九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
吉武 剛(よしたけ つよし) データ更新日:2018.06.23

准教授 /  総合理工学研究院 エネルギー科学部門 物性動力学


主な研究テーマ
強磁性Fe3Si/半導体FeSi2人工格子をベースとした新規スピントロニクス素子の創製
キーワード:Fe-Si、スピントロニクス、CPP、リソグラフィー
2011.04.
超ナノ微結晶ダイヤモンド/水素化アモルファスカーボン混相(UNCD/a-C:H)膜のフォトダイオードへの応用
キーワード:超ナノ微結晶ダイヤモンド、UNCD、フォトダイオード,太陽電池
2011.04.
立方晶β-AlNの創製と物性の解明
キーワード:準安定相、AlN、物理気相成長法、zincblende構造
2005.04.
成膜装置の開発を含めた同軸型アークプラズマ蒸着法による超ナノ微結晶ダイヤモンド薄膜の作製とその工業的応用の検討
キーワード:超ナノ微結晶ダイヤモンド、アークプラズマ
2005.04.
レーザーアブレーション法によるダイヤモンドおよびナノ微結晶ダイヤモンド薄膜の低温成長
キーワード:超ナノ微結晶ダイヤモンド、UNCD、レーザーアブレーション、低温成長
2000.04~2006.03.
環境考慮型シリサイド半導体の作製とその電子デバイスへの応用に関する研究
キーワード:ベータ鉄シリサイド、ナノ微結晶、アブレーション、スパッタリング、薄膜、結晶成長、エピタキシャル、光特性、電気特性
1999.04.
(半導体)/(強磁性金属)人工格子薄膜に関する研究
キーワード:半導体、強磁性体、Fe-Si、スピントロニクス、MR、強磁性層間結合、人工格子、超格子
2001.04~2011.03.
物理気相成長法による水素フリーダイヤモンド状炭素膜の作製と硬質皮膜への応用
キーワード:DLC、レーザーアブレーション、ダイヤモンド状炭素、硬度
1996.04~2003.03.
従事しているプロジェクト研究
ナノカーボンによる新規太陽電池の創製
2011.10~2014.03, 代表者:吉武剛, 九州大学, 九州大学
直径数nmのダイヤモンド微結晶を水素化アモルファスカーボンが取り囲む構造を持つ超ナノ微結晶ダイヤモンド/水素化アモルファスカーボン混相膜は,膜中に多量のダイヤモンド結晶の界面が内在し,それに起因すると考えられる大きな光吸収を可視域で示す.今までの研究で,これに対応した明確な光電流を確認している.JST ALCAのもと,この光吸収で発生する光電流を太陽電池に応用することを目指す..
研究業績
主要著書
1. 吉武 剛, 3.4節パルスレーザ堆積法&3.5節スパッタリング成膜法
in シリサイド系半導体の科学と技術: 資源・環境時代の新しい半導体と関連物質(前田佳均編)
, 裳華房, pp. 93-112, 2014.10.
2. Mahmoud Shaban and Tsuyoshi Yoshitake, n-Type β-FeSi2/p-type Si near-infrared photodiodes prepared by facing-targets direct-current sputtering, InTech Open Access Publisher, in Advances in Photodiodes (InTech, 2010) Chap. 1., 2010.12.
3. 監修:杉岡幸次、矢部明、著者35名, レーザーマイクロ・ナノプロセッシング, シーエムシー出版, 担当分:
第III偏第1章5節ダイヤモンド・ダイヤモンド状炭素
145〜160頁, 2004.11.
主要原著論文
1. Satoshi Takeichi, Takashi Nishiyama, Mitsuru Tabara, Shuichi Kawawaki, Masamichi Kohno, Koji Takahashi, Tsuyoshi Yoshitake, Hydrogenation effects on thermal conductivity of ultrananocrystalline diamond/amorphous carbon com-posite films prepared by coaxial arc plasma deposition, Appl. Phys. Express, https://doi.org/10.7567/APEX.11.065101, Vol. 11, No. 6 (2018) 065101, 2018.06.
2. Abdelrahman Zkria, Tsuyoshi Yoshitake, Temperature-dependent current-voltage characteristics and ultraviolet light detection of heterojunction diodes comprising n-type ultrananocrystalline diamond/hydrogenated amorphous carbon composite films and p-type silicon substrates, Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes, 10.7567/JJAP.56.07KD04, 56, 7, 2017.07, [URL], Heterojunction diodes comprising poorly (1 at. %) nitrogen-doped n-type ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films and p-type Si substrates were prepared in nitrogen and hydrogen mixed gas atmosphere by coaxial arc plasma deposition. Dark current density-voltage (J-V) characteristics were studied in the temperature range of 200-400 K, in order to investigate the current transport mechanism through the fabricated heterojunctions. The temperature dependence of the ideality factor and reverse saturation current reveals that carrier transport predominantly occurs in the generation-recombination mechanism and, at low temperatures, it accompanies tunneling via weak traps. The heterojunctions surely exhibited photodetection for 254nm ultraviolet light illumination. It is expected that photocarriers will be generated at UNCD grains and transported through an a-C:H matrix..
3. Takanori Hanada, Shinya Ohmagari, Abdelrahman Zkria, Nathaporn Promros, Tsuyoshi Yoshitake, Photodetection Characteristics of Heterojunctions Comprising p-Type Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films and n-Type Si Substrates at Low Temperatures, Journal of Nanoelectronics and Nanotechnology, DOI: https://doi.org/10.1166/jnn.2017.14104, Vol. 17, No. 5, pp. 3348-3351, 2017.05.
4. Abdelrahman Zkria, Hiroki Gima, Tsuyoshi Yoshitake, Application of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films for ultraviolet detection, Appl. Phys. A, DOI 10.1007/s00339-017-0798-4, Vol. 123, issue 581, 167 (6 pages), 2017.02.
5. Hiroki Gima, Abdelrahman Zkria, Yuki Katamune, Ryota Ohtani, Satoshi Koizumi, Tsuyoshi Yoshitake, Chemical bonding structural analysis of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition, Applied Physics Express, 10.7567/APEX.10.015801, 10, 1, 2017.01, [URL], Nitrogen-doped ultra-nanocrystalline diamond/hydrogenated amorphous carbon composite films prepared in hydrogen and nitrogen mixed-gas atmospheres by coaxial arc plasma deposition with graphite targets were studied electrically and chemical-bonding-structurally. The electrical conductivity was increased by nitrogen doping, accompanied by the production of n-type conduction. From X-ray photoemission, near-edge X-ray absorption fine-structure, hydrogen forward-scattering, and Fourier transform infrared spectral results, it is expected that hydrogen atoms that terminate diamond grain boundaries will be partially replaced by nitrogen atoms and, consequently, φ C-N and C=N bonds that easily generate free electrons will be formed at grain boundaries..
6. Abdelrahman Zkria, Mahmoud Shaban, Takanori Hanada, Nathaporn Promros, Tsuyoshi Yoshitake, Current transport mechanisms in n-type ultrananocrystalline diamond/p-type Si heterojunctions, Journal of Nanoscience and Nanotechnology, 10.1166/jnn.2016.13663, 16, 12, 12749-12753, 2016.12, [URL], Nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited on p-type Si substrates by coaxial arc plasma deposition. The deposited films possessed n-type conduction, and evidently formed pn heterojunctions with p-type Si substrates. The heterojunction devices showed typical rectification properties similar to those observed for conventional abrupt pn heterojunctions. The conduction mechanisms that govern current transport in these devices were analyzed using dark current-voltage measurements in the temperature range from 300 K to 80 K. The results revealed that a trap-assisted multi-step tunneling process is a dominant mechanism at lower temperatures and low forward bias. At least two defect levels with activation energies of 42 and 24 meV appear to activate this process. At moderate forward bias, the current followed a power-law dependence, attributable to a space-charge-limited current. This junction behavior might be owing to a large number of grain boundaries in the UNCD/a-C:H film that provide active centers for carrier recombination-tunneling processes at the junction interface..
7. Abdelrahman Zkria, Yuki Katamune, Tsuyoshi Yoshitake, Effects of Nitrogen doping on the electrical conductivity and optical absorption of ultrananocrystalline diamond/hydrogenated amorphous carbon films prepared by coaxial arc plasma dep, Jpn. J. Appl. Phys., http://doi.org/10.7567/JJAP.55.07LE01, Vol. 55, No. 7S2 (2016) 07LE01, 2016.07.
8. Nathaporn Promros, Ryuji Baba, Motoki Takahara, Tarek M. Mostafa, Phongsaphak Sittimart, Mahmoud Shaban, Tsuyoshi Yoshitake, Epitaxial Growth of beta-FeSi2 Thin Films on Si(111) Substrates by Radio Frequency Magnetron Sputtering and Their Application to Near-Infrared Photodetection, Jpn. J. Appl. Phys., http://doi.org/10.7567/JJAP.55.06HC03, Vol. 55, No. 6S2, 06HC03, 2016.06.
9. Hiroshi Naragino, Mohamed Egiza, Aki Tominaga, Kouki Murasawa, Hidenobu Gonda, Masatoshi Sakurai, Tsuyoshi Yoshitake, Room-temperature hard coating of ultrananocrystalline diamond/nonhydrogenated amorphous carbon composite films on tungsten carbide by coaxial arc plasma deposition, Jpn. J. Appl. Phys. (Rapid Communication), http://doi.org/10.7567/JJAP.55.030302, Vol. 55, No. 3, 030302., 2016.01.
10. Takeshi Hara, Kenji Hanada, Tsuyoshi Yoshitake, Detection Methods of Diamond Diffraction Peaks in Ultrananocrystalline diamond?Amorphous Carbon Composite Films by X-ray Diffraction Measurement with Semiconductor Counter Detector, Jpn. J. Appl. Phys, to be published, 2015.11.
11. Yūki Katamune, Satoshi Takeichi, Shinya Ohmagari, Tsuyoshi Yoshitake, Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition, J. Vac. Sci. Tech. A, http://dx.doi.org/10.1116/1.4931062, Vol. 6, Issue 6 (2015) 061514., 2015.09.
12. Abdelrahman Zkria, Hiroki Gima, Mahmoud Shaban, Tsuyoshi Yoshitake, Electrical Characteristics of Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition
, Appl. Phys. Express, doi:10.7567/APEX.8.095101, Vol. 8, No. 9 (2015) 095101, 2015.09, Nitrogen-incorporated ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were synthesized in
nitrogen and hydrogen mixed gas atmospheres by coaxial arc plasma deposition. The temperature dependence of electrical resistivity implies that
carriers are transported in hopping conduction. Heterojunctions comprising 3 at.% nitrogen-doped films and p-Si substrates exhibited a typical
rectifying action. The expansion of a depletion region into the film side was confirmed from the capacitance–voltage characteristics, and the built-in
potential and carrier concentration were estimated to be 0.51 eV and 7.5 ' 1016cm%3, respectively. It was experimentally demonstrated that
nitrogen-doped UNCD/a-C:H is applicable as an n-type semiconductor..
13. Hiroshi Naragino, Aki Tominaga, Kenji Hanada, Tsuyoshi Yoshitake, A synthesis method of ultrananocrystalline diamond in powder employing a coaxial arc plasma gun, Appl. Phys. Express, doi:10.7567/APEX.8.075101, Vol. 8, No. 7 (2015) 075101., 2015.07, A new method that enables us to synthesize ultrananocrystalline diamond (UNCD) in powder is proposed. Highly energetic carbon species ejected
from a graphite cathode of a coaxial arc plasma gun were provided on a quartz plate at a high density by repeated arc discharge in a compact
vacuum chamber, and resultant films automatically peeled from the plate were aggregated and powdered. The grain size was easily controlled
from 2.4 to 15.0nm by changing the arc discharge energy. It was experimentally demonstrated that the proposed method is a new and promising
method that enables us to synthesize UNCD in powder easily and controllably..
14. Tomohiro Yoshida, Yūtaro Ueda, Takeshi Daio, Aki Tominaga, Toshihiro Okajima, Tsuyoshi Yoshitake, Heteroepitaxial growth of b-AlN films on sapphire (0001) in nitrogen atmospheres by pulse laser deposition, Jpn. J. Appl. Phys., doi:10.7567/JJAP.54.06FJ05, Vol. 54, No. 6S1, 06FJ05., 2015.06.
15. Kenji Hanada, Tomohiro Yoshida, You Nakagawa, Hiroki Gima, Aki Tominaga, Masaaki Hirakawa, Yoshiaki Agawa, Takeharu Sugiyama, Tsuyoshi Yoshitake, Hardness and modulus of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition, Appl. Phys. A, doi: 10.1007/s00339-014-8949-3, Vol. 119, Issue 1, pp 205-210.
, 2015.02.
16. Tomohiro Yoshida, Kenji Hanada, Hiroki Gima, Ryota Ohtani, Kazushi Sumitani, Hiroyuki Setoyama, Aki Tominaga, Tsuyoshi Yoshitake, Influences of repetition rate of arc discharges on hardness and modules of ultrananocrystalline diamond films prepared by coaxial arc plasma deposition, Mater. Res. Express, doi: 10.1088/2053-1591/2/1/015021, Vol. 2, No.1 (2015) 015021., 2015.01.
17. 片宗優貴, 楢木野宏, 花田 賢志, 冨永 亜希, 吉武 剛, 同軸型アークプラズマ堆積法による超ナノ微結晶ダイヤモンド/水素化アモルファスカーボン混相膜の合成, NEW DIAMOND, 第116号, Vol. 31, No. 1, pp. 8-12., 2015.01.
18. Shinya Ohmagari, Takanori Hanada, Yūki Katamune, Sausan Al-Riyami, Tsuyoshi Yoshitake, Carrier Transport and Photodetection in Heterojunction Photodiodes Comprising n-Type Silicon and p-Type Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films, Jpn. J. Appl. Phys. , 10.7567/JJAP.53.050307, Vol. 53, No. 5, 050307, 2014.05.
19. Ken-ichiro Sakai, Yuta Noda, takeshi Daio, Daiki Tsumagari, Aki Tominaga, Kaoru Takeda, Tsuyoshi Yoshitake, Current-induced Magnetization Switching at Low Current Densities in CPP Structural Fe3Si/FeSi2 Artificial Lattices, Jpn. J. Appl. Phys. , 10.7567/JJAP.53.02BC15, Vol. 53, Issue 2S, 02BC15, 2014.02.
20. Ken-ichiro Sakai, Yuta Noda, Daiki Tsumagari, Hiroyuki Deguchi, Kaoru Takeda, Tsuyoshi Yoshitake, Temperature-Dependent Interlayer coupling in Fe3Si/FeSi2 artificial lattices, Phys. Status Solidi A, 10.1002/pssa.201330116, Vol. 211, No. 2, 323-328, 2014.02.
21. Sausan Al-Riyami, Hiroki Gima, Hiroshi Akamine, Tsuyoshi Yoshitake, Chemical Bonding of Nitrogenated Ultrananocrystalline Diamond Films Deposited on Titanium Substrates by Pulsed Laser Deposition, ECS J. Solid State Sci. Technol., 10.1149/2.016311jss, Vol. 2, issue 11 (2013) M33-38, 2013.11.
22. Yutaro Ueda, Takeshi Daio, Tomohiro Yoshida, Aki Tominaga, Toshihiro Okajima, Tsuyoshi Yoshitake, Crystalline-Structural Evaluations of Cubic AlN Thin Films Heteroepitaxially Grown on Sapphire(0001) by Pulsed Laser Deposition , Jpn. J. Appl. Phys., 10.7567/JJAP.52.08JE03, Vol. 52, No. 8 (2013) 08JE03., 2013.06, Cubic β-AlN thin films with different thicknesses were grown on sapphire (0001) in nitrogen atmosphere by pulsed laser deposition with sintered AlN targets, and their film structures were evaluated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found that β-AlN layers with a lattice constant of 7.89 Å are epitaxially grown on sapphire (0001) with a relationship of βAlN(111)[111]∥Al2O3(0001)[1100] at film thicknesses of less than 20 nm, and at larger thicknesses, polycrystalline β-AlN grains are grown on the epitaxial β-AlN layers in the Stranski–Krastanov (SK) mode. .
23. Sausan Al-Riyami, Hiroki Gima, Tsuyoshi Yoshitake, Effects of Hydrogen and Nitrogen Atmospheres on Growth of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films by Reactive Pulsed Laser Deposition, Jpn. J. Appl. Phys., 10.7567/JJAP.52.06GG06, Vol. 52, No. 6 (2013) 06GG06., 2013.06, The growth of ultrananocrystalline diamond/nonhydrogenated amorphous carbon composite films was realized by pulsed laser deposition with a graphite target in a nitrogen atmosphere totally excluding hydrogen. The existence of 7 nm diamond grains was confirmed by X-ray diffraction. Nitrogen incorporation into the films was confirmed by X-ray photoemission and near-edge X-ray absorption structure spectroscopies, and the nitrogenation produced n-type conduction with an electrical conductivity of 0.2 Ω-1· cm-1 at 300 K. The results of study proved that nitrogen acts as a reactive gas for the formation of diamond grains, similarly to hydrogen. .
24. Yuki Katamune, Shinya Ohmagari, Sausan Al-Riyami, Seishi Takagi, Mahmoud Shaban, Tsuyoshi Yoshitake, Heterojunction Diodes Comprising p-Type Ultrananocrystalline Diamond Films Prepared by Coaxial Arc Plasma Deposition and n-Type Silicon Substrates , Jpn. J. Appl. Phys., 10.7567/JJAP.52.065801, Vol. 52, No. 6 (2013) 065801., 2013.06, Heterojunction diodes, which comprise boron-doped p-type ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films prepared by coaxial arc plasma deposition and n-type Si substrates, were electrically studied. The current–voltage characteristics showed a typical rectification action. An ideality factor of 3.7 in the forward-current implies that carrier transport is accompanied by some processes such as tunneling in addition to the generation–recombination process. From the capacitance–voltage measurements, the built-in potential was estimated to be approximately 0.6 eV, which is in agreement with that in a band diagram prepared on the assumption that carriers are transported in an a-C:H matrix in UNCD/a-C:H. Photodetection for 254 nm monochromatic light, which is predominantly attributable to photocurrents generated in UNCD grains, was evidently confirmed in heterojunctions. Since dangling bonds are detectable by electron spin resonance spectroscopy, their control might be an important key for improving the rectifying action and photodetection performance. .
25. Nathaporn Promros, Li Chen, Tsuyoshi Yoshitake, Evaluation of n-Type Nanocrystalline FeSi2/p-Type Si Heterojunctions Prepared by Pulsed Laser Deposition as Near-Infrared Photodetectors, J. Nanosci. Nanotechnol. , 10.1166/jnn.2013.7311, Vol. 13, No. 5 (2013) pp. 3577–3581., 2013.05, n-Type nanocrystalline (NC) FeSi2/p-type Si heterojunctions, which were prepared by pulsed laser deposition, were evaluated as a near infrared photodiode. The built-in potential was estimated to be approximately 1.1 eV from the capacitance–voltage measurement. These junctions showed a rectifying behavior accompanied by a large leakage current. The near infrared light detection performance was evaluated using a 1.33 m laser in the temperature range of 77–300 K. At a reverse bias of −5 V, the detectivity was 55×107 cm Hz1/2 W−1 at 300 K and it was dramatically enhanced to be 80×1010 cm Hz1/2 W−1 at 77 K. It was demonstrated that NC-FeSi2 is a new potential material applicable to NIR photodetectors operating at low temperatures..
26. Shotra Izumi, Mahmoud Shaban, Nathaporn Promros, Keita Nomoto, Tsuyoshi Yoshitake, Near-Infrared Photodetection of beta-FeSi2/Si Heterojunction Photodiodes at Low Temperatures
, Appl. Phys. Lett., http://dx.doi.org/10.1063/1.4789391, Appl. Phys. Lett. Vol. 102, Issue 3 (2013) 032107, 2013.02, n-type b-FeSi2/p-type Si heterojunction photodiodes were fabricated by facing-targets direct-current
sputtering, and their near-infrared photodetection properties were studied in the temperature range of
50–300 K. At 300K, devices biased at 5V exhibited a current responsivity of 16.6mA/W. The
measured specific detectivity was remarkably improved from 3.5109 to 1.41011 cmHz1/2/W as
the devices were cooled from 300K down to 50 K. This improvement is mainly attributable to
distinguished suppression in heterojunction leakage current at low temperatures. The obtained results
indicate that b-FeSi2/Si heterojunctions offer high potential to be employed as near-infrared
photodetectors that are compatible with the current Si technology. V.
27. E. Garratt, S. AlFaify, Tsuyoshi Yoshitake, Yuki Katamune, M. Bowden, M. Nandasiri, M. Ghantasala, D. C. Mancini, S. Thevuthasan, A. Kayani, Effect of chromium underlayer on the properties of nano-crystalline diamond films, Appl. Phys. Lett., http://dx.doi.org/10.1063/1.4774086, No. 102, Issue 1 (2012) 011913., 2013.01, [URL], This paper investigated the effect of chromium underlayer on the structure, microstructure, and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on single crystal silicon substrate with a thin film of chromium as an underlayer. Characterization of the film was implemented using non-Rutherford backscattering spectrometry, Raman spectroscopy, near-edge x-ray absorption fine structure, x-ray diffraction, and atomic force microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphitic phases of the films evaluated by x-ray and optical spectroscopic analyses determined consistency between the sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction..
28. 大曲新矢, 花田 賢志, 片宗優貴, 吉田智博, 吉武 剛, 物理気相成長法による超ナノ微結晶ダイヤモンドの生成とドーピングによる結晶粒成長促進効果, 日本結晶成長学会誌, Vol. 39, No. 4 (2012) pp. 193-203, 2012.12.
29. Nathaporn Promros, Kyohei Yamashita, Ryuhei Iwasaki, Tsuyoshi Yoshitake, Effects of Hydrogen Passivation on Near-Infrared Photodetection of n-Type -FeSi2/p-Type Si Heterojunction Photodiodes, Jpn. J. Appl. Phys. , http://dx.doi.org/10.1143/JJAP.51.108006, Vol. 51, No. 10 (2012) 108006., 2012.10, Hydrogen passivation was applied to the initial epitaxial growth of n-type -FeSi2 thin films on p-type Si(111) substrates. Such passivation was applied at different gas inflow H2/Ar ratios ranging from 0 to 1.0. The photodetection performance of the photodiode fabricated at the optimum ratio of 0.2 was markedly improved as compared with those of the other samples. The quantum efficiency and detectivity were 2.08% and 5:40 109 cmHz1=2W1, respectively. The enhanced photodetective performance should be mainly because dangling bonds that act as trap centers for photocarriers are effectively inactivated by the passivation..
30. 大曲新矢, 吉武 剛, 超ナノ微結晶ダイヤモンド/水素化アモルファスカーボン混相膜の受光素子への応用, 表面科学, http://dx.doi.org/10.1380/jsssj.33.583, Vol. 33, No. 10 (2012) pp. 583-588, 2012.10, [URL], Ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) film is a new candidate material applicable to optoelectronic devices owing to its unique electrical and optical properties. This paper describes a recent progress in the research on the application of semiconducting UNCD/a-C:H films to photodetectors. p-Type conduction accompanied by an enhancement in the carrier concentration was realized by boron doping. Spectral response measurement showed obvious photocurrent in the wavelength of shorter than 280 nm and above 500 nm, which probably originate from UNCD grains and mid-gap states owing to grain boundaries, respectively. Photodiodes comprising p-type UNCD/a-C:H films and n-type Si substrates exhibited a clear response for deep-ultraviolet light, and the external quantum efficiency and responsivity were more than 70% and 130 mA/W, respectively. It was experimentally proved that UNCD/a-C:H is a potential material for the application to photodetectors. .
31. Nathaporn Promros, Kyohei Yamashita, Shota Izumi, Ryu¯hei Iwasaki, Mahmoud Shaban, Tsuyoshi Yoshitake, Near-Infrared Photodetection of n-Type β-FeSi2/intrinsic Si/p-Type Si Heterojunctions at low temperatures, Jpn. J. Appl. Phys. , http://dx.doi.org/10.1143/JJAP.51.09MF02, Vol. 51, No. 9 (2012) 09MF02., 2012.09.
32. Shinya Ohmagari, Tsuyoshi Yoshitake, p-Type Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Pulsed Laser Deposition and Their Application to Photodetectors, Jpn. J. Appl. Phys., http://dx.doi.org/10.1143/JJAP.51.090123, Vol. 51, No. 9, (2012) 090123 (Selected Topics in Applied Physics), 2012.07.
33. Yuki Katamune, Shinya Ohmagari, Tsuyoshi Yoshitake, Boron-Induced Dramatically Enhanced Growth of Diamond Grains in Nanocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films deposition by Coaxial Arc Plasma Deposition, Jpn. J. Appl. Phys., 10.1143/JJAP.51.078003, Vol. 51, No. 7 (2012) 078003., 2012.07, [URL], Boron-doped nanocrystalline diamond/hydrogenated amorphous carbon composite films were prepared by coaxial arc plasma deposition. The X-ray diffraction measurement exhibited that the diamond grain size is remarkably increased from 2 nm (undoped films) to 82 nm and the lattices of the grains are dilated accompanied by the incorporation of boron atoms into the lattices. The near-edge X-ray absorption fine-structure showed a weak exciton peak of diamond due to the enlarged grains. The enhanced growth mechanism is discussed on the basis of a defect-induced diamond growth model. .
34. Yuki Katamune, Shinya Ohmagari, Itsuroh Suzuki, Tsuyoshi Yoshitake, Effects of Aluminum Incorporation on Diamond Grain Growth in Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition, Jpn. J. Appl. Phys., 10.1143/JJAP.51.068002, Vol. 51, No. 6 (2012) 068002., 2012.06, [URL], Al-incorporated ultrananocrystalline diamond/hydrogenated amorphous carbon composite films were prepared by coaxial arc plasma deposition with an Al-blended graphite target. The grain size estimated from X-ray diffraction peaks was 27 nm; this value is an order of magnitude larger than that of unincorporated films. The appearance of diamond-200 and 222 peaks, which generally disappear due to the extinction rule of diffraction, and the dilation of lattice, implied the incorporation of Al atoms into the lattices. The near-edge X-ray absorption fine-structure showed a sharp exciton peak due to diamond, which is attributed to the enlarged grains. .
35. Shinya Ohmagari, Tsuyoshi Yoshitake, Deep-Ultraviolet Light Detection of p-Type Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films, Appl. Phys. Express, 10.1143/APEX.5.065202, Vol. 5, No. 6 (2012) 065202., 2012.06, [URL], Deep-ultraviolet (DUV) light detection of p-type ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films prepared by pulsed laser deposition was investigated. The photocurrent spectra revealed that the UNCD/a-C:H films possess strong responses in the wavelength range between 210 and 280 nm, which might originate from UNCD grains. The heterojunction photodiodes comprised of p-type UNCD/a-C:H and n-type Si exhibited an obvious photovoltaic action for 254 nm DUV light illumination. The external quantum efficiency and responsivity of the photodiodes were estimated to be 71% and 130 mA/W, respectively. It was proved that UNCD/a-C:H is a new promising material applicable to DUV photodetectors..
36. Shinya Ohmagari, Yūki Katamune, Hikaru Ichinose, and Tsuyoshi Yoshitake, "Enhanced growth of diamond grains in ultrananocrystalline diamond/hydrogenated amorphous carbon composite films by pulsed laser deposition with boron-blended graphite targets", Jpn. J. Appl. Phys., 10.1143/JJAP.50.035101, Vol. 51, No. 2 (2012) 025503., 2012.02, [URL], Heterojunction diodes comprised of p-type ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) and n-type Si, wherein 3 at. % boron-doped UNCD/a-C:H films were deposited on Si substrates by pulsed laser deposition, were electrically studied. The current–voltage (I–V) characteristics showed the typical rectification action with a leakage current density of 4.7 ×10-5 A/cm2 at a reverse voltage of -1 V. The carrier transport is expected to be in generation–recombination process accompanied by tunneling at low forward voltages of 0.1–0.5 V, and to be predominantly in tunneling at 0.5–1.0 V, from ideality factors estimated from the forward I–V curve. Grain boundaries in the UNCD/a-C:H film might act as centers for tunneling. From the capacitance–voltage measurement, the build-in potential of the heterojunction and an active carrier concentration in the p-type UNCD/a-C:H film were estimated to be 0.6 eV and 1.4 ×1017 cm-3, respectively. .
37. Ken-ichiro Sakai, Takayuki Sonoda, Shin-ichi Hirakawa, Kaoru Takeda, and Tsuyoshi Yoshitake, Current-Induced Magnetization Switching in Fe3Si/FeSi2 Artificial Lattices, Jpn. J. Appl. Phys., 10.1143/JJAP.50.08JD06, Vol. 51, No. 2 (2012) 028004., 2012.02, [URL], Fe3Si/FeSi2/Fe3Si trilayered films were grown on Si(111) substrates at a substrate temperature of 300 °C by facing-targets direct-current sputtering, and current-induced magnetization switching in current-perpendicular-to-plane geometry was studied for the films wherein an antiferromagnetic interlayer coupling perpendicular to the plane was probably formed at room temperature. The appearance of a hysteresis loop in the electrical resistance–injection current curve well coincided with that of a hysteresis loop in the magnetization curve perpendicular to the plane. In addition, the hysteresis loop in the electrical resistance–injection current curve disappeared under large magnetic fields. The origin of the change in the electrical resistance for the injection current might be the change in the interlayer coupling. .
38. Nathaporn Promros, Kyohei Yamashita, Chen Li, Kenji Kawai, Mahmoud Shaban, Toshihiro Okajima, and Tsuyoshi Yoshitake, n-Type Nanocrystalline FeSi2/intrinsic Si/p-Type Si Heterojunction Photodiodes fabricated by Facing-Targets Direct-Current Sputtering, Jpn. J. Appl. Phys., 10.1143/JJAP.51.021301, Vol. 51, No. 2 (2012) 021301., 2012.01, [URL], n-Type nanocrystalline (NC) FeSi2/intrinsic (i) Si/p-type Si heterojunctions, which were prepared by facing-target direct current sputtering, were evaluated as near-infrared photodiodes, and the effects of thin i-Si layer insertion on diode performance were studied. Their junction capacitance and reverse leakage current were clearly reduced compared with those of n-type NC-FeSi2/p-type Si heterojunctions. The capacitance–voltage curve implied that the effects of interface states is relatively suppressed by i-Si insertion. The near-infrared light detection performance was investigated using a 1.33 µm laser in the temperature range of 77–300 K. The detectivities at 300 and 77 K were 1.9 ×108 and 3.0 ×1011 cm Hz1/2 W-1, respectively, at a negative bias of -5 V, which were markedly improved compared with that of p–n heterojunctions. This might be because the formation of interface states that act as trap centers for photocarriers is suppressed. .
39. Shin-ichi Hirakawa, Takayuki Sonoda, Ken-ichiro Sakai, Kaoru Takeda1, and Tsuyoshi Yoshitake, Temperature-Dependent Current-Induced Magnetization Switching in Fe3Si/FeSi2/Fe3Si trilayered films, Jpn. J. Appl. Phys., 10.1143/JJAP.50.08JD06, Vol. 50, No. 8 (2011) 08JD06., 2011.08, [URL], Fe3Si/FeSi2/Fe3Si trilayered films were grown on Si(111) substrates at a substrate temperature of 300 °C by facing-targets direct-current sputtering, and current-induced magnetization switching in current-perpendicular-to-plane geometry was studied for the films wherein an antiferromagnetic interlayer coupling perpendicular to the plane was probably formed at room temperature. The appearance of a hysteresis loop in the electrical resistance–injection current curve well coincided with that of a hysteresis loop in the magnetization curve perpendicular to the plane. In addition, the hysteresis loop in the electrical resistance–injection current curve disappeared under large magnetic fields. The origin of the change in the electrical resistance for the injection current might be the change in the interlayer coupling. .
40. Sausan Al-Riyami, Shinya Ohmagari, and Tsuyoshi Yoshitake, Near-Edge X-ray Absorption Fine-Structure Spectroscopic Study on Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Pulsed Laser Deposition, Jpn. J. Appl. Phys., 10.1143/JJAP.50.08JD05, Vol. 50, No. 8 (2011) 08JD05., 2011.08, [URL], Nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite films, which possessed n-type conduction with enhanced electrical conductivity, were prepared by pulsed laser deposition. The film doped with a nitrogen content of 7.9 at. % possessed enhanced electrical conductivity of 18 Ω-1·cm-1 at 300 K. The near-edge X-ray absorption fine-structure (NEXAFS) measurement indicated the appearance of additional peaks due to π* C=N, σ* C=N, and σ* C–N bonds compared with the spectra of undoped films. The sp2 bonding fraction estimated from the NEXAFS spectra increased with the nitrogen content. The enhanced electrical conductivity is probably due to the formation of additional π* and σ* states and the enhancement in the sp2 bonding fraction. .
41. 大曲新矢,吉武剛, 超ナノ微結晶ダイヤモンド/水素化アモルファスカーボンを用いたフォトダイオードの作製, NEW DIAMOND, 第102号, Vol. 27, No. 3 (2011) pp. 40-41., 2011.07.
42. Al-Riyami Sausan, Shinya Ohmagari, and Tsuyoshi Yoshitake, Fourier Transform Infrared Spectroscopic Study of Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Pulsed laser Deposition, Diamond Relat. Mater., Vol. 20 (2011) pp. 1072-1075., 2011.06.
43. Shinya Ohmagari, Sausan Al-Riyami, and Tsuyoshi Yoshitake, p-Type ultrananocrystalline diamond/hydrogenated amorphous carbon composite/n-type Si heterojunction diodes fabricated by pulsed laser deposition, Jpn. J. Appl. Phys. , 10.1143/JJAP.49.031302, Vol. 50, No. 3, 035101., 2011.03, [URL], p-Type ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite films were fabricated by pulsed laser deposition using boron-doped graphite targets. Thermal analysis confirmed the occurrence of p-type conduction. The electrical conductivity increased with the doped amount of boron. An activation energy estimated from the Arrhenius plot was approximately 0.1 eV. Near-edge X-ray absorption fine structure spectra revealed that the σ*C–H peak weakened and the σ*C–B peak strengthened with an increase in the doped amount of boron. Fourier transform infrared spectroscopy showed that the sp3 C–H peak weakened with the doped amount of boron. These probably indicate that the hydrogen atoms that terminate the dangling bonds of UNCD crystallites are partially replaced with boron atoms. .
44. 吉武 剛,大曲新矢,アリヤミ サウサン,大谷亮太,隅谷和嗣,瀬戸山寛之,小林英一,岡島敏浩,平井康晴, 超ナノ微結晶ダイヤモンド/水素化アモルファスカーボンの受光素子への応用に向けた基盤研究, NanotechJapan Bulletin, Vol. 4, No. 1 (2011) フォーカス26., 2011.02, [URL].
45. Kenji Hanada, Tomohiro Yoshida, You Nakagawa, and Tsuyoshi Yoshitake, Formation of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films in Vacuum by Using A Coaxial Arc Plasma Gun, Jpn. J. Appl. Phys., 10.1143/JJAP.49.125503, Vol. 49, No. 12 (2010) 125503., 2010.12, [URL], Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were grown in vacuum using a coaxial arc plasma gun. From the X-ray diffraction measurement, the UNCD crystallite size was estimated to be 1.6 nm. This size is dramatically reduced from that (2.3 nm) of UNCD/hydrogenated amorphous carbon (a-C:H) composite films grown in a hydrogen atmosphere. The sp3/(sp3 + sp2) value, which was estimated from the X-ray photoemission spectrum, was also reduced to be 41%. A reason for it might be the reduction in the UNCD crystallite size. From the near-edge X-ray absorption fine-structure (NEXAFS) spectrum, it was found that the π*C=C and π*C≡C bonds are preferentially formed instead of the σ*C–H bonds in the UNCD/a-C:H films. Since the extremely small UNCD crystallites (1.6 nm) correspond to the nuclei of diamond, we consider that UNCD crystallite formation should be due predominantly to nucleation. The supersaturated condition required for nucleation is expected to be realized in the deposition using the coaxial arc plasma gun. .
46. Mahmoud Shaban, Kenji Kawai, Nathaporn Promros, and Tsuyoshi Yoshitake, n-Type Nanocrystalline-FeSi2/p-Type Si Heterojunction Photodiodes Prepared at Room Temperature, IEEE Electron Device Lett., Vol. 31, No. 12, pp. 1428-1430., 2010.12.
47. Sausan Al-Riyami, Shinya Ohmagari, and Tsuyoshi Yoshitake, Electrical Properties and Chemical Bonding Structures of Nitrogen-doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Pulsed Laser Deposition, Appl. Phys. Express, 10.1143/APEX.3.115102, Vol. 3, No. 11 (2010) 115102., 2010.11, [URL], Nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by pulsed laser
deposition. The film doped with a nitrogen content of 7.9 at.% possessed n-type conduction with an electrical conductivity of 181cm1 at
300 K. A heterojunction with p-type Si exhibited typical rectifying action. The UNCD grain size was estimated to be 2.5nm from X-ray diffraction
measurement. Near-edge X-ray absorption fine-structure and Fourier transform infrared spectroscopies revealed the preferential formations of
C¼N and C–N bonds and an enhanced amount of sp2 bonds in the films..
48. Kenji Hanada, Tsuyoshi Yoshitake, Takashi Nishiyama, and Kunihito Nagayama, Time-Resolved Spectroscopic Observation of Deposition Processes of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films by Using a Coaxial Arc Plasma Gun, Jpn. J. Appl. Phys., 10.1143/JJAP.49.08JF09, Vol. 49, No. 8 (2010) 08JF09., 2010.08, [URL].
49. 吉武 剛, 超ナノ微結晶ダイヤモンド/水素化アモルファスカーボン混相膜の化学結合構造と機械物性, まてりあ, 第49巻 第7号 (2010) pp. 317-319., 2010.07.
50. Kenji Hanada, Takashi Nishiyama, Tsuyoshi Yoshitake, and Kunihito Nagayama, Optical Emission Spectroscopic of Deposition Process of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films by Using a Coaxial Arc Plasma Gun, Diamond Relat. Mater., in press, 2010.05.
51. Kazushi Sumitani, Ryota Ohtani, Tomohiro Yoshida, You Nakagawa, Satoshi Mohri, Tsuyoshi Yoshitake, Influences of repetition rate of laser pulses on growth of crystalline AlN films on sapphire(0001) substrates by pulsed laser deposition, Diamond Relat. Mater., Vol. 19 (2010) pp. 618-620., 2010.04.
52. Sausan Al-Riyami, Shinya Ohmagari, and Tsuyoshi Yoshitake, X-ray Photoemission Spectroscopy of Nitrogen-Doped UNCD /a-C:H Films Prepared by Pulse Laser Deposition, Diamond Relat. Mater., 10.1016/j.diamond.2010.01.023, Vol. 19 (2010) pp. 510-513., 2010.04.
53. Shinya Ohmagari, Tsuyoshi Yoshitake, Akira Nagano, Ryota Ohtani, Hiroyuki Setoyama, Eiichi Kobayashi, and Kunihito Nagayama, X-ray photoemission spectroscopy study of ultrananocrystalline diamond/hydrogenated amorphous carbon films prepared by pulsed laser deposition, Diamond Relat. Mater., in press, 2010.04.
54. Shinya Ohmagari, Tsuyoshi Yoshitake , Akira Nagano, Ryota Ohtani, Hiroyuki Setoyama, Eiichi Kobayashi, Takeshi Hara, and Kunihito Nagayama, Formation of p-Type Semiconducting Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films by Boron Doping, Jpn. J. Appl. Phys., 10.1143/JJAP.49.031302, Vol. 49, No. 3 (2010) 031302, 2010.03, [URL].
55. Kazushi Sumitani , Ryota Ohtani, Tomohiro Yoshida, You Nakagawa, Satoshi Mohri, and Tsuyoshi Yoshitake, Synchrotron X-ray Diffraction Study of Single-Phase β-AlN Thin Film Heteroepitaxially Grown on a Sapphire(0001) Substrate by Pulsed Laser Deposition, Jpn. J. Appl. Phys. , Vol. 49, No. 2 (2010) 020212., 2010.02.
56. Tsuyoshi Yoshitake, You Nakagawa, Akira Nagano, Ryota Ohtani, Hiroyuki Setoyama, Eiichi Kobayashi, Kazushi Sumitani, Yoshiaki Agawa, and Kunihito Nagayama, Structural and physical characteristics of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films deposited using a coaxial arc-plasma gun, Jpn. J. Appl. Phys., 10.1143/JJAP.49.015503, Vol. 49, No. 1, 015503, 2010.01, [URL].
57. Mahmoud Shaban, Shota Izumi, Keita Nomoto, and Tsuyoshi Yoshitake, "n-Type β-FeSi2/intrinsic-Si/p-type Si heterojunction photodiodes for near-infrared light detection at room temperature", Appl. Phys. Lett., 10.1063/1.3250171 , Vol.95 (2009) 162102., 2009.10, [URL].
58. Mahmoud Shaban, Keita Nomoto, Shota Izumi, and Tsuyoshi Yoshitake, "Characterization of near-infrared n-type β-FeSi2/p-type Si heterojunction photodiodes at room temperature", Appl. Phys. Lett., 10.1063/1.3151915 , 94 (2009) 222113., 2009.06, [URL].
59. Shinya Ohmagari, Tsuyoshi Yoshitake, Akira Nagano, Sausan AL-Riyama, Ryota Ohtani, Hiroyuki Setoyama, Eiichi Kobayashi and Kunihito Nagayama, "Near-edge X-ray absorption fine-structure of ultrananocrystalline diamond/amorphous carbon films prepared by pulsed laser deposition", J. Nanomater., in press, 2009.03.
60. Tsuyoshi YOSHITAKE , Akira NAGANO, Shinya OHMAGARI, Masaru ITAKURA, Noriyuki KUWANO, Ryota OHTANI, Hiroyuki SETOYAMA, Eiichi KOBAYASHI, and Kunihito NAGAYAMA, "Near-edge X-ray absorption fine-structure, X-ray photoemission, Fourier transfer infrared spectroscopies of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films"
, Jpn. J. Appl. Phys., 10.1143/JJAP.48.020222, Vol. 48, No. 2 (2009) 020222., 2009.02, [URL].
61. Kenji Hanada, Takashi Nishiyama, Tsuyoshi Yoshitake, and Kunihito Nagayama, "Time-resolved Observation of Deposition Process of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films in Pulsed Laser Deposition", J. Nanomater., 2009 (2009) 901241., 2009.01.
62. Akira NAGANO and Tsuyoshi YOSHITAKE, Takeshi HARA and Kunihito NAGAYAMA, "Optical properties of ultrananocrystalline diamond/amorphous carbon composite films prepared by pulsed laser deposition", Diamond Rel. Mater., 17, pp. 1199-1202., 2008.08.
63. Satoshi MOHRI, Tsuyoshi YOSHITAKE, Takeshi HARA, and Kunihito NAGAYAMA, "Growth of metastable cubic AlN by reactive pulsed laser deposition", Diamond Rel. Mater., 17, pp. 1796-1799, 2008.08.
64. Mahmoud SHABAN, Haruhiko KONDO, Kazuhiro NAKASHIMA, and Tsuyoshi YOSHITAKE, "Electrical and Photovoltaic Properties of n-Type Nanocrystalline FeSi2/p-Type Si Heterojunctions Prepared by Facing Target Direct-current Sputtering at Room Temperature", Jpn. J. Appl. Phys, 10.1143/JJAP.47.5420, Vol. 47, No. 7, pp. 5420-5422., 2008.07, [URL].
65. Mahmoud SHABAN, Keita NOMOTO, Kazuhiro NAKASHIMA, and Tsuyoshi YOSHITAKE, "Low-temperature Annealing of n-type β-FeSi2/p-type Si Heterojunctions"
, Jpn. J. Appl. Phys, Vol. 47, No. 5, pp. 3444-3446., 2008.05.
66. Tsuyoshi YOSHITAKE , Satoshi MOHRI, Takeshi HARA, and Kunihito NAGAYAMA, "Growth of metastable β-AlN by pulsed laser deposition", Jpn. J. Appl. Phys, Vol. 47, No. 5, pp. 3600-3602, 2008.05.
67. Kaoru TAKEDA, Tsuyoshi YOSHITAKE , Yoshiki SAKAMOTO, Tetsuya OGAWA, Daisuke HARA, Masaru ITAKURA, Noriyuki KUWANO, Toshinori KAJIWARA, and Kunihito NAGAYAMA, "Enhanced interlayer coupling and magnetoresistance ratio in Fe3Si/FeSi2 superlattices", Appl. Phys. Express, Vol. 1, No. 2 (2008) 021302., 2008.02.
68. Mahmoud SHABAN, Kazuhiro NAKASHIMA, and Tsuyoshi YOSHITAKE, "Substrate Temperature Dependence of Photovoltaic Properties of β-FeSi2/Si Heterojunctions Prepared by Facing-target DC Sputtering"
, Jpn. J. Appl. Phys. Part 1, Vol. 46, No. 12, pp. 77087710, 2007.12.
69. Kaoru TAKEDA, Tsuyoshi YOSHITAKE, Dai NAKAGAUCHI, Tetsuya OGAWA, Daisuke HARA, Masaru ITAKURA, Noriyuki KUWANO, Yoshitsugu TOMOKIYO, Toshiyuki KAJIWARA, and Kunihito Nagayama, "Epitaxy in Fe3Si/FeSi2 superlattices prepared by facing target direct-current sputtering at room tempertaure", Jpn. J. Appl. Phys. Part 1, Vol. 46, No. 12, pp. 78467848., 2007.12.
70. Tsuyoshi YOSHITAKE, Akira NAGANO, Masaru ITAKURA, Noriyuki KUWANO, Takeshi HARA, and Kunihito NAGAYAMA, "Spectral absorption properties of ultrananocrystalline diamond/amorphous carbon composite thin films prepared by pulsed laser deposition", Jpn. J. Appl. Phys. Part 2, 10.1143/JJAP.46.L936, Vol.46, No.38, pp.L936 - L938, 2007.10, [URL].
71. Mahmoud SHABAN, Kazuhiro NAKASHIMA, Wataru YOKOYAMA, and Tsuyoshi YOSHITAKE, "Photovoltaic Properties of n-type β-FeSi2/p-type Si Heterojunctions", Jpn. J. Appl. Phys. Part2, 10.1143/JJAP.46.L667, Vol. 46, No.27, pp. L667-L669, 2007.07, [URL].
72. T. Yoshitake, T. Ogawa, D. Nakagauchi, D. Hara, M. Itakura, N. Kuwano, Y. Tomokiyo, K. Takeda, T. Kajiwara, M. Ohashi, G. Oomi and K. Nagayama, "Interlayer coupling in ferromagnetic epitaxial Fe3Si/FeSi2 superlattices", Appl. Phys. Lett., 10.1063/1.2410222 , 89, 253110, 2006.12, [URL].
73. T. Yoshitake, Y. Inokuchi, A. Yuri, and K. Nagayama, "Direct epitaxial growth of semiconducting beta-FeSi2 thin films by facing targets direct-current sputtering", Appl. Phys. Lett., 10.1063/1.2200153 , 88, 182104, 2006.06, [URL].
74. K. Takarabe, H. Doi, Y. Mori, K. Fukui, T. Yoshitake, K. Nagayama, "Enhanced optical absorption in nano crystalline FeSi2 and hydrogenation effect on its characteristic energy", Appl. Phys. Lett., 88, 061911, 2006.02.
75. T. Yoshitake, D. Nakagauchi, T. Ogawa, M. Itakura, N. Kuwano, Y. Tomokiyo, T. Kajiwara, and K. Nagayama, "Room-temperature epitaxial growth of ferromagnetic Fe3Si films on Si(111) by facing target direct-current sputtering", Appl. Phys. Lett., 10.1063/1.1978984, 86, 26, 86, 262505, 2005.09.
76. Tsuyoshi Yoshitake, Takeshi Hara, Tomohito Fukugawa, Ling yun Zhu, Masaru Itakura, Noriyuki Kuwano, Yoshitsugu Tomokiyo and Kunihito Nagayama, "Low-Temperature Growth of Nanocrystalline Diamond by Reactive Pulsed Laser Deposition under a Hydrogen Atmosphere", Jpn. J. Appl. Phys. Part2, 10.1143/JJAP.43.L240, 43, 2B, L240-L242, Vol. 43, pp. L 240–L 242, 2004.06.
77. T. Yoshitake, M. Yatabe, M. Itakura, N. Kuwano, Y. Tomokiyo, and K. Nagayama, "Semiconducting nanocrystalline iron disilicide thin films prepared by pulsed-laser ablation", Appl. Phys. Lett., 10.1063/1.1617374, 83, 15, 3057-3059, Vol. 83, 3057-3059., 2003.10.
78. Tsuyoshi Yoshitake, Takashi Nishiyama and Kunihito Nagayama, "Homo-Growth of Diamond Single Phase Thin Films by Pulsed Laser Ablation of Graphite", Jpn. J. Appl. Phys. Part2, Vol.40, No.6A pp.L573 - L575., 2001.06.
79. Tsuyoshi Yoshitake, Gousuke Shiraishi, and Kunihito Nagayama, "Droplet-free thin films deposited by pulsed laser deposition using a mechanical filter", Jpn. J. Appl. Phys. Part1, Vol. 41, 836-837, 2001.02.
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
1. Tsuyoshi Yoshitake, Eslam Abubakr, Hiroshi Ikenoue, Application of laser-induced doping in liquids containing dopants to diamond, OIST Diamond Workshop, 2017.10.
2. Tsuyoshi Yoshitake, Widely-variable electrical conductivity of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by PVD, 3rd French-Japanese Workshop on Diamond Power Devices, 2015.07.
3. Tsuyoshi Yoshitake, Preparation of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Physical Vapor Deposition and Their Application to Photodiodes and Hard Coating, Hasselt Diamond Workshop 2015 SBDD XX, 2015.02.
4. Tsuyoshi Yoshitake, Yuki Katamune, Takanori Hanada, Satoshi takeichi, Shinya Ohmagari, Application of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films to Photodiodes, Pacific Rim Symposium on Surfaces, Coatings and Interfaces (PacSurf 2014), 2014.12.
5. Tsuyoshi Yoshitake, Yuki Katamune, Takanori Hanada, Hiroki Gima, Abdelrahman M. Ahmed, Shinya Ohmagari, Sausan Al-Riyami, Kenji Hanada, Growth of UNCD/a-C:H composite films by PVD and their electrical conductivity control, Japan-France Workshop on Diamond Power Devices, 2014.10.
6. Tsuyoshi Yoshitake, Present state of research on photodiodes comprising iron disilicides and problems awaiting solution, International conference and summer school on advanced silicide technology 2014, 2014.07, Semiconducting iron disilicide is a new candidate applicable to near-infrared-wavelength photoelec-tronic devices [1-3], because it possesses features such as a direct optical band gap of 0.85 eV above an indirect gap (0.76 eV) and a large absorption coefficient, which is 10^5 cm1 at 1.0 eV[4]. Since beta-FeSi2 can be epitaxially grown on Si due to small lattice mismatches, a heterojunction diode comprising a beta-FeSi2 thin film and singlecrystalline Si substrate is a device that can be briefly formed by employing vapor deposition. For near-infrared light detection in the Si/beta-FeSi2 heterojunction diodes, near-infrared light transmitted through the front-side Si substrate can be absorbed in the depletion region of the back-side beta-FeSi2 thin film.
In our previous works, we have progresses researches on p-type Si/n-type beta-FeSi2 heterojunction diodes, totally from the epitaxially growth of beta-FeSi2 thin film on Si(111) by sputtering [5] to the evaluation of p-type Si/n-type beta-FeSi2 heterojunctions as photodetectors [6,7]. It was confirmed that beta-FeSi2 in the heterojunction evidently con-tributes to the photodetection of near-infrared light from the photoresponse spectrum of the heterojunction, as shown in Fig. 1. In addition, as shown in Fig.2, the heterojunction clearly exhibited current due to photogenerated carriers for 1.33 micrometer monochromatic light in the I-V curves in comparison with that in the dark. The detectivity at temperatures lower than 100 K reach approximately 2*10^11 cmHz^1/2 /W, which is comparable with that of existing near infrared photodiodes comprising PbS and InAs at the same temperature. However, the external quantum efficiency is less than 10 % [6,7].
In this presentation, the progress thus far of our research and recent problems that we are facing and should be solved for the next step will be introduced. A serious problem for p-type Si/n-type beta-FeSi2 heterojunctions is that a barrier due to a band offset appears in the valence band and it prevents from the flow of photogenerated carriers from the n-type beta-FeSi2 layer to the p-type Si layer. The opposite combination, namely n-type Si/p-type beta-FeSi2, is structurally ideal because of it has no barriers due to the band offset. In order to form p-type -FeSi2, the residual carrier density should be reduced for controlling the conduction type. Carbon doping, which might be effective for a reduction in the carrier density, will be introduced.

[1] D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, Nature (London) 387 (1997) 686.
[2] Y. Maeda, T. Akita, K. Umezawa, K. Miyake, M. Sagawa, SPIE Proc. 3419 (1998) 341916.
[3] T. Ootsuka, Y. Fudamoto, M. Osamura, T. Suemasu, Y. Makita, Y. Fukuzawa, and Y. Nakayama, Appl. Phys. Lett. 91 (2007) 142114.
[4] H. Udono, I. Kikuma, T. Okuno, Y. Matsumoto, and H. Tajima: Appl. Phys. Lett. 85 (2004) 1937.
[5] .M. Shaban, S. Izumi, K. Nomoto, and T. Yoshitake, Appl. Phys. Lett. 95 (2009) 162102.
[6] N. Promros, K. Yamashita, S. Izumi, R. Iwasaki, M. Shaban, and T. Yoshitake, Jpn. J. Appl. Phys. 51 (2012) 09MF02.
[7] S. Izumi, M. Shaban, N. Promros, K. Nomoto, and T. Yoshitake, Appl. Phys. Lett. 102 (2013) 032107..
7. Tsuyoshi Yoshitake, Ecologically Friendly Semiconductors: Iron Disilicides and Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon, IUMRS-International Conference on Electronic Materials (IUMRS-ICEM 2012), 2012.09.
特許出願・取得
特許出願件数  14件
特許登録件数  9件
学会活動
所属学会名
ダイヤモンドフォーラム
応用物理学会
応用物理学会シリサイド系半導体と関連物質研究会
磁気学会
学協会役員等への就任
2018.04~2020.03, 応用物理学会シリサイド系半導体と関連物質研究会, 幹事.
2016.04~2019.03, 応用物理学会九州支部, アジア応用物理学会議運営委員会 委員.
2010.04~2019.03, 応用物理学会九州支部, 理事.
2011.04~2018.03, 応用物理学会シリサイド系半導体と関連物質研究会, 幹事.
2011.02~2015.01, 応用物理学会, 代議員.
2010.04~2014.03, 応用物理学会九州支部, 理事.
2008.04~2010.03, 応用物理学会九州支部, 会計幹事(正).
2006.04~2008.03, 応用物理学会九州支部, 会計幹事(正).
2004.04~2006.03, 応用物理学会九州支部, 会計幹事(副).
2009.04~2011.03, 応用物理学会シリサイド系半導体と関連物質研究会, 幹事.
2007.04~2009.03, 応用物理学会シリサイド系半導体と関連物質研究会, 幹事.
2005.04~2007.03, 応用物理学会シリサイド系半導体と関連物質研究会, 幹事.
2001.04~2007.03, 応用物理学会シリサイド系半導体と関連物質研究会, 幹事.
1999.04~2011.03, 環境半導体研究会, 幹事.
学会大会・会議・シンポジウム等における役割
2018.03.17~2018.03.20, 2018年第65回応用物理学会春季学術講演会 分科名:6.2カーボン系薄膜, 座長.
2017.12.01~2017.12.02, The 2nd Asian Applied Physics Conference (Asian-APC), 座長.
2017.09.05~2017.09.08, 2017年第78回応用物理学会秋季学術講演会, 現地実行委員.
2017.09.05~2017.09.08, 2017年第78回応用物理学会秋季学術講演会, 現地実行委員.
2017.03.14~2017.03.17, 2017年第64回応用物理学会春季学術講演会, 奨励賞審査員.
2017.03.13~2017.03.17, 2017年 第64回応用物理学会春季学術講演会, 座長(Chairmanship).
2016.12.03~2016.12.04, 2016年応用物理学会九州支部学術講演会, 発表奨励賞審査員.
2016.12.03~2016.12.04, 2 0 1 6 年( 平成28年度)応用物理学会九州支部学術講演会, 座長(Chairmanship).
2016.12.03~2016.12.04, The 1st Asian Applied Physics Conference, 座長(Chairmanship).
2016.09.13~2016.09.16, 第77回応用物理学会秋季学術講演会, 奨励賞審査委員.
2016.07.16~2016.07.18, Asia-Pacific Conference on Semiconducting Silicides and Related Materials Science and Technology Towards Sustainable Electronics ( APAC Silicide 2016 ), 現地実行委員長.
2016.03.19~2016.03.22, 第63回応用物理学会春季学術講演会, 奨励賞審査員.
2015.12.05~2013.12.06, 2015年応用物理学会九州支部学術講演会, 発表奨励賞審査員.
2015.12.05~2015.12.06, 2 0 1 5 年( 平成27年度)応用物理学会九州支部学術講演会, 座長(Chairmanship).
2015.07.25~2015.07.26, シリサイド系半導体と関連物質研究会 夏の学校, 現地実行委員長.
2015.02.05~2015.02.06, The first Joint Symposium of Kyushu University and Yonsei University on materials Science and Chemical Engineering (SKY-1), 座長(Chairmanship).
2014.12.06~2014.12.07, 2 0 1 4 年( 平成2 6 年度)応用物理学会九州支部学術講演会, 座長(Chairmanship).
2014.10.06~2015.10.10, Japan-France Workshop on Diamond Power Devices, 現地実行委員長.
2014.08.25~2014.08.30, The 15th IUMRS-International Conference in Asia (IUMRS-ICA 2014) , シンポジウムC-11のcochair.
2014.08.24~2014.08.30, The 15th IUMRS-International Conference in Asia (IUMRS-ICA 2014) , 座長(Chairmanship).
2013.11.30~2013.12.01, 2013年応用物理学会九州支部学術講演会, 発表奨励賞選考委員.
2013.11.30~2013.12.01, 2013年応用物理学会九州支部学術講演会, 座長(Chairmanship).
2013.07.27~2013.07.29, Asia-Pacific Conference on Green Technology with Silicides and Related Materials (APAC-SILICIDE 2013), Program Committee.
2013.07.27~2013.07.29, Asia-Pacific Conference on Green Technology with Silicides and Related Materials (APAC-SILICIDE 2013), 座長(Chairmanship).
2012.12.02~2012.12.02, 2012年応用物理学会九州支部オータムスクール, 司会(Moderator).
2012.12.01~2012.12.02, 平成24年度応用物理学会九州支部 オータムスクール, 責任者(企画,講師選定,運営).
2012.12.01~2012.12.02, 2012年応用物理学会九州支部学術講演会, 発表奨励賞選考委員.
2012.11.23~2012.11.23, 第4回半導体材料・デバイスフォーラム, 奨励賞審査員.
2012.11.23~2012.11.23, 第4回半導体材料・デバイスフォーラム, 座長(Chairmanship).
2012.11.09~2012.11.11, 第42回結晶成長国内会議(NCCG-42), 実行委員.
2012.01.06~2012.01.09, 2012年度日本放射光学会年会・合同シンポジウム(JSR12), 会計幹事.
2011.11.26~2010.11.27, 2011年応用物理学会九州支部学術講演会, 発表奨励賞選考委員.
2011.11.26~2011.11.27, 2011年応用物理学会九州支部学術講演会, 座長(Chairmanship).
2010.11.27~2010.11.28, 2010年応用物理学会九州支部学術講演会, 現地実行委員会委員,懇親会幹事.
2010.11.27~2010.11.28, 2010年応用物理学会九州支部学術講演会, 発表奨励賞選考委員.
2010.11.27~2010.11.28, 2010年応用物理学会九州支部学術講演会, 座長(Chairmanship).
2010.09.14~2010.09.17, 2010年秋季 第71回 応用物理学会学術講演会, 副会計.
2010.07.24~2010.07.26, APAC-SILICIDE 2010, プログラム委員会.
2009.11.21~2009.11.22, 2009年応用物理学会九州支部学術講演会, 発表奨励賞選考委員.
2009.11.21~2009.11.22, 2009年応用物理学会九州支部学術講演会, 座長(Chairmanship).
2009.08.01~2009.08.02, 第12回シリサイド系半導体と関連物質研究会 夏の学校, 現地実行委員.
2008.11.29~2008.11.30, 2008年 応用物理学会九州支部講演会, 座長(Chairmanship).
2006.11.25~2006.11.26, 2006年 応用物理学会九州支部講演会, 座長(Chairmanship).
2006.09.01~2006.09.01, SAGAシンクロトロン シンポジウム, 会計幹事.
2006.07.01~2006.07.01, Asia-Pacific Conference on Semiconducting Silicides Science and Technoligy towards Sustainable Optoelectronics, 会計幹事.
2005.11.01~2005.11.01, 2005年 応用物理学会九州支部講演会, 座長(Chairmanship).
2003.12.06~2003.12.06, 2003年 応用物理学会九州支部講演会, 座長(Chairmanship).
2003.10.03~2003.10.08, The 8th IUMRS International Conference on Advanced Materials、sectionC-7, 会計委員長.
2003.10, IUMRS-ICAM 2003, 座長(Chairmanship).
2002.03.27~2002.03.30, 2002年春季 第49回応用物理学関係連合講演会, 座長(Chairmanship).
2001.12.01~2001.12.01, 2001年 応用物理学会九州支部講演会, 座長(Chairmanship).
2001.08.01~2001.08.01, シリサイド系半導体と関連物質研究会 夏の研究会, 実行委員.
2001.01.01~2001.01.01, 高速度撮影とフォトニクスに関する総合シンポジウム2001, 組織委員.
2000.12.02~2000.12.03, 2000年 応用物理学会九州支部講演会, 座長(Chairmanship).
2000.09.01~2000.09.01, 日英共同ワークショップ:環境半導体の現状と展望, 実行委員.
2000.03.01~2000.03.01, 春季第47回応用物理学会関連連合講演会, シンポジウム世話人.
2000.01.01~2000.01.01, レーザー学会第20回年次大会, 実行委員.
1999.12.04~1999.12.05, 1999年 応用物理学会九州支部講演会, 座長(Chairmanship).
1999.01.01~1999.01.01, 第1回環境半導体シンポジウム, 実行委員.
1996.12.01~1996.12.01, 日本光学会 光学シンポジウム, 現地実行委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2017年度 12  12 
2016年度
2015年度 20  20 
2014年度 21  16  37 
2013年度 12 
2012年度 12  12 
2011年度
2010年度
2009年度 10  10 
2008年度
2007年度
2006年度 11  11 
2005年度
2003年度
2002年度
2001年度
2000年度
1998年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
ハワイ国際会議場, UnitedStatesofAmerica, 2015.10~2015.10.
CNRSグルノーブル、ネール研究所, A Hotel in Nimes, France, 2015.06~2015.06.
cultuurcentrum Hasselt , Belgium, 2015.02~2015.02.
Hapuna Beach Prince Hotel, France, 2014.12~2014.12.
E-MRS 2013 SPRING MEETING, Strasbourg, France, 2013.05~2013.06.
Kyushu University Cairo Office, ARAB ACADEMY FOR SCIENCE, TECHNOLOGY AND MARITIME TRANSPORT, Egypt, 2013.06~2013.06.
ストラスブルグ国際会議場, France, 2013.05~2013.06.
Hawaii Convention Center and the Hilton Hawaiian Village (PRiME2012), UnitedStatesofAmerica, 2012.10~2012.10.
Maison de la Chimie in Paris (63rd Annual Gaseous Electronics Conference and 7th International Conference on Reactive Plasmas), France, 2010.10~2010.10.
MARITIM Hotel Berlin (International Conference on Processing & Manufacturing of Advanced Materials), Germany, 2009.08~2009.08.
a hotel at Sitges, Spain (19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides), Spain, 2008.09~2008.09.
シンガポール国際会議場(International Conference on Materials for Advanced Technologies 2007) , Singapore, 2007.07~2007.07.
MARITIM Hotel Berlin (18th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides), Germany, 2007.09~2007.09.
釜山のワークショップの行われたホテル, SouthKorea, 2006.11~2006.11.
ツールーズ国際会議場, France, 2005.09~2005.09.
ザルツブルグ国際会議場, Austria, 2003.09~2005.09.
グラナダ国際会議場, Spain, 2002.09~2002.09.
シンガポール国際会議場, Singapore, 2001.07~2001.07.
北京の国際会議に行われたホテル, China, 1999.06~1999.06.
クレタ島の国際会議の行われたホテル, Greece, 1998.09~1998.09.
外国人研究者等の受入れ状況
2018.07~2018.07, 2週間以上1ヶ月未満, Department of Physics, King Mongkut’s Institute of Technology Ladkrabang, Thailand, 私費.
2018.01~2018.01, 2週間以上1ヶ月未満, Department of Physics, King Mongkut’s Institute of Technology Ladkrabang, Thailand, 私費.
2017.07~2016.07, 2週間以上1ヶ月未満, Department of Physics, King Mongkut’s Institute of Technology Ladkrabang, Thailand, 政府関係機関.
2016.06~2016.07, 2週間以上1ヶ月未満, Department of Physics, King Mongkut’s Institute of Technology Ladkrabang, Thailand, 政府関係機関.
2015.06~2015.06, 2週間以上1ヶ月未満, Department of Physics, King Mongkut’s Institute of Technology Ladkrabang, Thailand, 政府関係機関.
2015.01~2015.02, 1ヶ月以上, German University of Technology in Oman, Japan, 外国政府・外国研究機関・国際機関.
2014.07~2014.08, 1ヶ月以上, Department of Physics, King Mongkut’s Institute of Technology Ladkrabang, Thailand, 政府関係機関.
2013.09~2014.03, 1ヶ月以上, Aswan University, Egypt, 外国政府・外国研究機関・国際機関.
2013.05~2013.05, 2週間以上1ヶ月未満, Department of Physics, King Mongkut’s Institute of Technology Ladkrabang, Thailand, 政府関係機関.
2012.06~2012.08, 1ヶ月以上, Western Michigan University, UnitedStatesofAmerica, 日本学術振興会.
受賞
奨励賞, 日本MRS, 2000.12.
奨励賞, 日本MRS, 1999.12.
奨励賞, 日本MRS, 1998.12.
講演奨励賞, 応用物理学会, 1998.03.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2017年度~2019年度, 特別研究員奨励費, 代表, オールカーボン太陽電池のためのナノカーボン薄膜の研究開発.
2016年度~2018年度, 挑戦的萌芽研究, 代表, ナノ微結晶ダイヤモンド膜へのスピン注入.
2015年度~2017年度, 基盤研究(B), 代表, ナノ微結晶ダイヤモンド膜の光・電子物性制御と光電変換素子への応用.
2012年度~2014年度, 挑戦的萌芽研究, 代表, 物理気相成長法による超高濃度ボロンドープナノダイヤモンド膜の創製と超伝導特性.
2009年度~2011年度, 基盤研究(C), 連携, 鉄シリサイド強磁性相/半導体相人工格子の層間結合に及ぼす圧力効果とそのメカニズム.
2008年度~2010年度, 基盤研究(B), 代表, FeーSi系強磁性体/半導体超格子における層間結合への光および温度効果.
2007年度~2008年度, 基盤研究(C), 連携, Fe-Si系半導体/強磁性体ヘテロ構造における強磁性層間結合への圧力効果.
2001年度~2002年度, 奨励研究(A), 代表, レーザーアブレーションによるダイヤモンド薄膜のホモエピタキシャルおよびヘテロ成長.
1999年度~2000年度, 基盤研究(C), 代表, β-FeSi_2/Fe人工格子におけるスピン依存散乱を起源とする光誘起電気抵抗変化.
1999年度~2000年度, 基盤研究(B), 分担, 高電磁界下でのレーザ蒸着法による超電導導体の開発.
1997年度~1999年度, 基盤研究(B), 分担, 高分子材料の衝撃圧縮特性の微視的解明.
日本学術振興会への採択状況(科学研究費補助金以外)
1999年度~1999年度, 国際研究集会, 代表, The Effects of the substrate temperature and the laser wavelength on the formation of carbon thin films by pulsed laser deposition.
競争的資金(受託研究を含む)の採択状況
2017年度~2020年度, JST 研究成果展開事業 研究成果最適展開支援プログラム(A-STEP), 代表, 同軸型アークプラズマ堆積法を利用したウルトラナノ微結晶ダイヤモンド被膜工具の開発.
2017年度~2017年度, 公益財団法人 大澤科学技術振興財団 助成金, 代表, 超ナノ微結晶ダイヤモンド膜の切削工具への応用.
2016年度~2016年度, 一般財団法人先端加工機械技術振興協会 平成28年度 研究助成, 代表, 同軸型アークプラズマ堆積法による超ナノ微結晶ダイヤモンド膜の硬質皮膜への応用.
2016年度~2016年度, 公益財団法人 大澤科学技術振興財団 助成金, 代表, 超ナノ微結晶ダイヤモンド膜の切削工具への応用.
2016年度~2016年度, JSTマッチングプラナープログラム「企業ニーズ解決試験」, 代表, 同軸型アークプラズマ堆積法を用いた超鋼へのナノダイヤモンド膜のハードコーティング.
2015年度~2015年度, 公益財団法人 大澤科学技術振興財団 助成金, 代表, 超ナノ微結晶ダイヤモンド膜の切削工具への応用.
2015年度~2015年度, 公益財団法人吉田学術教育振興会, 代表, ナノカーボンを光電変換層に用いた新規太陽電池の創製.
2011年度~2014年度, 戦略的創造研究推進事業 (文部科学省), 代表, ナノカーボンによる新規太陽電池の創製.
2013年度~2014年度, JST A-STEP シーズ顕在化タイプ, 代表, CAPD法を利用したUNCDコーティング方法の開発.
2013年度~2013年度, 公益財団法人 大澤科学技術振興財団 助成金, 代表, 超ナノ微結晶ダイヤモンド膜の切削工具への応用に向けた基盤研究.
2011年度~2012年度, マツダ研究助成金, 代表, ナノカーボンを用いた新規太陽電池の創製.
2012年度~2012年度, 日揮・実吉奨学会助成金, 分担, アーク放電法を活用し作製したナノダイヤモンドクラスターへの磁性付与機能化.
2011年度~2011年度, 大倉和親記念財団助成金, 分担, 超ナノ微結晶ダイヤモンド粒子へのMnドープによる磁性付与.
2011年度~2011年度, 平成23年度笹川科学研究助成金, 連携, 「固体カーボンを原料として作製する超ナノ微結晶ダイヤモンド薄膜の太陽電池応用」, 代表:アリヤミサウサン(D1).
2009年度~2009年度, 池谷科学技術振興財団 国際交流等助成, 代表, "ULTRANANOCRYSTALLINE DIAMOND/HYDROGENATED AMORPHOUS CARBON COMPOSITE FILMS PREPARED BY PHYSICAL VAPOR DEPOSITION"
International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS
Processing, Fabrication, Properties, Applications.
2007年度~2008年度, スズキ財団課題提案型研究助成, 代表, 超ナノ微結晶ダイヤモンド膜を機械部品・金型に強付着強度でコーティングするための中間層の研究開発.
2008年度~2008年度, カシオ科学振興財団, 代表, 超ナノ微結晶ダイヤモンド/カーボン混相膜の微細構造と機械特性.
2008年度~2008年度, 日本板硝子材料工学助成会国際研究集会参加助成金, 代表, レーザーアブレーション法により作製された超ナノ微結晶ダイヤモンド/アモルファスカーボン混相膜の吸収端近傍X線吸収微細構造.
2007年度~2007年度, (財)九州産業技術センター人材育成助成基金:平成19年度(後期)国際研究集会参加助成, 代表, Spectral absorption properties of ultrananocrystalline diamond/amorphous carbon composite films prepared by pulsed laser deposition.
2006年度~2006年度, 池谷科学技術振興財団助成金, 代表, B置換立方晶Al1-xBxNバッファ層上へのレーザーアブレーション法によるダイヤモンドヘテロ成長の実現.
2006年度~2006年度, JSTシーズ発掘事業, 代表, PLD法により生成されるナノ微結晶ダイヤモンド薄膜の極小切削部品への適用.
2004年度~2004年度, (財)赤井録音録画技術研究助成会 助成金, 代表, 鉄シリサイド半導体相/強磁性相人工格子の作製と光磁気融合素子への応用.
2004年度~2004年度, 大倉和親記念財団助成金, 代表, レーザーアブレーション法によるナノ微結晶ダイヤモンドの作製とその応用.
2002年度~2003年度, 旭硝子財団助成金, 代表, Fe-Si系の強磁性相と半導体相を用いたスピントロニクスの基盤研究.
2000年度~2002年度, 科学技術庁ミレニアムプロジェクト, 分担, レアメタリックフリーエネルギーデバイスの創製.
2000年度~2002年度, (財)東電記念科学技術研究所助成金, 代表, 環境考慮型半導体beta-FeSi2の太陽電池素子への応用.
2002年度~2002年度, (財)岩谷科学技術研究助成金, 代表, ベータ鉄シリサイドの太陽電池素子応用へ向けた基盤研究.
1999年度~1999年度, 吉田学術教育振興会学術奨励金, 代表, レーザーアブレーション法による環境半導体beta-FeSi2薄膜の低温成長とその応用.
1999年度~1999年度, 小笠原科学技術研究助成団, 代表, レーザーアブレーション法による環境半導体-FeSi2薄膜の低温成長とその応用.
1999年度~1999年度, 日本板硝子材料工学助成会助成金, 代表, レーザーアブレーション法による高品質DLC薄膜およびダイヤモンド薄膜の作成.
共同研究、受託研究(競争的資金を除く)の受入状況
2009.02~2011.03, 代表, カーボン系材料による太陽電池の創製.
2007.10~2008.03, 代表, ドロップレットフリーな大面積平坦均質膜の堆積を可能とするレーザーアブレーション成膜装置の開発とその商品化.
2006.08~2006.12, 代表, アーク放電を用いたUNCD成膜プロセスの研究.
2003.04~2004.03, 代表, イオン皮膜によって表面改質された大型意匠鋼板の開発・商品化、分担.
2002.04~2003.03, 代表, 回転フィルターを用いたドロップレットフリー薄膜の作製技術.
1999.04~2003.03, 分担, ディジタルリレーに対応した電圧電流の新しい計測法の調査研究.
学内資金・基金等への採択状況
2006年度~2006年度, 福岡工業大学エレクトロニクス研究所研究員制度, 分担, Fe―Si系強磁性/半導体人工格子の光・電子・磁気融合デバイスに関する研究.
2006年度~2006年度, 福岡工業大学エレクトロニクス研究所研究員制度, 分担, 新しい圧力発生装置の開発と物性研究への応用.
2006年度~2006年度, 浅田榮一研究奨励金, (留学生の研究助成).
2005年度~2005年度, 福岡工業大学エレクトロニクス研究所研究員制度, 分担, Fe-Si系材料による光・電子・磁気融合デバイスの基盤研究.
2004年度~2004年度, 福岡工業大学エレクトロニクス研究所研究員制度, 分担, 半導体/強磁性体人工格子における強磁性層間結合の光制御.
2004年度~2004年度, 総理工奨励研究費, 代表, Siウエハを用いない安価&大面積を実現する新規アモルファス系薄膜太陽電池に関する基盤研究.
2002年度~2003年度, 九州大学教育研究拠点プログラム・研究拠点形成プロジェクトCタイプ, 分担, 次世代のソフトエネルギーに関する最先端教育プログラムの構築.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」