九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
後藤 浩二(ごとう こうじ) データ更新日:2018.05.17

教授 /  工学研究院 海洋システム工学部門 船舶海洋構造工学


主な研究テーマ
亀裂成長履歴推定に基づく疲労強度評価手法に関する研究
キーワード:疲労,き裂成長シミュレーション,き裂発生モデル,変動荷重
1995.04.
レーザ・アークハイブリッド溶接技術の船体建造工程への適用に向けた研究
キーワード:レーザ・アークハイブリッド溶接,船体建造
2012.04.
洋上風車係留鎖の摩耗挙動評価
キーワード:洋上風車,係留鎖,摩耗
2015.04.
種々の構造用金属材料に対する疲労強度評価
キーワード:疲労強度,アルミニウム合金,チタン合金,ステンレス鋼,難燃性マグネシウム合金
2006.04.
動的荷重下における鋼材・溶接鋼構造物の強度評価に関する研究
キーワード:動的/衝撃荷重,不安定(脆性)破壊,破壊靭性値,応力~ひずみ関係,ひずみ速度,温度,切欠材とき裂材
1990.04.
大型溶接構造物の実用的溶接変形・残留応力推定手法に関する研究
キーワード:溶接変形・残留応力,変形発生源,FEM
1997.04.
高分子材料(PE:ポリエチレン)製ガス導管の強度評価手法
キーワード:ポリエチレン,ガス導管,ひずみ速度,地震動,融着部
2006.04~2013.03.
亀裂結合力モデルの拡張に関する研究
キーワード:き裂結合力モデル,き裂開口変位
2005.06.
従事しているプロジェクト研究
レーザー溶接技術の船舶建造工程への適用に関する研究委員会
2014.04~2018.03, 代表者:後藤浩二, 九州大学
船舶の建造品質の維持・向上を図りつつ,生産性を更に高めていく取り組みとして,レーザー・アークハイブリッド溶接の船舶建造への適用に関する研究を行う.
.
軽金属材料の疲労寿命予測方法に関するJIS開発
2014.04~2017.03, 代表者:中田一博, 大阪大学接合科学研究所, (一社)軽金属溶接協会
鉄道車両,自動車,航空機等の輸送機器に多用されるアルミニウム合金並びに今後適用が期待される難燃性マグネシウム合金について,母材と接合部及びアルミニウム合金と難燃性マグネシウム合金の異材接合部について高精度な疲労試験方法を開発・標準化(高機能JIS化)に取り組む.
後藤は本委員会の下に設置される「疲労試験分科会」の主査を担当する..
レーザー溶接技術の船舶建造工程への適用に関する調査研究委員会
2012.04~2014.03, 代表者:片山聖二, 大阪大学 接合科学技術研究所
船舶の建造品質の維持・向上を図りつつ,生産性を更に高めていく取り組みとして,レーザー・アークハイブリッド溶接の船舶建造への適用に関する研究を行う.
後藤は委員会に設置される継手評価・検査WGの主査を担当する..
疲労強度に及ぼす板厚影響に関する研究開発委員会
2011.09~2013.03, 代表者:角洋一, 横浜国立大学, 一般財団法人 日本海事協会
疲労強度に及ぼす板厚影響に関し,板厚50mmを超える極厚鋼板溶接継手に対して従来知見の適用妥当性を調査し,必要に応じて適切な板厚影響評価方法を検討する..
大型コンテナ船極厚鋼板対策研究委員会
2009.04~2011.03, 代表者:角洋一(委員長), 横浜国立大学, 日本船舶技術研究協会(日本)
大型コンテナ船のハッチコーミング部に採用が増加している極厚板(溶接部)の耐不安定破壊性能に関する検証を行う。
委員及び委員会幹事として参加する。.
超大型コンテナ船構造安全対策検討
2007.04~2009.03, 代表者:板垣浩(委員長),豊貞雅宏(WG2主査), 日本船舶技術研究協会(日本)
近年,大型コンテナ船のハッチコーミング部に採用が増加している極厚板(溶接部)の耐不安定破壊性能に関する検証を行う。委員会は3つのWGより構成され,WG2委員として活動した。.
極厚板大入熱溶接部強度検討
2005.12~2007.03, 代表者:豊貞雅宏, 九州大学, 日本船舶海洋工学会(日本)
近年,大型コンテナ船のハッチコーミング部に採用が増加している極厚板(溶接部)の耐不安定破壊性能に関する検証を行う.
研究業績
主要著書
主要原著論文
1. Koji GOTOH, Koji MURAKAMI, Masataka NAKAGAWA, Tomoaki UTSUNOMIYA, A Study on the Wear Performance of the Mooring Chain for Floating Wind Turbine, Proceedings of 36th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2017)., OMAE2017-62195, 2017.07, To produce offshore wind power generation plants, deep-sea floating wind turbine facilities are required. Commercial installation of floating wind turbine facilities requires a reduction of the mooring cost. Mooring chain breaks due to progressive wear will lead to enormous damages. Therefore, a quantitative wear evaluation method for mooring chains needs to be established. In this study, an experimental setup was constructed to reproduce the wearing phenomenon in mooring chains due to the motion of the floating body induced by waves, and its usefulness was confirmed. The result of the wear test conducted in this study suggests that the tensile force between links affects the degree of wear. Additionally, numerical simulations were performed using a finite element model with measured wear characteristics of the link material to reproduce the phenomenon of wear between links and confirmed that the wear phenomenon could be represented by numerical simulation. .
2. 後藤 浩二, 福井 努, 森山 厚夫, 津村 秀一, 沢登 寛, Overview of a joint industrial project for introducing laser-arc hybrid welding to the construction of general merchant ships in Japan., Proceedings of 13th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS 2016), 2016.09, The introduction and application of advanced welding methods and information technologies are important to improving the efficiency of hull construction processes and to reducing production costs. Laser-arc hybrid welding technology, which has the advantages of laser and normal arc welding, has good performance and is expected to improve productivity. The Japan Ship Technology Research Association has organized a joint industry project in collaboration with universities, classification societies and shipyards to introduce this technology to the construction of general merchant ships. This paper gives an overview of the joint research project and introduces guide-lines on laser-arc hybrid welding published by ClassNK..
3. 森影 康, 伊木 聡, 田川 哲哉, 大井 健二, 村上 幸治, 後藤 浩二, Effect of compressive residual stress on fatigue crack propagation., Proceedings of 13th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS 2016), 2016.09, Fatigue failures have sometimes taken place in weld joints due to stress concentration and tensile residual stress at the weld toe. Therefore some treatments for delaying fatigue crack initiation and propagation are necessary for the enhancement of the fatigue life of welded steel structures. The hammer peening process is well known as one of methods to improve the fatigue life of weld joints by generating the compressive residual stress field near the weld toe where recognized as the fatigue crack initiation site. With respect to the fatigue life improvement of the large welded structure which applied the compressive residual stress field near the weld toe, not only improvement of fatigue crack initiation life but also that of fatigue crack propagation life must be discussed. However there have been few research work which deal with the fatigue crack estimation in the compressive residual stress field so far In this study, mechanism of fatigue crack propagation in the compressive residual stress field was clarified by experimental observation of crack propagation from a surface crack after hammer peening. Morphology of a propagating surface crack in plate and gusset weld joint specimens were measured by the beach mark method. As a result, it was clarified that morphology of surface crack propagated in the compressive residual stress field was different from that in neutral stress filed. And this phenomenon was clearly observed especially under the low stress intensity factor condition. .
4. Koji GOTOH, Shuichi TSUMURA, Fatigue Strength and Angular Distortion of the Full-Penetration Tee Type Joint Fabricated by One-Side Single-Pass Laser-Arc Hybrid Welding, 35th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2016), OMAE2016-54173, 2016.06.
5. 山下 紘平, 後藤 浩二, 材料の加工硬化特性を考慮した亀裂結合力モデルに基づく疲労亀裂の開閉口モデルと亀裂伝播解析, 日本船舶海洋工学会論文集, 21, 31-42, 2015.06, This paper presents a numerical simulation for fatigue crack propagation based on improved strip yield model, which enables the strain hardening effect of materials to consider.
One-dimensional bar elements, which consist of the strain hardening materials, are plugged up the gap corresponding to the fictitious crack opening displacement in the plastic zone to describe the role of crack wake generated over fatigue crack surfaces.
Validity of this numerical model under monotonic loading, unloading and reloading conditions was verified by comparison of the COD profile and plastic zones size with elastic-plastic FE analysis.
Proposed model was implemented into the numerical simulation of fatigue crack propagation considering the crack opening / closing. Proposed simulation of fatigue crack propagation, which enables the strain hardening effect of materials, was validated by comparing fatigue crack propagation histories obtained by the numerical simulations with measured ones..
6. Koji GOTOH, Practical Evaluation of the Strain Rate and Temperature Effects on Fracture Toughness of Steels, 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015), OMAE2015-41982, 2015.06, Overview of the quantitative evaluation procedure of strain rate and temperature effects on fracture toughness proposed by the authors is introduced.
Important concept of former researches is that the fracture toughness is a function of the strain rate-temperature parameter (R), which enables to unify both strain rate and temperature effects for the mechanical properties of materials.
Using this knowledge, the equivalent temperature shift values at arbitrary strain rate from static loading condition are proposed..
7. Yosuke ANAI, Toshio NIWA, Koji GOTOH, Practical Formula of the Shape Evolution of a Surface Crack Under Fatigue Loading, 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015), OMAE2015-41978, 2015.06, Fatigue life estimation for planar cracks, e.g. part-through surface cracks or embedded cracks is very important because most of fatigue cracks found in welded built-up structures show planar crack morphologies.
Although authors had proposed the estimation procedure of crack shape evolution for a planar crack based on the fracture mechanics approach, this method cannot apply if the values of stress intensity factor at the vertices of the surface crack approximated as an ellipse cannot calculated.
Then, development of the shape evolution procedure of a planer crack under the stress field with arbitrary gradient, because fatigue cracks in welded built-up structures exist near the stress
concentrated region.
A Practical estimation formula the shape evolution of a surface crack under stress field with the gradient is proposed in this study.
This formula is established by considering the stress field under no crack condition and some former proposed formulae under uniform and pure bending stress fields.
The validity of the proposed formula are confirmed by comparing some measured surface crack shape evolutions under some stress gradient conditions..
8. Koji GOTOH, Toshio NIWA, Yosuke ANAI, Numerical simulation of fatigue crack propagation under biaxial tensile loadings with phase differences, Marine Structures, http://dx.doi.org/10.1016/j.marstruc.2015.03.003, 42, 53-70, 2015.03, Fatigue crack propagation under the biaxial tensile loading, which loading directions are normal and parallel to the initial crack position, is highlighted in this study.
Most of in-service structures and vessels are subjected to many types of loading.
Generally, these loadings have different axial components with different phases.
However, the structural integrities of structures and vessels are evaluated according to design codes based on theoretical and experimental investigations under a uniaxial loading condition.
Most of these codes are based on the S-N curves approach.
An approach that does not use S-N curves has been favored by researchers, with the fracture mechanics approach preferred for evaluating the fatigue life of structures.
An advanced fracture mechanics approach was developed based on the Re-tensile Plastic zone Generating (RPG) stress criterion for fatigue crack propagation.
In this study, fatigue crack propagation tests under biaxial loading with six different phase and loading conditions are performed and the effect of the phase difference under biaxial loading is evaluated.
A numerical simulation method of fatigue crack propagation based on the RPG stress criterion under different biaxial loading phase conditions is presented and compared to measured data..
9. 後藤 浩二, 津村 秀一, 内野 一成, 造船分野におけるレーザ・アークハイブリッド溶接技術導入に向けた共同研究について, 第82回レーザ加工学会講演論文集, 83-89, 2015.01, 船舶建造工程の生産性を高めるために,日本財団の助成を受け2012~2013年度に造船業界共同研究プロジェクトとして実施された,我が国造船業で主に建造される船種(主要部板厚15~20mm程度)への適用を可能とするレーザ・アークハイブリッド溶接技術に関する調査研究の概要のうち,継手強度の評価及び実証試験(溶接長5m)の概要を紹介する.

Overview of a joint industry project concerning the application of laser-arc hybrid welding to shipbuilding, which was carried out from 2012 to 2013 and supported by The Nippon Foundation, is described.
Mainly, the evaluation of structural integrities of welded joints which were made of steel plates with a thickness of about 15-20mm and fabricated by hybrid welding are reported in this paper.
Plate thicknesses adopted in this JIP corresponds to the thickness of the main structures of the ship that are mainly built in Japanese shipyard.
It is expected that the advantage of laser-arc hybrid welding comparing conventional arc welding applied by current shipyards in Japan enables to improve the hull construction accuracy..
10. Kazuki MATSUDA, Koji GOTOH, Numerical simulation of fatigue crack propagation under superimposed stress histories containing different frequency components with several mean stress conditions, Marine Structures, http://dx.doi.org/10.1016/j.marstruc.2014.12.005, 41, 77-95, 2015.01, Fatigue crack propagation behavior under superimposed stress histories containing different frequency components with several mean stress conditions was investigated.
Numerical simulation of fatigue crack propagation based on an advanced fracture mechanics approach using the RPG (Re-tensile Plastic zone Generating) stress criterion for
fatigue crack propagation was improved to extract the effective part from the applied stress history for fatigue crack propagation.
The parameter, which is based on the plastic hysteresis energy consumed in the vicinity of a crack tip, was applied and implemented into the numerical simulation code of fatigue crack propagation.
Fatigue crack propagation tests under various superimposed stress conditions with several mean stress conditions were performed and compared with the fatigue crack propagation histories obtained from the improved numerical simulations.
These comparisons show the validity of the proposed procedure for extracting the effective stress history from the superimposed stress histories with different frequency components and mean stresses.
Additionally, practical fatigue strength evaluations based on the linear cumulative fatigue damage parameter were conducted to investigate the tendency of the fatigue damage value under these stress conditions..
11. 松田 和貴, 村上 幸治, 後藤 浩二, 平均応力が変動する重畳応力条件下における疲労亀裂伝播挙動解析, 日本船舶海洋工学論文集, 20, 131-137, 2014.12, Fatigue crack propagation behavior under superimposed loading histories with several mean stress conditions is highlighted.
Numerical simulation of fatigue crack propagation based on an advanced fracture mechanics approach using the RPG (Re-tensile Plastic zone Generating) stress criterion for fatigue crack propagation is improved to enable the extraction of the effective loading history for fatigue crack propagation.
The parameter, which is based on the plastic hysteresis consuming in the vicinity of a crack tip, is applied to extract the effective loading for fatigue crack propagation and implemented into the numerical simulation code of fatigue crack propagation.
Fatigue crack propagation tests under various superimposed loading conditions, which contain several constants and variable mean stress, are performed and comparison of fatigue crack propagation histories obtained from the improved numerical simulations with the measurements is performed.
These comparisons show the validity of the proposed procedure for extracting the effective loading history from the superimposed loading histories with different frequencies. Subsequently, practical fatigue strength evaluation based on the linear cumulative fatigue damage parameter were conducted to investigate the tendency of fatigue damage
value affected by mean stresses..
12. Koji GOTOH, Masao TAKUNO, Koichi OKADA, Sadaharu KUSUBA, Numerical Simulation of Fatigue Crack Growth of a Welded Structural Component under Block Program Fatigue Test, 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2014), OMAE2014-23413, 2014.06, Numerical simulations of fatigue crack growth of welded structural component were performed under fatigue testing conditions with block loading and constant stress range and the fatigue crack growth profiles were measured under the same loading conditions. In the experiments, fatigue cracks developed at the boxing fillet welded toe and grew toward the top flange plates of the specimens.
An advanced fracture mechanics approach based on the improved effective stress intensity factor range, which is the RPG (Re-tensile Plastic zone Generating) stress criterion, was applied to perform the numerical simulations of fatigue crack growth in the modeled components. A comparison of estimated fatigue crack growth profiles with measured ones verified that a reasonable estimation of fatigue crack growth can be estimated by applying the proposed numerical method..
13. Koji GOTOH, Toshio NIWA, Yosuke ANAI, Fatigue crack growth behaviour of an out-of-plane gusset welded joints under biaxial loadings with different phases, European Structural Integrity Society, 3, 1536-1541, 2014.06, [URL], Most of in-service welded built-up structures, which contain many welded joints as fatigue crack initiation sites, are subjected to many types of loading and these loadings have different axial components with different phases.
However, the structural integrities are evaluated according to design codes based on theoretical and experimental investigations under a uniaxial loading condition.
Most of these codes are based on the S-N curves approach.
On the other hand, authors proposed the numerical simulation method of fatigue crack propagation histories of a cracked plate subjected biaxial loadings with phase difference of each loading component.
Fracture mechanics approach is applied to establish our method. In this study, fatigue crack growth behaviour of an out-of-plane gusset welded joint under biaxial loading with two different phase conditions were investigated.
The phase difference effect for fatigue crack shape evolution under biaxial loading was confirmed by measured ones.
Besides, comparisons of measured crack evolution with the numerical simulation results were performed to validate of our fatigue crack growth simulation for welded joints..
14. Kazuki MATSUDA, Koji GOTOH, Numerical Simulation of Fatigue Crack Propagation under Simulated Whipping Loading Arising in Hull Structures, 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013), OMAE2013-10985, 2013.06, Fatigue crack propagation behavior under simulated whipping loadings which contain two different frequency components is highlighted. Numerical simulation of fatigue crack propagation based on an advanced fracture mechanics approach using the RPG (Re-tensile Plastic zone Generating) stress criterion for fatigue crack propagation is improved to enable the extraction of the effective loading history. The critical value of the plastic hysteresis for the stress versus strain relationship occurring in the vicinity of a crack tip is defined as the control parameter for extracting the effective loading history. Comparison of fatigue crack propagation curves obtained from the improved numerical simulations with the measurements which were conducted by Sumi (2010) is performed. These comparisons show the validity of the proposed procedure for extracting the effective loading history from the superposed loading history containing different frequencies. In addition, imperfection of the S-N curves approach, which corresponds to the combination of the linear cumulative damage law and the loading cycle count by the rain flow method, is conducted. .
15. Koji GOTOH, Toshio NIWA, Yosuke ANAI, Tetsuya OMORI, Yoshihisa TANAKA, Koji MURAKAMI, Fatigue Crack Propagation under Biaxial Tensile Loading, - Effect of the Phase Difference on Biaxial Loading -, 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013), OMAE2013-10980, 2013.06, Fatigue crack propagation under biaxial tensile loading is highlighted in this study. Ships and offshore structures are subjected to many types of loading, e.g. wave induced forces, gravity, and inertia forces. Generally, these loadings have different axial components with different phases. However, the structural integrities of structures and vessels are evaluated according to design codes based on theoretical and experimental investigations under a uniaxial loading condition. Most of these codes are based on the S-N curves approach. An approach that does not use S-N curves has been favored by researchers, with the fracture mechanics approach preferred for evaluating the fatigue life of structures. An advanced fracture mechanics approach was developed based on the Re-tensile Plastic zone Generating (RPG) stress criterion for fatigue crack propagation. In this study, fatigue crack propagation tests under biaxial loading with four different phase conditions are performed and the effect of the phase difference under biaxial loading is evaluated. A numerical simulation method of fatigue crack propagation based on the RPG stress criterion under different biaxial loading phase conditions is presented and compared to measured data. .
16. Koji GOTOH, Kazuki MATSUDA and O Kitamura, NUMERICAL SIMULATION OF FATIGUE CRACK PROPAGATION UNDER SUPERPOSED LOADING HISTORIES WITH TWO DIFFERENT FREQUENCIES, Proceedings of Hydroelasticity in Marine Technology 2012, 287-297, 2012.09, Fatigue crack propagation behaviour under superposed loading histories which contain two different frequency components is highlighted.
Numerical simulation of fatigue crack propagation based on an advanced fracture mechanics approach using the RPG (Re-tensile Plastic zone Generating) load criterion for fatigue crack propagation is improved to enable the extraction of the effective loading history.
The critical value of the plastic hysteresis for the stress versus strain relationship occurring in the vicinity of a crack tip is defined as the control parameter for extracting the effective loading history.
Comparison of fatigue crack propagation curves, obtained from the improved numerical simulations, with the measurements under the superposed loading
histories, is performed.
These comparisons show the validity of the proposed procedure for extracting the effective loading history from the superposed loading history containing different frequencies..
17. Koji GOTOH, Keisuke HARADA, Improvement of Fatigue Crack Growth Simulation Based on the Strip Yield Model Considering the Strain Hardening Effect of Materials, 31st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2012), OMAE2012-83664, 2012.07, This paper presents an improved numerical simulation procedure for fatigue crack growth based on the strip yield model with a weight function.
In the previous numerical model, one-dimensional bar elements plugged up the chink corresponding to the virtual crack opening displacement in the plastic zone to describe the crack wake over fatigue crack surfaces.
However, this numerical simulation method gives poor growth estimations under large variable loading histories, e.g. spike overloading.
It is possible that insufficient consideration of the strain hardening effect of materials leads to excess crack closure.
The authors develop the numerical simulation model of fatigue crack growth by considering the strain hardening effect of materials using the modified strip yield model.
Numerical simulations of fatigue crack growth under many types of loading are performed to investigate the validity of our new proposed model.
Comparison of proposed simulation results with previous results and with experimental measurements confirms the superiority of the proposed method..
18. 原田圭輔,後藤浩二, 材料の加工硬化特性を考慮したき裂結合力モデル., 日本船舶海洋工学会論文集, 14, 39-46, 2011.12.
19. Koji GOTOH, Koji MURAKAMI and Yasuo NODA, Fatigue crack growht behaviour of A5083 series aluminium alloys and their welded joints, Journal of Marine Science And Technology, 16, 3, 343-353, 2011.09.
20. Koji GOTOH, Keisuke HARADA and Yosuke ANAI, Estimation of the Shape Evolution and the Growth History of an Embedded Crack by Fatigue Loading, 30th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2011), OMAE2011-49457, 2011.06.
21. Yoich Sumi, Hiroshi Yajima, Masahiro Toyosada, Takao Yoshikawa, Shuji Aihara, Toshiyuki Matsumoto, Kazuhiro Hirota, Hideyuki Hirasawa, Masanobu Toyoda and Koji Gotoh, Overview of Japanese Joint Research Project on Safety-Related Issue of Extremely Thick Steel Plate Applied to Large Container Ships, Proceedings of 11th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS 2010), Vol.2, 980-989, 2010.09.
22. Koji GOTOH and Keisuke HARADA, Numerical Simulation of Fatigue Crack Growth Based on Strip Yield Model Considering Work Hardening of Materials, 29th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2010), OMAE2009-20726, 2010.06.
23. Keisuke HARADA, Hirokazu TAKAHASHI, Koji GOTOH and Masahiro TOYOSADA, Estimation of Shape Evolution and Growth History of a Fatigue Crack Emanating from an Embedded Elliptical Defect, Proceedings of The 23rd Asian-Pacific Technical Exchange and Advisory Meeting on Marine Sturctures (TEAM 2009), pp.8-12, 2009.12.
24. Koji GOTOH and Yukinobu NAGATA, Improvement of Slice Synthesis Methodology to Estimate Stress Intensity Factor of an Embedded Crack in Finite Body, Proceedings of 12th International Conference on Fracture (ICF 12), ICF12 T02.011, 2009.07.
25. Koji GOTOH and Keisuke HARADA, Numerical Study of Enhancement of Fatigue Crack Propagation Life by Grain Refinement, Proceedings of The Nineteenth International Offshore and Polar Engineering Conference (ISOPE 2009), 4, 435-439, The Seventh (2009) ISOPE High-Performance Materials Symposium, 2009.06.
26. 永田幸伸,後藤浩二, Slice Synthesis Methodology を用いた埋没き裂の応力拡大係数及び弾性き裂開口変位算定手法について, 日本船舶海洋工学会論文集, 9, 191-199, 2009.06, [URL].
27. 永田幸伸,後藤浩二, Slice Synthesis Methodology とき裂結合力モデルを用いた埋没き裂の弾塑性き裂開口変位推定手法, 日本船舶海洋工学会論文集, 9, 201-209, 2009.06, [URL].
28. Koji GOTOH and Yukinobu NAGATA, Applicability Evaluation of the Weight Function Based Strip Yield Model for an Embedded Crack Problem, 28th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2009), OMAE2009-79562, 2009.06.
29. Yukinobu NAGATA, Koji GOTOH and Masahiro TOYOSADA, Numerical Simulations of Fatigue Crack Initiation and Propagation Based on Re-tensile Plastic Zone Generating (RPG) Load Criterion for In-plane Gusset Welded Joints, Journal of Marine Science And Technology, Vol.14,No.1,pp.104-114, 2009.02.
30. Koji GOTOH and Yukinobu NAGATA, Stress Intensity Factors for Three Dimensional Cracks by Applying Slice Synthesis Methodology, The Proceedings of The Eighteenth (2008) International Offshore and Polar Engineering Conference, Volume 4 (The Sixth (2008) ISOPE High-Performance Materials Symposium), pp.236-240, 2008.07.
31. Koji GOTOH, Yukinobu NAGATA and Masahiro TOYOSADA, Fatigue life estimation for a long through thickness cracks in large-scale specimen in imitation of hull skin plate, Proceedings of the Seventeenth (2007) International Offshore and Polar Engineering Conference, Vol.4, pp.3343-3347, 2007.07.
32. Koji GOTOH, Yukinobu NAGATA and Masahiro TOYOSADA, A Simple Estimation Method of the Stress Distribution Normal to Cross Section at Weld Toe in Non-Load Carrying Welded Joints, 25th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2006), OMAE2006-92094, 2006.06.
33. Masahiro Toyosada, Koji Gotoh, Keitaro Konuma and Akira Sueda, A Comparative Study of Computational Models for Fatigue Crack Propagation, Proceedings of International Conference on Computational and Experimental Engineering and Sciences, pp.1386-1391, 2005.12.
34. 永田幸伸,末田明,後藤浩二,豊貞雅宏, 面内ガセット継手の疲労き裂発生・成長シミュレーション, 日本船舶海洋工学会論文集, 第2号,pp.361-367, 2005.12.
35. Masahiro TOYOSADA and Koji GOTOH, Physical Meaning of the Fictitious Crack Opening Displaecement in Dugdale Model, Proceedings of 10th International Conference on Fracture, ICF11 4620, 2005.03.
36. Masahiro TOYOSADA and Koji GOTOH, The Significance of Plastic Zone Growth under Cyclic Loading and Crack Opening / Closing Model in Fatigue Crack Propagation, Materials Science Forum, 482, 95-102, Vol.482, pp.95-102, 2005.03.
37. 永田幸伸,豊貞雅宏,後藤浩二,村上幸治, 溶接止端部近傍の結晶粒微細化による疲労強度向上対策, 溶接学会 溶接構造シンポジウム2004講演論文集, pp.343-346, 2004.11.
38. Koji GOTOH and Stig BERGE, Low Cycle Fatigue Strength of X65 Pipeline Girth Welds, Proceedings of IPC 2004, IPC04-0631, 2004.10.
39. Masahiro TOYOSADA, Koji GOTOH and Toshio NIWA, Fatigue life assessment for welded structures without initial defects: an algorithm for predicting fatigue crack growth from a sound site, International Journal of Fatigue, 10.1016/j.ijfatigue.2003.12.005, 26, 9, 993-1002, Vol.26, No.9, pp.993-1002, 2004.09.
40. Masahiro TOYOSADA, Koji GOTOH and Toshio NIWA, Fatigue crack propagation for a through thickness crack: a crack propagation law considering cyclic plasticity near the crack tip, International Journal of Fatigue, 10.1016/j.ijfatigue.2003.12.006, 26, 9, 983-992, Vol.26, No.9, pp.983-992, 2004.09.
41. Masahiro TOYOSADA and Koji GOTOH, Investigation of Enhancement of Fatigue Strength for Welded Built-up Structures by Flame Line heating, Advances in Computational Engineering and Science, Proceedings of the 2002 International Conference on Computational Engineering and Science (ICES'2002), 2002.07.
42. Koji GOTOH and Masahiro TOYOSADA, A Practical Estimation Method of the Skin Plate Distortion Caused by Fillet Weld, Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2002), OMAE2002-28181, 2002.06.
43. Masahiro TOYOSADA, Koji GOTOH and Shin NAKAYAMA, A Study of Crack Depth Effect and Scattering of Fracture Toughness in Three Point Bend COD Specimens, Advances in Fracture Research, Proceedings of 10th International Conference on Fracture, ICF10 737, 2001.12.
44. Masahiro TOYOSADA, Koji GOTOH, Yasunari WATANABE and Shin NAKAYAMA, Evaluation of a Brittle Fracture Accident that Occurred at the Hyogo-Ken Nanbu Earthquake, Advances in Fracture Research, Proceedings of 10th International Conference on Fracture, ICF10 148, 2001.12.
45. 豊貞雅宏,後藤浩二,中山伸, 統計力学を応用した破壊靭性値の評価指標に関する研究, 日本造船学会論文集,第190号, pp.569-577, 2001.12.
46. Ragnar T. Igrand, Svein Saevik, Yong Bai, Stig Berge, Leif Collberg, Koji GOTOH, Philippe Mancon and Christian Thaulow, Deepwater Pipelines and Flowlines, Proceedings of Offshore Technology Conference, OTC 12187, 2000.05.
47. 豊貞雅宏,後藤浩二,渡辺泰成, 兵庫県南部地震時の脆性破壊事故に関する一考察, 土木学会論文集,No.647/I-51, pp.317-329, 2000.03.
48. 豊貞雅宏,後藤浩二,村上幸治,石井稔,永田陽造,古城昭, 熱切断変形に関する基礎的検討, 西部造船会会報,第99号, pp.331-342, 2000.03.
49. Masahiro TOYOSADA and Koji GOTOH, Strength Evaluation Method for Brittle Fracture at Arbitrary Strain Rates, PVP Vol.380 Fitness-for-Service Evaluations in Petroleum and Fossil Power Plants, ASME, pp.111-118, 1998.07.
50. Masahiro TOYOSADA and Koji GOTOH, Effect of Welding Sequence and Line Heating on Fatigue Strength for Welded Structures, Proceedings of 17th International Conference on OMAE, OMAE98-2152, 1998.07.
主要総説, 論評, 解説, 書評, 報告書等
1. 後藤 浩二, 船舶建造高品質化・効率化技術の調査研究
(レーザ溶接実用化のための調査研究)
, 2014.03, 我が国造船業界の国際競争力向上の更なる発展を目標に,建造工程の生産性を高め,生産コスト低減を図る取組みの一環として,レーザ・アークハイブリッド溶接技術の船舶建造工程への適用に係る調査研究が,日本財団の研究助成を受けて(一財)日本船舶技術研究協会において実施された.(2012-13FY).本PJの報告書である.なお,著者は実施担当内容について,分担執筆を担当した..
2. 日本船舶技術研究協会 極厚板研究委員会委員, 大型コンテナ船の極厚板溶接継手からの脆性破壊発生防止に関する調査研究 報告書, 日本船舶技術研究協会, 委員会幹事・委員として分担執筆担当, 2011.04.
3. 後藤浩二, 溶接継手の疲労強度の基礎
(溶接接合教室 第3章溶接構造の力学と設計 3-6節)
, 溶接学会誌, Vol.78,No.7,pp.639-643, 2009.11.
4. 日本船舶技術研究協会:超大型コンテナ船の構造安全対策検討委員会, 超大型コンテナ船の構造安全対策の検討に係る調査研究報告書, 日本船舶技術研究協会, WG2委員として分担執筆担当, 2009.03.
5. 後藤浩二, ここまできた実構造物の疲労き裂進展シミュレーション, 溶接学会誌, Vol.77,No.4,pp.273-277, 2008.06.
6. 後藤浩二,豊貞雅宏,藤村浩史, 連載講座 溶接設計講座 第三回 溶接継手強度設計の基礎, 溶接技術, Vol.54,No.3,pp.130-137, 2006.03.
主要学会発表等
1. Koji GOTOH, Koji MURAKAMI, Masataka NAKAGAWA, TOMOAKI UTSUNOMIYA, A Study on the Wear Performance of the Mooring Chain for Floating Wind Turbine, ASME 36th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2017), 2017.06, To produce offshore wind power generation plants, deep-sea floating wind turbine facilities are required. Commercial installation of floating wind turbine facilities requires a reduction of the mooring cost. Mooring chain breaks due to progressive wear will lead to enormous damages. Therefore, a quantitative wear evaluation method for mooring chains needs to be established. In this study, an experimental setup was constructed to reproduce the wearing phenomenon in mooring chains due to the motion of the floating body induced by waves, and its usefulness was confirmed. The result of the wear test conducted in this study suggests that the tensile force between links affects the degree of wear. Additionally, numerical simulations were performed using a finite element model with measured wear characteristics of the link material to reproduce the phenomenon of wear between links and confirmed that the wear phenomenon could be represented by numerical simulation..
2. 後藤 浩二, 津村 秀一, 内野 一成, 造船分野におけるレーザ・アークハイブリッド溶接技術導入に向けた共同研究について
, 第82回レーザ加工学会講演会, 2015.01, 船舶建造工程の生産性を高めるために,日本財団の助成を受け2012~2013年度に造船業界共同研究プロジェクトとして実施された,我が国造船業で主に建造される船種(主要部板厚15~20mm程度)への適用を可能とするレーザ・アークハイブリッド溶接技術に関する調査研究の概要のうち,継手強度の評価及び実証試験(溶接長5m)の概要を紹介する.

Overview of a joint industry project concerning the application of laser-arc hybrid welding to shipbuilding, which was carried out from 2012 to 2013 and supported by The Nippon Foundation, is described.
Mainly, the evaluation of structural integrities of welded joints which were made of steel plates with a thickness of about 15-20mm and fabricated by hybrid welding are reported in this paper.
Plate thicknesses adopted in this JIP corresponds to the thickness of the main structures of the ship that are mainly built in Japanese shipyard. It is expected that the advantage of laser-arc hybrid welding comparing conventional arc welding applied by current shipyards in Japan enables to improve the hull construction accuracy..
3. Koji GOTOH, Toshio NIWA, Yosuke ANAI, Fatigue crack growth behaviour of an out-of-plane gusset welded joints under biaxial tensile loadings with different phases, 20th European Conference on Fracture (ECF 20), 2014.07, [URL], Most of in-service welded built-up structures, which contain many welded joints as fatigue crack initiation sites, are subjected to many types of loading and these loadings have different axial components with different phases.
However, the structural integrities are evaluated according to design codes based on theoretical and experimental investigations under a uniaxial loading condition. Most of these codes are based on the S-N curves approach.
On the other hand, authors proposed the numerical simulation method of fatigue crack propagation histories of a cracked plate subjected biaxial loadings with phase difference of each loading component.
Fracture mechanics approach is applied to establish our method. In this study, fatigue crack growth behaviour of an out-of-plane gusset welded joint under biaxial loading with two different phase conditions were investigated.
The phase difference effect for fatigue crack shape evolution under biaxial loading was confirmed by measured ones.
Besides, comparisons of measured crack evolution with the numerical simulation results were performed to validate of our fatigue crack growth simulation for welded joints..
4. Koji GOTOH, Masao TAKUNO, Koichi OKADA, Sadaharu KUSUBA, Numerical Simulation of Fatigue Crack Growth of a Welded Structural Component under Block Program Fatigue Test, ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2014), 2014.06, Numerical simulations of fatigue crack growth of welded structural component were performed under fatigue testing conditions with block loading and constant stress range and the fatigue crack growth profiles were measured under the same loading conditions. In the experiments, fatigue cracks developed at the boxing fillet welded toe and grew toward the top flange plates of the specimens.
An advanced fracture mechanics approach based on the improved effective stress intensity factor range, which is the RPG (Re-tensile Plastic zone Generating) stress criterion, was applied to perform the numerical simulations of fatigue crack growth in the modeled components. A comparison of estimated fatigue crack growth profiles with measured ones verified that a reasonable estimation of fatigue crack growth can be estimated by applying the proposed numerical method..
5. Kazuki MATSUDA, Koji GOTOH, Numerical Simulation of Fatigue Crack Propagation under Simulated Whipping Loading Arising in Hull Structures, ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013), 2013.06, Fatigue crack propagation behavior under simulated whipping loadings which contain two different frequency components is highlighted. Numerical simulation of fatigue crack propagation based on an advanced fracture mechanics approach using the RPG (Re-tensile Plastic zone Generating) stress criterion for fatigue crack propagation is improved to enable the extraction of the effective loading history. The critical value of the plastic hysteresis for the stress versus strain relationship occurring in the icinity of a crack tip is defined as the control parameter for extracting the effective loading history. Comparison of fatigue crack propagation curves obtained from the improved numerical simulations with the measurements which were conducted by Sumi (2010) is performed. These comparisons show the validity of the proposed procedure for extracting the effective loading history from the superposed loading history containing different frequencies. In addition, imperfection of the S-N curves approach, which corresponds to the combination of the linear cumulative damage law and the loading cycle count by the rain flow method, is conducted..
6. Koji GOTOH, Toshio NIWA, Yosuke ANAI, Tetsuya OMORI, Yoshihisa TANAKA, Koji MURAKAMI, Fatigue Crack Propagation under Biaxial Tensile Loading, - Effect of the Phase Difference on Biaxial Loading -, ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013), 2013.06, Fatigue crack propagation under biaxial tensile loading is highlighted in this study. Ships and offshore structures are subjected to many types of loading, e.g. wave induced forces, gravity, and inertia forces. Generally, these loadings have different axial components with different phases. However, the structural integrities of structures and vessels are evaluated according to design codes based on theoretical and experimental investigations under a uniaxial loading condition.
Most of these codes are based on the S-N curves approach. An approach that does not use S-N curves has been favored by researchers, with the fracture mechanics approach preferred for evaluating the fatigue life of structures. An advanced fracture mechanics approach was developed based on the Re-tensile Plastic zone Generating (RPG) stress criterion for fatigue crack propagation. In this study, fatigue crack propagation tests under biaxial loading with four different phase conditions are performed and the effect of the phase difference under biaxial loading is evaluated. A numerical simulation method of fatigue crack propagation based on the RPG stress criterion under different biaxial loading phase conditions is presented and compared to measured data..
7. Koji GOTOH, Kazuki MATSUDA and O Kitamura, NUMERICAL SIMULATION OF FATIGUE CRACK PROPAGATION UNDER SUPERPOSED LOADING HISTORIES WITH TWO DIFFERENT FREQUENCIES, 6th International Conference on HYDROELASTICITY in Marine Technology, 2012.09, Fatigue crack propagation behaviour under superposed loading histories which contain two different frequency components is highlighted.
Numerical simulation of fatigue crack propagation based on an advanced fracture mechanics approach using the RPG (Re-tensile Plastic zone Generating) load criterion for fatigue crack propagation is improved to enable the extraction of the effective loading history.
The critical value of the plastic hysteresis for the stress versus strain relationship occurring in the vicinity of a crack tip is defined as the control parameter for extracting the effective loading history.
Comparison of fatigue crack propagation curves, obtained from the improved numerical simulations, with the measurements under the superposed loading
histories, is performed.
These comparisons show the validity of the proposed procedure for extracting the effective loading history from the superposed loading history containing different frequencies..
8. Koji GOTOH and Keisuke HARADA, Improvement of Fatigue Crack Growth Simulation Based on the Strip Yield Model Considering the Strain Hardening Effect of Materials, 31st International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2012), 2012.07, This paper presents an improved numerical simulation procedure for fatigue crack growth based on the strip yield model with a weight function.
In the previous numerical model, one-dimensional bar elements plugged up the chink corresponding to the virtual crack opening displacement in the plastic zone to describe the crack wake over fatigue crack surfaces.
However, this numerical simulation method gives poor growth estimations under large variable loading histories, e.g. spike overloading.
It is possible that insufficient consideration of the strain hardening effect of materials leads to excess crack closure.
The authors develop the numerical simulation model of fatigue crack growth by considering the strain hardening effect of materials using the modified strip yield model.
Numerical simulations of fatigue crack growth under many types of loading are performed to investigate the validity of our new proposed model.
Comparison of proposed simulation results with previous results and with experimental measurements confirms the superiority of the proposed method..
9. Koji GOTOH, Keisuke HARADA and Yosuke ANAI, Estimation of the Shape Evolution and the Growth History of an Embedded Crack by Fatigue Loading
, 30th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2011), 2011.06.
10. Yoich Sumi, Hiroshi Yajima, Masahiro Toyosada, Takao Yoshikawa, Shuji Aihara, Toshiyuki Matsumoto, Kazuhiro Hirota, Hideyuki Hirasawa, Masanobu Toyoda and Koji Gotoh, Overview of Japanese Joint Research Project on Safety-Related Issue of Extremely Thick Steel Plate Applied to Large Container Ships, 11th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS 2010), 2010.09.
11. Koji GOTOH and Keisuke HARADA, Numerical Simulation of Fatigue Crack Growth Based on Strip Yield Model Considering Work Hardening of Materials
, 29th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2010), 2010.06.
12. Keisuke HARADA, Hirokazu TAKAHASHI, Koji GOTOH and Masahiro TOYOSADA, Estimation of Shape Evolution and Growth History of a Fatigue Crack Emanating from an Embedded Elliptical Defect, The 23rd Asian-Pacific Technical Exchange and Advisory Meeting on Marine Sturctures (TEAM 2009), 2009.12.
13. Koji GOTOH and Yukinobu NAGATA, Improvement of Slice Synthesis Methodology to Estimate Stress Intensity Factor of an Embedded Crack in Finite body, The 12th International Conference on Fracture (ICF 12), 2009.07.
14. Koji GOTOH and Yukinobu NAGATA, Applicability Evaluation of the Weight Function Based Strip Yield Model for an Embedded Crack Problem, The 28th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2009), 2009.06.
15. Koji GOTOH and Yukinobu NAGATA, Stress Intensity Factors for Three Dimensional Cracks by Applying Slice Synthesis Methodology, The Eighteenth (2008) International Offshore and Polar Engineering Conference (ISOPE 2008), 2008.07.
16. Koji GOTOH, Yukinobu NAGATA and Masahiro TOYOSADA, Fatigue life estimation for a long through thickness cracks in large-scale specimen in imitation of hull skin plate, The Seventeenth (2007) International Offshore and Polar Engineering Conference, 2007.07.
17. Koji GOTOH, Yukinobu NAGATA and Masahiro TOYOSADA, A Simple Estimation Method of the Stress Distribution Normal to Cross Section at Weld Toe in non-load carrying welded joints, The 25th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2006), 2006.06.
18. Masahiro TOYOSADA, Koji GOTOH, Keitaro KONUMA and Akira SUEDA, A Comparative Study of Computational Models for Fatigue Crack Propagation, International Conference on Computational and Experimental Engineering 2005, 2005.12.
19. Masahiro TOYOSADA and Koji GOTOH, Physical Meaning of the Fictitious Crack Opening Displaecement in Dugdale Model, International conference on fracture 2005, 2005.03.
20. Koji GOTOH and Stig BERGE, Low Cycle Fatigue Strength of X65 Pipeline Girth Welds, International Pipeline Conference (IPC 2004), 2004.10.
21. Koji GOTOH and Masahiro TOYOSADA, A Practical Estimation Method of the Skin Plate Distortion Caused by Fillet Weld, 21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2002), 2002.06.
22. Masahiro TOYOSADA, Koji GOTOH, Yasunari WATANABE and Shin NAKAYAMA, Evaluation of a Brittle Fracture Accident that Occurred at the Hyogo-Ken Nanbu Earthquake, 10th International Conference on Fracture (ICF10), 2001.12.
23. Masahiro TOYOSADA, Koji GOTOH and Shin NAKAYAMA, A Study of Crack Depth Effect and Scattering of Fracture Toughness in Three Point Bend COD Specimens, 10th International Conference on Fracture (ICF10), 2001.12.
24. Ragnar T. Igrand, Svein Saevik, Yong Bai, Stig Berge, Leif Collberg, Koji GOTOH, Philippe Mancon and Christian Thaulow, Deepwater Pipelines and Flowlines, Offshore Technology Conference, 2000.05.
25. Koji GOTOH and Stig BERGE, Low Cycle Fatigue Strength of X65 Pipeline Girth Welds, 19th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2000), 1999.12.
26. Masahiro TOYOSADA and Koji GOTOH, Assessment of Brittle Fracture of Welded Structures under Seismic Wave, International Conference on Computational Engineering and Science (ICCES 1998), 1998.10.
27. Masahiro TOYOSADA and Koji GOTOH, Strength Evaluation Method for Brittle Fracture at Arbitrary Strain Rates, ASME PVP, 1998.07.
その他の優れた研究業績
2011.11, 平成23年度九州大学研究活動表彰受賞.
2010.11, 平成22年度九州大学研究活動表彰受賞.
学会活動
所属学会名
レーザ加工学会
日本船舶海洋工学会
溶接学会
土木学会
学協会役員等への就任
2017.04, 日本船舶海洋工学会, Journal of Marine Science and Technology, Deputy Editor(編集委員).
2017.04, 日本船舶海洋工学会, 論文審査委員会委員.
2016.07, 日本船舶海洋工学会, 国際企画委員会委員.
2015.11~2016.05, 日本船舶海洋工学会 西部支部, 講演会実行委員会・代表幹事.
2015.04~2017.03, 日本船舶海洋工学会 西部支部, 運営委員.
2015.04~2017.03, 日本船舶海洋工学会, 代議員.
2007.06~2009.05, 日本船舶海洋工学会 建造革新研究会, 幹事.
2014.03~2018.02, 溶接学会, 代議員.
2013.06~2015.05, 日本船舶海洋工学会 建造革新研究会, 幹事.
2013.04~2015.03, 日本船舶海洋工学会, 代議員.
2011.06~2013.05, 日本船舶海洋工学会, 研究企画委員会委員.
2011.06~2013.05, 日本船舶海洋工学会 建造革新研究会, 会長.
2009.04~2013.03, 日本船舶海洋工学会 西部支部, 運営委員.
2009.06~2011.05, 日本船舶海洋工学会, 国際企画委員会 国際学術協力部会.
2009.07, 溶接学会 溶接疲労強度研究委員会, 幹事.
2006.03~2010.02, 溶接学会, 評議員.
2007.06~2009.05, 日本船舶海洋工学会 建造革新研究会, 幹事.
2007.01, 日本船舶海洋工学会, 論文査読委員会査読委員.
2007.04~2009.03, 日本船舶海洋工学会 西部支部, 会務委員(編集広報担当),講演会運営委員長.
2007.04~2009.03, 日本船舶海洋工学会 西部支部, 運営委員.
2006.06~2009.05, 日本船舶海洋工学会 工作分野研究企画部会, 委員.
2006.06~2007.06, 日本船舶海洋工学会 鋼船工作法改訂研究委員会, 顧問 (PJ3委員会委員長).
2006.03, 溶接学会 九州支部, 幹事.
2006.03~2008.02, 溶接学会, 評議員.
2004.01, 溶接学会 溶接構造研究委員会, 幹事.
2002.07, 溶接学会 九州支部, 評議員.
学会大会・会議・シンポジウム等における役割
2017.09.25~2017.09.28, The 31th Asian-Pacific Technical Exchange and Advisory Meeting on Marine Structure (TEAM 2017), 司会(Moderator).
2017.09.11~2017.09.13, 溶接学会 平成29年度 秋季全国大会, 座長(Chairmanship).
2017.06.25~2017.06.30, ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2017), 司会(Moderator).
2017.06.22~2017.06.22, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2016.09.04~2016.09.08, 13th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS 2016), 司会(Moderator).
2016.07.09~2016.07.09, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2016.06.19~2016.06.24, ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2016), 司会(Moderator).
2016.05.26~2016.05.27, 日本船舶海洋工学会平成28年春季講演会, 司会(Moderator).
2015.05.31~2015.06.05, ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015), 司会(Moderator).
2015.11.16~2015.11.17, 日本船舶海洋工学会平成27年秋季講演会, 司会(Moderator).
2015.07.17~2015.07.17, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2014.12.04~2014.12.05, 溶接構造シンポジウム2014, 座長(Chairmanship).
2014.11.20~2014.11.21, 日本船舶海洋工学会平成26年秋季講演会, 司会(Moderator).
2014.07.18~2014.07.18, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2014.06.08~2014.06.13, ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2014), 司会(Moderator).
2013.11.21~2013.11.22, 日本船舶海洋工学会, 司会(Moderator).
2013.10.20~2013.10.25, The 12th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS 2013), 司会(Moderator).
2013.06.09~2013.06.14, ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013), 司会(Moderator).
2013.05.27~2013.05.28, 日本船舶海洋工学会, 司会(Moderator).
2012.09.03~2012.09.06, The 26th Asian-Pacific Technical Exchange and Advisory Meeting on Marine Structures (TEAM 2012), 司会(Moderator).
2012.07.20~2012.07.20, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2012.07.01~2012.07.06, 31st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2012), 司会(Moderator).
2012.05.17~2012.05.18, 日本船舶海洋工学会, セッションオーガナイザー(OS1:大型コンテナ船の構造安全性).
2012.05.17~2012.05.18, 日本船舶海洋工学会, 司会(Moderator).
2011.11.01~2011.11.02, 日本船舶海洋工学会西部支部, 司会(Moderator).
2011.09.26~2011.09.29, The 25th Asian-Pacific Technical Exchange and Advisory Meeting on Marine Structure (TEAM 2011), 司会(Moderator).
2011.09.19~2011.09.21, International Conference on Advanced Technology in Experimental Mechanics 2011 (ATEM'11), 司会(Moderator).
2011.08.11~2011.08.11, 2011年度夏季交流セミナー(Pusan National University, 長崎総合科学大学,長崎大学,九州大学), 司会(Moderator).
2011.07.29~2011.07.29, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2011.06.19~2011.06.24, 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2011), 司会(Moderator).
2011.05.19~2011.05.20, 日本船舶海洋工学会, 司会(Moderator).
2010.11.04~2010.11.05, 日本船舶海洋工学会西部支部, 司会(Moderator).
2010.07.23~2010.07.23, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2010.06.07~2010.06.08, 日本船舶海洋工学会, 司会(Moderator).
2010.06.06~2010.06.11, 29th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2010), 司会(Moderator).
2010.03.09~2010.03.09, 日本船舶海洋工学会西部支部構造研究会講習会「鉄鋼の現状と将来」, 司会(Moderator).
2009.11.17~2009.11.18, 溶接構造シンポジウム2009, 座長(Chairmanship).
2009.07.24~2009.07.24, 溶接学会九州支部研究発表会, 司会(Moderator).
2009.05.31~2009.06.05, 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2009), 司会(Moderator).
2008.11.20~2008.11.21, 日本船舶海洋工学会西部支部, 司会(Moderator).
2008.11.16~2008.11.18, 8th International Welding Symposium, 司会(Moderator).
2008.07.25~2008.07.25, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2008.05.29~2008.05.30, 日本船舶海洋工学会, 司会(Moderator).
2008.03.16~2008.03.21, International Conference on Computational and Experimental Engineering and Science 2008 (ICCES'08), 司会(Moderator).
2007.11~2007.11, 日本船舶海洋工学会 西部支部, 司会(Moderator).
2007.07.01~2007.07.01, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2006.11~2006.11, 日本船舶海洋工学会, 司会(Moderator).
2006.10~2006.10, 20th Asina Technical Exchange and Advisory Meeting on Marine Structures (TEAM 2006), 司会(Moderator).
2006.09~2006.09, 日本機械学会, 座長(Chairmanship).
2006.07.01~2006.07.01, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2006.05~2006.05, 日本船舶海洋工学会西部支部, 司会(Moderator).
2005.11~2005.11, 日本船舶海洋工学会, 司会(Moderator).
2005.07.01~2005.07.01, 溶接学会九州支部研究発表会, 座長(Chairmanship).
2005.05~2005.05, 西部造船会, 司会(Moderator).
2005.05~2005.05, 鋼構造物の疲労損傷は防止できるか(各種鋼構造物の疲労設計の現状と将来像), 司会(Moderator).
2004.05~2004.05, 西部造船会, 司会(Moderator).
2004.03~2004.03, 造船・橋梁における高張力鋼と軟鋼の適用と課題, 司会(Moderator).
2003.05~2003.05, 西部造船会, 司会(Moderator).
2002.11~2002.11, 秋季造船三学会連合大会, 司会(Moderator).
2002.06~2002.06, 21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2002), 座長(Chairmanship).
2002.05~2002.05, 西部造船会, 司会(Moderator).
2001.11~2001.11, 秋季造船三学会連合大会, 司会(Moderator).
2001.06~2001.06, 日本造船学会, 司会(Moderator).
2001.05~2001.05, 西部造船会, 司会(Moderator).
2019.09.22~2019.09.26, The 14th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS2019), 実行委員会委員.
2016.05.26~2016.05.27, 日本船舶海洋工学会講演会, 講演会実行委員会 代表幹事.
2015.07.01~2016.06.24, ASME 35th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2016), Topic Organizer (Construction and fabrication of pipelines, offshore and arctic structures and ships).
2014.12.04~2014.12.05, 溶接構造シンポジウム 2014, 実行委員会委員.
2014.11.20~2014.11.21, 日本船舶海洋工学会講演会, 講演会実行委員会 代表幹事.
2013.05.27~2013.05.28, 日本船舶海洋工学会講演会, 講演会実行委員会委員長.
2012.09.03~2012.09.06, The 26th Asian-Pacific Technical Exchange and Advisory Meeting on Marine Structures (TEAM 2012), Local Organizing Committee Secretariat.
2011.11.15~2011.11.16, 溶接構造シンポジウム 2011, 実行委員会委員.
2011.11.01~2011.11.02, 日本船舶海洋工学会西部支部講演会, 講演会実行委員会委員長.
2011.05.19~2011.05.20, 日本船舶海洋工学会講演会, 講演会実行委員会委員長.
2010.11.04~2010.11.05, 日本船舶海洋工学会西部支部講演会, 講演会運営委員会委員長.
2009.11.19~2009.11.20, 日本船舶海洋工学会西部支部講演会, 講演会運営委員会委員長.
2009.11.17~2009.11.18, 溶接構造シンポジウム 2009, 実行委員会委員.
2008.11.20~2008.11.21, 日本船舶海洋工学会西部支部講演会, 講演会運営委員会委員長.
2008.05.29~2008.05.30, 日本船舶海洋工学会講演会, 講演会運営委員会委員長.
2008.03.16~2008.03.21, ICCES'08 (International Conference on Computational and Experimental Engineering and Science), Session chair (D12:Micro/Mesoscopic Mechanics of Materials: Strength and Deformation Process).
2007.11.08~2007.11.09, 日本船舶海洋工学会西部支部講演会, 講演会運営委員会委員長.
2006.03~2006.11, 溶接構造シンポジウム 2006, 実行委員会委員.
2005.11~2005.11, 日本船舶海洋工学会秋季講演会, 運営委員会委員.
2004.03~2004.11, 溶接構造シンポジウム 2004, 実行委員会委員.
2002.03~2002.11, 溶接構造シンポジウム 2002, 実行委員会委員.
学会誌・雑誌・著書の編集への参加状況
2017.05, Journal of Marine Science and Technology, 国際, 編集委員.
2017.04, 日本船舶海洋工学会論文集, 国内, 論文審査委員.
2010.04~2012.10, 日本船舶海洋工学会 基準教科書WG6(造船工作法), 国内, 執筆WG委員.
2010.04~2012.10, 日本船舶海洋工学会 基準教科書WG5(強度編), 国内, 執筆WG委員.
2004.03~2007.07, 溶接学会九州支部講演論文集, 国内, .
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2018年度  
2017年度 11  25 
2016年度 11    22 
2015年度   16 
2014年度 20 
2013年度   14 
2012年度   12 
2011年度   18 
2010年度   12 
2009年度 19 
2008年度
2007年度 10 
2006年度
2005年度
2004年度
2003年度
2001年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
Norges teknisk-naturvitenskapelige universitet (NTNU, Norwegian university of science and technology), Norway, 2006.06~2006.06.
Norges teknisk-naturvitenskapelige universitet (NTNU, Norwegian university of science and technology), Norway, 1999.03~2000.03.
外国人研究者等の受入れ状況
2006.06~2006.08, 1ヶ月以上, Mokpo National Maritime University, Korea, 学内資金.
受賞
溶接学術振興賞, 一般社団法人溶接学会, 2017.04.
溶接技術奨励賞, 一般社団法人溶接学会九州支部, 2015.07.
OMAE 2013 Best Paper Award on Materials Technology Symposium, OOAE ASME (Ocean, Offshore and Arctic Engineering division, American Society of Mechanical Engineering), 2014.06.
スマートプロセス学会論文賞, 一般社団法人 スマートプロセス学会, 2014.05.
OMAE Conference Appreciation Award, OOAE ASME (Ocean, Offshore and Arctic Engineering division, American Society of Mechanical Engineering), 2012.07.
溶接構造シンポジウム2004 シンポジウム論文賞, (社)溶接学会, 2004.11.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2014年度~2015年度, 挑戦的萌芽研究, 代表, 船殻建造工程へのレーザ・アークハイブリッド溶接適用のための実用的な拘束条件の検討.
2014年度~2017年度, 基盤研究(A), 代表, 二軸及び重畳応力変動載荷条件下における疲労亀裂の高精度な成長履歴推定.
2009年度~2013年度, 若手研究(S), 代表, き裂成長履歴推定に基づく大型溶接構造物の疲労寿命推定の高精度化.
2007年度~2009年度, 基盤研究(B), 代表, 溶接継手に存在する疲労表面き裂の発生・成長評価法に関する研究.
2005年度~2007年度, 基盤研究(B), 分担, 輸送機器の衝突安全性向上のための衝突反力低減構造の開発.
2005年度~2006年度, 若手研究(B), 代表, 高精度疲労き裂成長シミュレーション手法の構築.
2004年度~2006年度, 基盤研究(B), 分担, 多数箇所から発生進展する微小表面き裂のアスペクト比変化に関する研究.
2003年度~2004年度, 若手研究(B), 代表, 破壊様式の脆性/延性遷移挙動の解明.
2002年度~2002年度, 基盤研究(C), 代表, 長距離海底用等天然ガスパイプラインの安全性評価指針確立に関する研究.
2001年度~2003年度, 基盤研究(B), 分担, 構造物における疲労き裂成長曲線推定法に関する研究.
2001年度~2002年度, 奨励研究(A), 代表, 高ひずみ速度領域における変形機構を考慮した材料構成関係に関する研究.
2000年度~2002年度, 基盤研究(B), 分担, 溶接構造物の疲労寿命推定法に関する研究.
1999年度~2001年度, 基盤研究(B), 分担, ブロック段階での組立加工による変形予測システムの開発に関する研究.
1998年度~1999年度, 奨励研究(A), 代表, 鋼構造物の組立寸法精度の定量的評価法に関する研究.
1996年度~1998年度, 一般研究(B), 分担, 疲労表面き裂の開閉口挙動と寿命予測に関する研究.
1996年度~1996年度, 奨励研究(A), 代表, 温度及びひずみ速度の影響を考慮した溶接構造用鋼の構成方程式に関する研究.
競争的資金(受託研究を含む)の採択状況
2010年度~2011年度, 戦略的基盤技術高度化支援事業, 分担, 溶接構造物の高精度寿命予測法の開発.
共同研究、受託研究(競争的資金を除く)の受入状況
2016.04~2017.03, 代表, レーザ・アークハイブリッド厚板溶接実用化に向けた研究開発.
2015.04~2016.03, 代表, レーザアークハイブリッド溶接による新溶接法の研究開発.
2014.04~2015.03, 代表, レーザアークハイブリッド溶接による新溶接法の研究開発.
2013.04~2014.03, 代表, 船舶建造高品質化・効率化技術の調査研究 (レーザ・アークハイブリッド溶接実用化のための調査研究).
2010.07~2011.03, 代表, 大型コンテナ船の極厚鋼板溶接継手からの脆性破壊発生防止に関する調査研究.
2009.09~2010.03, 代表, 大型コンテナ船の極厚鋼板溶接継手からの脆性破壊発生防止に関する調査研究.
2008.08~2009.02, 代表, 超大型コンテナ船の脆性亀裂の発生と防止に関する研究.
2007.10~2008.02, 代表, 超大型コンテナ船の脆性亀裂の発生と防止に関する研究.
寄附金の受入状況
2015年度, 造船学術研究推進機構, 工学研究院研究資金 海洋システム工学部門 / 一般商船の建造工程におけるレーザ・アークハイブリッド溶接技術の導入に向けた諸検討.
2007年度, 社団法人日本ガス協会, 使途特定寄附金/埋設型パイプホルダーの疲労寿命評価に関する研究助成.
2006年度, 造船学術研究推進機構, 使途特定寄附金.
2005年度, 社団法人日本ガス協会, 使途特定寄附金.
2004年度, 造船学術研究推進機構, 使途特定寄附金.

九大関連コンテンツ