DNA unwinding
    2000.04Regulatory Mechanism for Chromosomal DNA Replication: Regulatory Inactivation of the Initiator Protein (RIDA).
  • Regulatory Inactivation of DnaA
    keyword : Replicational initiation, Feedback inhibition, DnaA, Hda, DNA polymerase (Clamp)
    1994.04Regulatory Mechanism for Chromosomal DNA Replication: Regulatory Inactivation of the Initiator Protein (RIDA).
  • Structure-function relationship in DnaA
    keyword : Replicational initiation, DnaA domain structures, AAA+, Protein-Protein interaction , Protein-DNA interaction
    1994.04Regulatory Mechanism for Chromosomal DNA Replication: Structure-Function Relashonship Analysis of the Initiator Protein.
  • Regulatory activation of DnaA
    keyword : Replicational initiation, transcription, Cell cycle, DiaA, DARS
    1995.04Regulatory Mechanism for Chromosomal DNA Replication:Regulation for the timely activation of replicational initiation.
  • Regulatory network in replicational initiation
    keyword : REplicational initiation, transcription, Cell cycle, Hda, DiaA, DARS, genome analysis
    1996.04Regulatory Mechanism for Chromosomal DNA Replicaton: Genome Netwarks and Interactions of Regulatory Systems.
Current and Past Project
  • Proteins 3000 Structual Biology Project
  • Post-Genome Project
  • Molecular Mechanisms that Monitor Chromosomal Replication
Academic Activities
Books
1. Tsutomu Katayama, DNA Replication: From Old Principles to New Discovery (Chapter: Initiation of DNA replication at the chromosomal origin of E. coli, oriC), Springer New York LLC, 10.1007/978-981-10-6955-0_4, 1042, 79-98, 2017.01.
2. Kirsten Skarstad, Tsutomu Katayama, DNA Replication , Cold Spring Harbor Press, pp343-359
Capter entitled "Replication Regulation in Bacteria", 2013.01, 細菌染色体の複製開始の制御システムにおける研究成果を体系的にまとめた.
3. Masayuki Su'etsugu, Tsutomu Katayama, Escherichia coli and Bacillus subtilis; The Frontiers of Molecular Microbiology Revisited, Research Signpost, pp29-43, Edited by Yoshito Sadaie and Kouji Matsumoto, Capter entitled "Chromosome replication in E. coli and B. subtilis", 2012.10.
4. Replication system in the E. coli genome. In "Advances in Genomics and Proteomics",, T. Imanaka (ed.), N.T.S., 2004.
5. Regulation of chromosome replication in prokayotes. In "Replication and Partition of the Genome", A. Matsukage and H. Masai (eds.), Springer-Verlag Tokyo, 2003.
Reports
1. Tsutomu Katayama, Kazutoshi Kasho, Hironori Kawakami, The DnaA cycle in Escherichia coli: activation, function and inactivation of the initiator protein, Front. Microbiol., 8:2496. , 2017.12, 複製開始タンパク質DnaAによる複製開始の分子機構とその制御機構について、最近の進歩を含め、体系的にまとめた。.
2. Katayama, T., Ozaki, S., Keyamura, K. and Fujimitsu, K, Regulation of the replication cycle: Conserved and diverse regulatory systems for DnaA and oriC, Nature Rev. Microbiol. 8(3):163-170, 2010.03.
3. Kawakami, H. and Katayama, T., DnaA, ORC, and Cdc6: Similarity beyond the domains of life and diversity, Biochem. Cell Biol. 88(22): 49-62, 2010.03.
4. Ozaki, S., and Katayama, T., DnaA structure, function, and dynamics in the initiation at the chromosomal origin, Plasmid, 2009.09.
5. Katayama. T., Roles for the AAA+ motifs of DnaA in the initiation of DNA replication, Biochem. Soc. Trans. 36(1), 78-82, 2008.02.
6. Regulatory mechanism of bacterail chromosome.
7. Katayama, T., Feedback controls restrain the initiation of Escherichia coli chromosomal replication, Mol. Microbiol., 41巻(1号), 9-18ページ, 2001.07.
8. A novel role for DNA polymerase: Negative regulation for initiation of chromosomal replication.
Papers
1. Kazutoshi Kasho, Shogo Ozaki, and Tsutomu Katayama, IHF and Fis as Escherichia coli cell cycle regulators: Activation of the replication origin oriC and the regulatory cycle of the DnaA initiator, Int. J. Mol. Sci., doi.org/10.3390/ijms241411572, 24(14); 11572, 2023.07.
2. Chuyan Lu, Ryusei Yoshida,Tsutomu Katayama, Shogo Ozaki, Thermotoga maritima oriC involves a DNA unwinding element with distinct modules and a DnaA-oligomerizing region with a novel directional binding mode, J. Biol. Chem., doi.org/10.1016/j.jbc.2023.104888, 299(7):104888, 2023.07.
3. Ryusei Yoshida, Shogo Ozaki, Hironori Kawakami, and Tsutomu Katayama, Single-stranded DNA recruitment mechanism in replication origin unwinding by DnaA initiator protein and HU, an evolutionary ubiquitous nucleoid protein, Nucleic Acids Res., doi.org/10.1093/nar/gkad389, 51(12): 6286-6306, 2023.06.
4. Yukari Sakiyama,Mariko Nagata,Ryusei Yoshida,Kazutoshi Kasho,Shogo Ozaki,Tsutomu Katayama, Concerted actions of DnaA complexes with DNA unwinding sequences within and flanking replication origin oriC promote DnaB helicase loading, J. Biol. Chem., 10.1016/j.jbc.2022.102051, Volume 298, Issue 6, 102051, 2022.07.
5. Kenya Miyoshi, Yuka Tatsumoto, Shogo Ozaki, Tsutomu Katayama, Negative feedback for DARS2-Fis complex by ATP-DnaA supports the cell cycle-coordinated regulation for chromosome replication, Nucleic Acids Res.,  10.1093/nar/gkab1171,  49 (22), 12820–12835, 2021.12, 大腸菌の複製開始タンパク質DnaAはATP結合型(ATP-DnaA)となって、染色体DNAの複製起点で高次な複合体を形成し複製開始反応を進めます。細胞内には不活性なADP結合型DnaAタンパク質(ADP-DnaA)が多量に存在しており、適切なタイミングで活性があるATP-DnaA に変換されます。ADP-DnaA をATP-DnaA に変換する反応を主に進める因子はDARS2という染色体のDNA因子です。DARS2には、ADP-DnaAに加え、DNA結合タンパク質であるFisとIHFとが結合して複合体を形成します。この複合体(DARS2-IHF-Fis)が、ADP-DnaAからADPを解離してATP-DnaA に変換します。IHFやFisは多様な遺伝子の調節因子として働きますが、特にFisは細胞が増殖している期間に多量に存在します。本論文では、ATP-DnaAの割合があるレベルまで達すると、DARS2のFis結合部位にATP-DnaAが結合して、FisとDARS2との結合を阻害することが解明されました。Fis結合部位に重複して新たな低親和性のDnaA結合配列のクラスターが見出されました。つまり、ATP-DnaAの割合が複製開始を適切に進めるレベルまで達すると、この配列でATP-DnaAが集合してFis結合を競合阻害するのです。これによりDARS2の機能が自動的に抑制される、ということが解明されたのです。この制御はATP-DnaAによるDARS2の負のフィードバックシステムということができます。複製開始後はATP-DnaAのATP加水分解が徐々に進むのでやがて再びADP-DnaAが多量となります。そして細胞分裂が起こり、DARS2は再びFisと結合できるようになります。本研究は、細胞増殖における生命の原理を理解するため本質的に重要な分子メカニズムを解明したものです。またゲノム解析からDARS2は病原菌を含む多くの細菌種に存在すると思われますので新たな抗菌剤の開発にも有用となるでしょう。.
6. Kazutoshi Kasho, Taku Oshima, Onuma Chumsakul, Kensuke Nakamura, Kazuki Fukamachi and Tsutomu Katayama, Whole-genome analysis reveals that the nucleoid protein IHF predominantly binds to the replication origin oriC specifically at the time of initiation, Front. Microbiol., 12, 1, 12:697712 doi: 10.3389/fmicb.2021.697712, 2021.08.
7. Chihiro Hayashi, Erika Miyazaki (equal contributors), Shogo Ozaki, Yoshito Abe, and Tsutomu Katayama, DnaB helicase is recruited to the replication initiation complex via binding of DnaA domain I to the lateral surface of the DnaB N-terminal domain, J. Biol. Chem., 10.1074/jbc.RA120.014235, 295(32); 11131-11143, 2020.08.
8. Ryo Sugiyama, Kazutoshi Kasho, Kenya Miyoshi, Shogo Ozaki, Wataru Kagawa, Hitoshi Kurumizaka, and Tsutomu Katayama, A novel mode of DnaA-DnaA interaction promotes ADP dissociation for reactivation of replication initiation activity, Nucleic Acids Res., doi: 10.1093/nar/gkz795, 47(21); 11209-11224, 2019.12, DnaAタンパク質は病原菌を含むバクテリアに広く共通して存在しており、染色体DNA複製を開始させる重要な働きがあります。大腸菌の細胞周期において、基本的にDnaAタンパク質はADP結合によって不活性化されていますが、複製開始のタイミングに合わせてADPとATPが入れ替わり、ATP結合型DnaAタンパク質が生じ、複製開始反応を活性化します。しかしながらDnaAタンパク質からADPを解離する分子機構は解明されていませんでした。
 九州大学薬学研究院分子生物薬学分野の片山 勉教授らは、以前、ゲノムDNA上の特異的な部位DARS (DnaA-Reactivating Sequence) においてADP結合型DnaAタンパク質がATP結合型DnaAタンパク質に変換されることを発見していました(Fujimitsu et al., Genes Dev., 2009)。DARSでは、複数のADP結合型DnaAタンパク質が結合して動的な複合体を形成し、そこでDnaAタンパク質からADPが解離し、そのかわりにATPがDnaAタンパク質に結合します。今回の論文では、DARS-DnaAタンパク質複合体を詳細に解析し、DnaAタンパク質のATP/ADP結合ドメイン(AAA+ドメイン)による新たな相互作用機構により、ADP解離が導かれることを解明しました。AAA+ドメインは、ヒトを含む真核細胞の複製開始タンパク質やDNA複製・組換えタンパク質のみならず、多くのタンパク質複合体や細胞膜の制御タンパク質に保存されている重要な機能因子ですが、今回はこれまでに見出されていなかった新たなAAA+ドメインの分子機構を解明したものです。この成果は新規な抗菌剤や抗がん剤の開発研究に繋がる可能性もあります.
 なお本論文は Faculty of 1000 Prime (F1000Prime)推薦論文に選ばれました。.
9. Hironori Kawakami, Ryuya Muraoka, Eiji Ohashi, Kenta Kawabata, Shota Kanamoto, Takeaki Chichibu, Toshiki Tsurimoto, and Tsutomu Katayama, Specific basic patch-dependent multimerization of S. cerevisiae ORC on single-stranded DNA promotes ATP hydrolysis, Genes Cells, doi.org/10.1111/gtc.12710, 24(9):608-618., 2019.06.
10. Saki Taniguchi, Kazutoshi Kasho, Shogo Ozaki, Tsutomu Katayama, Escherichia coli CrfC protein, a nucleoid partition factor, localizes to nucleoid poles via the activities of specific nucleoid-associated proteins., Front. Microbiol., doi: 10.3389/fmicb.2019.00072, 10: 72., 2019.02, 複製されたDNAの均等分配は細胞増殖に重要なプロセスです。複製後のDNA分子を姉妹細胞へ均等分配するには、まず複製直後のDNA分子どおしを接着させ、その後、DNA分子を規則的に折りたたみ高次構造を形成させるという機構が必要と考えられています。しかしながら、これらの分子機構の多くがまだ謎なままです。
 九州大学薬学研究院分子生物薬学分野の片山 勉教授らは、大腸菌で染色体の均等分配に必須となる新規因子CrfCタンパク質を見出し、この因子が複製直後のDNA分子を接着させる分子機構を解明していました(Ozaki et al., Cell Reports, 2013)。この際、CrfCタンパク質が複製直後のDNA分子に結合することに加え、姉妹DNAの将来の分配先となる細胞両極の領域にも局在していることを発見していました。今回の論文では、染色体DNAの高次構造を形成するタンパク質因子のうち数種がCrfCタンパク質の細胞両極への局在に重要であることを新たに見出しました。さらに、この機構には複製開始因子であるDnaAタンパク質も関わってくることがわかりました。これらの結果は、DNAの接着と均等分配に働くCrfCタンパク質が、細胞内で分子集合や移動を行う動的な分子機構を持っており、その過程で染色体DNAの特異的な高次構造と関わることを新たに示しています。
 なお本論文は Faculty of 1000 Prime (F1000Prime)推薦論文に選ばれました。.
11. Yukari Sakiyama, Masahiro Nishimura, Chihiro Hayashi, Yusuke Akama, Shogo Ozaki, Tsutomu Katayama, The DnaA AAA+ domain His136 residue directs DnaB replicative helicase to the unwound region of the replication origin, oriC., Front. Microbiol., doi: 10.3389/fmicb.2018.02017, 9: 2017., 2018.08.
12. Yukari Sakiyama, Kazutoshi Kasho, Yasunori Noguchi, Hironori Kawakami, Tsutomu Katayama, Regulatory dynamics in the ternary DnaA complex for initiation of chromosomal replication in Escherichia coli, Nucleic Acids Res., doi/10.1093/nar/gkx914, 45(21): 12354-12373, 2017.12, 染色体DNAの複製は、複製起点と呼ばれるDNA領域での開始反応から始まります。開始反応では、通常2重鎖であるDNAを開いて2つの1本鎖にします。この反応を起こすため複製起点には多数のタンパク質が結合して、複雑で動的な構造体が造られます。これが複製開始複合体です。大腸菌では11から12個のDnaAタンパク質が複製起点DNAに集合して複合体となります。本研究では、複製開始複合体に含まれるDnaAタンパク質分子を1分子づつ個々別々に機能解析する独自に開発した手法を適用して、個々のDnaAタンパク質の複製起点DNAとの結合、DnaA-DnaA間相互作用、および、1本鎖DNAとの結合における役割を詳細に明らかにしました。これにより、複製起点DNAの左側領域で集合した2つのDnaAタンパク質分子が1本鎖DNAとの結合に主要な役割を果たし、複製開始反応を進めることを解明しました。ゲノム情報からは病原菌を含む多くの細菌種で同じ分子機構が働いていることが示唆されます。この成果は抗菌剤や抗がん剤の開発研究にも繋がるものです。.
13. Kazutoshi Kasho, Hiroyuki Tanaka, Ryuji Sakai, Tsutomu Katayama, Cooperative DnaA binding to the negatively supercoiled datA locus stimulates DnaA-ATP hydrolysis, J. Biol. Chem., doi: 10.1074/jbc.M116.762815, 292(4), 1251-1266, 2017.01.
14. Masahiro Shimizu, Yasunori Noguchi, Yukari Sakiyama, Hironori Kawakami, Tsutomu Katayama, Shoji Takada, Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights, Proc. Natl. Acad. Sci. USA, doi/10.1074/jbc.M115.662601, 113 (50) E8021–E8030., 2016.12, 遺伝情報の継承のためには、遺伝子の実体となる染色体 DNA の複製が必要です。染色体 DNAの複製は、複製起点と呼ばれる DNA 領域での開始反応から始まります。開始反応では、通常2重鎖で ある DNA を開いて2つの1本鎖にします。そのような DNA の開裂を起こすため、複製起点には多 数のタンパク質が結合して、複雑で動的な構造体が造られます。これが複製開始複合体です。しか し、これまでその構造や働きをはっきり見ることができませんでした。本研究では分子生物学のモデル生物となっている大腸菌の複製開始複合体を、高田彰二 京都大学大学院理学研究科教授との異分野共同研究により解析しました。高田教授らにより新たに開発した計算手法を用いて、13 個のタンパク質が規則的に集合して造られる、複製開始複合体をコンピューター内で構築することに初めて成功しました。さらに試験管内再構成した複製開始複合体を詳細に解析し、シミュレーションされた複合体構造は生化学実験の結果とよく整合していることも確かめられました。これらにより、この複合体の精密な構造や働きまで見えるようになり、DNA の構造が変換するメカニズムを合理的に説明できるようになりました。.
15. Yasunori Noguchi, Tsutomu Katayama, The Escherichia coli cryptic prophage protein YfdR binds to DnaA and initiation of chromosomal replication is inhibited by overexpression of the gene cluster yfdQ-yfdR-yfdS-yfdT, Front. Microbiol. , doi: 10.3389/fmicb.2016.00239, 7; 239. (21 pages) , 2016.03.
16. Hironori Kawakami, Eiji Ohashi, Shota Kanamoto, Toshiki Tsurimoto, Tsutomu Katayama, Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues, Sci. Rep., 5; 14929 (14 pages), 2015.10.
17. Yasunori Noguchi, Yukari Sakiyama, Hironori Kawakami, Tsutomu Katayama, The Arg fingers of key DnaA protomers are oriented inward within the replication origin oriC and stimulate DnaA subcomplexes in the Initiation complex, J. Biol. Chem., doi/10.1074/jbc.M115.662601 , 290 (33) , 20295-20312, 2015.08.
18. Kazutoshi Kasho, Fujimitsu Kazuyuki, Toshihiro Matoba, Taku Oshima, Tsutomu Katayama, Timely binding of IHF and Fis to DARS2 regulates ATP–DnaA production and replication initiation
, Nucleic Acids Res., 10.1093/nar/gku1051, 42(21):13134-13149, 2014.12, 大腸菌の細胞周期において複製開始が正しい時期に起こるためには、複製開始蛋白質DnaAが不活性なADP型から、活性のあるATP結合型にタイミングよく変換される必要があります。これまでの同分野の研究により、ADP-DnaAが染色体上の非コード型DNA因子DARS2と相互作用すると、ヌクレオチド交換が促進されATP-DnaAに変換することが見出されておりました(Fujimitsu et al., Genes Dev., 2009)。しかしながら、細胞周期においてDARS2がどのようにタイミングよく活性化されるかという制御機構は不明でした。同分野は今回の研究において、DARS2に結合する2種の蛋白質IHFおよびFisを同定しました。これらは細菌型ヒストン様因子とも呼ばれるDNA結合因子です。DARS2の活性化には両者の結合が必要でした。さらに、IHFは複製開始前の時間帯のみでDARS2と結合しました。Fisは増殖が活発な細胞のみでDARS2に結合していました。このようにIHFとFisの時期特異的な結合によって、DARS2が増殖中の細胞でタイミングよく活性化されることがわかりました。このことが正しいタイミングで複製開始を起こすための基盤となっていたのです。.
19. Ozaki Shogo, Yusaku Matsuda, Kenji Keyamura, Hironori Kawakami, Yasunori Noguchi, Kazutoshi Kasho, Komomo Nagata, Tamami Masuda, Yukari Sakiyama, Tsutomu Katayama, A replicase clamp-binding protein with a dynamin motif promotes colocalization of the nascent DNA strands and equipartitioning of chromosomes in Escherichia coli
, Cell Reports, 4, 985-995, 2013.09, DNA複製と均等分配は細胞増殖に必須であり、その破綻は発ガン、発生異常、不妊などにも結びつく。複製後のDNA 分子を正常に姉妹細胞へ分配するには、複製直後のDNA分子どおしを接着させ、その後、規則的に折りたたんでゆくという高次構造形成が必要と考えられていいる。しかしながら、このような構造形成を担う因子はまだわずかしか見出されておらず、その分子機構はほとんど不明である。本研究では、大腸菌で複製直後のDNA鎖を接着させる新規なキー因子CrfCタンパク質を見出し、その基盤となる分子機構を解明した。CrfCタンパク質は、複製直後のDNA上に「足あと」のように残る「クランプ・タンパク質」と結合する。そして、「かすがい」のような働きによって、複製直後のDNA分子同士をつなぎ留める。変異CrfCタンパク質をもつ細胞では、複製されたDNAどおしの接着と均等分配が阻害された。このようにCrfCタンパク質は、新たな分子機構により、DNA複製と共役してDNAの接着と均等分配に働く重要な因子であることがわかった。.
20. Kazutoshi Kasho, Tsutomu Katayama, DnaA-binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation, Proc. Natl. Acad. Sci. USA, 110, 946-941. [Recommended by F1000 Prime (Faculty of 1000)], 2013.01, 大腸菌染色体の複製開始を起こす活性型のATP-DnaAを制御的に不活化する新たな分子機構を解明し、DDAH (datA-dependent DnaA-ATP hydrolysis)と命名した。DDAH系では、datAと呼ばれる染色体DNA領域でATP-DnaAが集合し、DnaA-ATP加水分解を促進し、不活性なADP-DnaAを産生する。また、DDAH系は、染色体構築因子IHFがdatAに結合することにより、複製開始後に適時的に活性化される。この制御系は、細胞周期における染色体複製開始タイミングの制御と染色体コピー数の適正維持に必須である。.
21. Ozaki Shogo, Yasuhisa Hayashi, Yasunori Noguchi, Erika Miyazaki, Tsutomu Katayama, Novel functional substructures of DnaA specifically promote ATP-dependent activation of the DNA unwinding subcomplex within a replication initiation complex, J. Biol. Chem., 287(44), 37458-37471, 2012.10.
22. Ozaki, S., and Katayama, T., Highly organized DnaA-oriC complexes recruit the single-stranded DNA for replication initiation, Nucleic Acids Res., 10.1093/nar/gkr832, 40(4), 1648-1665, 2012.02.
23. Nakamura, K. and Katayama, T., Novel essential residues of Hda for interaction with DnaA in the regulatory inactivation of DnaA: Unique roles for Hda AAA+ Box VI and VII motifs, Mol. Microbiol. , 76(2): 302-317, 2010.04.
24. Keyamura, K., Abe, Y., Higashi, M., Ueda, T., and Katayama, T., DiaA dynamics are coupled with changes in initial origin complexes leading to helicase loading, J. Biol. Chem. , 284: 25038-25050, 2009.09.
25. Fujimitsu, K., Senriuchi, T., and Katayama, T., Specific genomic sequences of E. coli promote replicational initiation by directly reactivating ADP-DnaA, Genes Dev., 23, 1221-1233 [Recommended by F1000 Prime (Faculty of 1000)], 2009.05.
26. Su’etsugu, M., Nakamura, K., Keyamura, K., Kudo, Y. and Katayama, T., Hda monomerization by ADP binding promotes replicase clamp-mediated DnaA-ATP hydrolysis., J. Biol. Chem, 283(52); 36118-36131, 2008.12.
27. Ozaki, S., Kawakami,H., Nakamura, K., Fujikawa, N., Kagawa, W., Park, S.-Y., Yokoyama, S., Kurumizaka, H., and Katayama, T., A common mechanism for the ATP-DnaA-dependent formation of open complexes at the replication origin, J. Biol. Chem. , 283(13), 8351-8362, 2008.03.
28. Keyamura, K., Fujikawa, N., Ishida, T., Ozaki, S., Su'etsugu, M., Fujimitsu, K., Kagawa, W., Yokoyama, S., Kurumizaka, H., and Katayama, T., The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP-DnaA-specific initiation complexes, Genes Dev., 21, 2083-2099, 2007.10.
29. Abe, Y., Jo, T., Matsuda, Y., Matsunaga, C., Katayama, T.* and Ueda, T* (*Co-corresponding authors), Structure and function of DnaA N-terminal domains: Specific sites and mechanisms in inter-DnaA interaction and in DnaB helicase loading on oriC, J. Biol. Chem., 282(24), 17816-17827 [JBC Paper of the Week; Cited for the Journal Cover], 2007.06.
30. Kawakami, H., Ozaki, S., Suzuki, S., Nakamura, K., Senriuchi, T., Su'etsugu, M., Fujimitsu, K., and Katayama, T. , The exceptionally tight affinity of DnaA for ATP/ADP requires a unique aspartic acid residue in the AAA+ sensor 1 motif, Mol. Microbiol. , 62(5), 1310-1324, 2006.10.
31. Ozaki, S., Fujimitsu, K., Kurumizaka, H., and Katayama, T., The DnaA homolog of the hyperthermophilic eubacterium Thermotoga maritima forms an open complex with a minimal 149-bp origin region in an ATP-dependent manner, Genes Cells, 11, 425-438, 2006.04.
32. Kawakami, H., Keyamura, K., and Katayama, T., Formation of an ATP-DnaA-specific initiation complex requires DnaA arginine-285, a conserved motif in the AAA+ protein family, J. Biol. Chem., 10.1074/jbc.M502764200, 280, 29, 27420-27430, 280(29),27420-27430, 2005.07.
33. Su'etsugu, M, Shimuta, T., Ishida, T., Kawakami, H. and Katayama, T., Protein associations in DnaA-ATP hydrolysis mediated by the replicase clamp-Hda complex, J. Biol. Chem., 10.1074/jbc.M412060200, 280, 8, 6528-6536, 280(8), 6528-6536, 2005.03.
34. Shimuta, T., Nakano, K., Yamaguchi, Y., Ozaki, S., Fujimitsu, K., Matsunaga, C., Noguchi, K., Emoto, A., and Katayama, T., Novel heat-shock protein HspQ stimulates the degradation of mutant DnaA protein in Escherichia coli, Genes Cells, 10.1111/j.1365-2443.2004.00800.x, 9, 12, 1151-1166, 9, 1151-1166, 2004.11.
35. Ishida, T., Akimitsu, N., Kashioka, T., Hatano, M., Kubota, T., Ogata, Y., Sekimizu, K., and Katayama, T, DiaA, a novel DnaA-binding protein, ensures the initiation timing of Escherichia coli chromosome replication, J. Biol. Chem., 10.1074/jbc.M402762200, 279, 44, 45546-45555, 279, 45546-45555, 2004.10.
36. Su'etsugu, M., Takata, M., Kubota, T., Matsuda, Y. and Katayama, T, Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: Interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex, Genes Cells, 10.1111/j.1365-2443.2004.00741.x, 9, 6, 509-522, 9 (6), 509-522, 2004.06.
37. Su'etsugu, M., Emoto, A., Fujimitsu, K.,Keyamura, K., and Katayama, T., Transcriptional control for initiation of chromosomal replication in Escherichia coli: fluctuation of the level of origin transcription ensures timely initiation, Genes Cells, 10.1046/j.1365-2443.2003.00671.x, 8, 9, 731-745, 8(9), 731-745, 2003.09.
38. Fujikawa, N., Kurumizaka, H., Nureki, O., Terada, T., Shirouzu, M., Katayama, T., and Yokoyama, S., Structural basis of replication origin recognition by the DnaA protein., Nucleic Acids Res., 10.1093/nar/gkg309, 31, 8, 2077-2086, 31(8), 2077-2086, 2003.04.
39. Nishida, S., Fujimitsu, K., Sekimizu, K., Ohmura, T., Ueda, T., and Katayama, T., A nucleotide switch in E. coli DnaA protein initiates chromosomal replication: Evidence from a mutant DnaA protein defective in regulatory ATP hydrolysis in vitro and in vivo., J. Biol. Chem., 10.1074/jbc.M108303200, 277, 17, 14986-14995, 277(17), 14986-14995, 2002.04.
40. Kato, J. and Katayama, T., Hda, a novel dnaA-related protein, regulates the replication cycle in Escherichia coli., EMBO J., 10.1093/emboj/20.15.4253, 20, 15, 4253-4262, 20(15), 4253-4262. [Recommended by F1000 Prime (Faculty of 1000)], 2001.08.
41. Su'etsugu, M., Kawakami, H., Kurokawa, K., Kubota, T., Takata, M., and Katayama, T., DNA replication-coupled inactivation of DnaA protein in vitro: a role for DnaA arginine-334 of the AAA+ Box VIII motif in ATP hydrolysis., Mol. Microbiol., 10.1046/j.1365-2958.2001.02378.x, 40, 2, 376-386, 40(2), 376-386, 2001.04.
42. Kurokawa, K., Nishida, S., Emoto, A., Sekimizu, K., and Katayama, T., Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli., EMBO J., 10.1093/emboj/18.23.6642, 18, 23, 6642-6652, 18(23), 6642-6652, 1999.12.
43. Katayama, T. (Corresponding author), Kubota, T., Kurokawa, K., Crooke, E., and Sekimizu, K., The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase., Cell, 10.1016/S0092-8674(00)81222-2, 94, 1, 61-71, 94 (1), 61-71, 1998.06.
44. Katayama, T., Takata, M., and Sekimizu, K., CedA is a novel Escherichia coli protein that activates the cell division inhibited by chromosomal DNA overreplication., Mol. Microbiol., 10.1046/j.1365-2958.1997.5941967.x, 26, 4, 687-697, 26 (4), 687-697, 1997.10.
45. Katayama, T., Akimitsu, N., Miki, T., and Sekimizu, K., Overinitiation of chromosome replication in the Escherichia coli dnaAcos mutant depends on activation of oriC function by the dam gene product., Mol. Microbiol., 10.1046/j.1365-2958.1997.5001872.x, 25, 4, 661-670, 25 (4), 661-670., 1997.08.
46. Katayama, T. (Corresponding author), and Crooke, E., DnaA protein is sensitive to a soluble factor and is specifically inactivated for initiation of in vitro replication of the Escherichia coli minichromosome., J. Biol. Chem., 270 (16), 9265-9271, 1995.04.
47. Katayama, T., The mutant DnaAcos protein which overinitiates replication of the Escherichia coli chromosome is inert to negative regulation for initiation., J. Biol. Chem., 269 (35), 22075-22079, 1994.09.
48. Katayama, T., and Kornberg, A, Hyperactive initiation of chromosomal replication in vivo and in vitro by a mutant DnaA protein, DnaAcos, of Escherichia coli., J. Biol. Chem., 269 (17), 12698-12703, 1994.04.
Presentations
1. 尾崎 省吾, 盧 楚元, 吉田 竜星, 若杉 泰敬, 片山 勉, A common insight into mechanisms of duplex unwinding at the origin DNA during eubacterial chromosome replication, 第96回 日本生化学会大会 シンポジウム「Novel Perspectives on Dynamic Mechanisms in Initiation Complexes and Initiation Regulation for Chromosome DNA Replication」(Organizer: Tsutomu Katayama), 2023.10.
2. Tsuomu Katayama, Ryusei Yoshida, Chuyuan Lu, Kazuma Korogi, Takumi Tsuruda, Kazutoshi Kasho, Shogo Ozaki, Diversity and conservation in the initiation mechanisms of the Escherichia coli replication origin oriC, 第45回日本分子生物学会年会 Workshop: Adaptation to changing environments by altering modes of DNA replication (organized by Hisao Masai and Tsutomu Katayama), 2022.11.
3. Tsutomu Katayama, Dynamic nucleoprotein complexes sustaining regulation for the chromosomal replication initiation in Escherichia coli, NIG International Symposium 2022: Chromosome Replication in the New Era - Old and New Questions in Life Science, 2022.11.
4. Tsutomu Katayama, Dynamic mechanisms constituting regulation for the replication initiator DnaA protein in Escherichia coli, Bacterial Physiology Meeting in Copenhagen 'Major Ideas in Quantitative Microbial Physiology: Past, Present and Future', 2022.06.
5. Tsutomu Katayama, Kenya Miyoshi, Ryusei Yoshida, Chuyuan Lu, Lanyang Li, Kazuma Korogi, Yuka Tatsumoto, Kosuke Ito, Hironori Kawakami, Kazutoshi Kasho, Shogo Ozaki, Dynamic nucleoprotein complexes and DNA structural changes supporting regulated replication initiation of the Escherichia coli chromosome, 第44回日本分子生物学会年会  シンポジウム「The common mechanism for regulation of genome maintenance by DNA structural dynamics」 Organizers: Kazutoshi Kasho, Tsutomu Katayama, 2021.12.
6. Tsutomu Katayama, Regulatory systems and mechanisms for the replication initiator DnaA in Escherichia coli, 第42回日本分子生物学会年会 Workshop "New Frontiers in Studies of DNA Replication" (organized by Masai, H. and Araki, H.), 2019.12, 第42回日本分子生物学会年会 ワークショップ "New Frontiers in Studies of DNA Replication"  における研究発表。複製開始タンパク質DnaAの制御システムを明らかにした.
7. Tsutomu Katayama, Kenya Miyoshi, Chihiro Hayashi, Ryusei Yoshida, Ryo Sugiyama, Ryuji Sakai, Yukari Sakiyama, Kazutoshi Kasho, Hironori Kawakami, Shogo Ozaki, Mariko Nagata, Dynamic mechanisms of higher-order complexes for replication initiation and regulation of the E. coli genome, 第92回日本生化学会大会 シンポジウム「新しいゲノムの姿とその維持機構のフレキシビリティ」, 2019.09, 第92回日本生化学会大会 の英語シンポジウム「新しいゲノムの姿とその維持機構のフレキシビリティ」 での研究発表。複製開始複合体の分子ダイナミクスを明らかにした.
8. Tsutomu Katayama, Mechanisms and regulations in the initiator DnaA and the initiation complex, OKAZAKI Fragment Memorial Symposium: Celebrating the 50th anniversary of the discontinuous DNA replication model, 2018.12.
9. Tsutomu Katayama, Yukari Sakiyama, Yasunori Noguchi, Kazutoshi Kasho, Hironori Kawakami, Shogo Ozaki, Central dynamics of DnaA-oriC complexes in DNA unwinding for initiation of chromosomal replication in E. coli: ssDUE-recruitment mechanism, The 11th 3R(Replication, Repair, Recombination)+3C(Chromosome, Chromatin, Cell cycle) Sympojium, 2018.11.
10. Tsutomu Katayama, Yukari Sakiyama, Yasunori Noguchi, Hironori Kawakami, Shogo Ozaki, Central dynamics of DnaA oligomers in the initiation complex for chromosomal replication in Escherichia coli, The EMBO Workshop “DNA Replication, Chromosome Segregation and Fate Decisions", 2018.09.
11. Hironori Kawakami, Takeaki Chichibu, Shota Kanamoto, Eiji Ohashi, Toshiki Tsurimoto, Tsutomu Katayama, ssDNA-related multifaceted safeguards in ORC dynamics govern specific replication origin selection, EMBO | EMBL Symposia “DNA Replication: From Basic Biology to Disease", 2018.05.
12. 片山 勉, 﨑山友香里, 野口泰徳, 川上広宣, Structure, Mechanism and Regulation of Escherichia coli Replication Initiation Complexes in DNA Unwinding, The 10th 3R (Replication, Recombination and Repair) Symposium, 2016.11, 大腸菌の複製開始複合体の分子機構.
13. Tsutomu Katayama, Ozaki Shogo, Kenji Keyamura, Yasunori Noguchi, Saki Taniguchi, Komomo Nagata, Yukari Sakiyama, Hironori Kawakami, Kazutoshi Kasho, The E. coli dynamin-like protein CrfC binds the replicase clamp and sustains colocalization of sister replication forks, The 9th 3R Symposium , 2014.11, 大腸菌の染色体の接着と均等分配に必須となる新規因子を見出し、その分子機構を解明した。主なる内容はCell誌の姉妹誌でオンラインジャーナルであるCell Reports誌で論文発表した(Cell Reports 4(5):985-995, 2013)。.
14. 片山 勉, 赤間勇介, 野口泰徳, 西村昌洋, 宮崎恵里加, 尾﨑 省吾, Analysis on regulation and mechanism in DnaB helicase interaction with the initiation complex of the Escherichia coli chromosome replication, 第87回日本生化学会シンポジウム「New development in exploring structures and functions of DNA helicases sustaining genome integrity」(オーガナイザー;片山 勉、 正井久雄), 2014.10.
15. 片山 勉, 加生 和寿, 野口泰徳, 崎山友香里, 的場俊大, 田中宏幸, 谷口夢顯, 尾﨑 省吾, 藤光 和之, 川上 広宣, DnaA assemblies on the replication origin oriC, DARS and the datA locus for the replication initiation and regulation of the initiation in E. coli, 第86回日本生化学会大会International Session: Assembly and architecture of protein complexes regulating inheritance and stable maintenance of genome (organizers: Hosao Masai, Tsutomu Katayama) , 2013.09.
16. Yasunori Noguchi, Ozaki Shogo, Erika Miyazaki, Tsutomu Katayama, Specific inter-DnaA interaction for construction of functionally-distinct DnaA sub-complexes on the E. coli replication origin, 2013 Keystone Symposia X5/X6 DNA Replication and Recombination, 2013.03.
17. Kazutoshi Kasho, Tsutomu Katayama, A novel mechanism of a specific DnaA-binding locus datA for regulation of the replication initiator DnaA, 2013 Keystone Symposia X5/X6 DNA Replication and Recombination, 2013.03.
18. Tsutomu Katayama, A novel model for overall structure of a replication initiation complex and duplex unwinding mechanism in E. coli, The 8th 3R Symposium together with National Institute of Genetics 2012 International Symposium: Molecular mechanism and pathology of the 3R , 2012.11.
19. Ozaki Shogo, Yasunori Noguchi, Erika Miyazaki, Tsutomu Katayama, Reconstitution and molecular anatomy of oriC initiation complexes in E. coli chromosomal replication: ssDNA recruitment and roles for IHF and distinct DnaA oligomers formed on oriC., EMBO Workshop: Reconstructing the essential bacterial cell cycle machinery , 2012.09.
20. DNA Replication-Dependent Feedback Against DnaA Initiator Activity in E. coli.
21. Regulatory inactivation of the E. coli DnaA initiator: Molecular mechanisms in interactions of DnaA, Hda, and the replicase sliding clamp.
22. Regulatory Inactivation of The Initiator Protein in E. coli: Roles of The AAA+ Motifs of DnaA and Hda Proteins.
Awards
  • Functional mechanism and regulation for the E. coli chromosomal replication initiator DnaA