九州大学 研究者情報
論文一覧
土山 聡宏(つちやま としひろ) データ更新日:2024.04.08

教授 /  工学研究院 材料工学部門 材料加工工学


原著論文
1. 井戸原修、日山洋平、三阪佳孝、高木節雄、土山聡宏, 焼入マルテンサイト鋼における真の硬さの推定ならびに自己焼戻しの定量評価, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2023-107, 110, 4, 376-384, 2024.02.
2. 岡義洋、森松歩未、増村拓朗、大村孝仁、土山聡宏, オーステナイト系ステンレス鋼における結晶粒微細化強化の炭素および窒素濃度依存性, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2023-072, 110, 3, 302-310, 2024.02.
3. 前田拓也、松田恭輔、高梨美咲、増村拓朗、土山聡宏、白幡浩幸、植森龍治, 微細粒複相マルテンサイト組織を有するFe-10%Mn-0.1%C合金における不均一変形挙動の特徴, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2023-069, 110, 3, 268-278, 2024.02.
4. 白神優作、増村拓朗、難波茂信、土山聡宏, Al含有中炭素マルテンサイト鋼の組織と機械的性質の特徴, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2023-095, 110, 3, 118-129, 2024.02.
5. 竹ノ内優志、和田周平、増村拓朗、土山聡宏、岡野拓史、髙木周作, 極低炭素マルテンサイト鋼の低弾性限と可動転位密度の関係, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2023-057, 110, 3, 101-109, 2024.02.
6. K. Matsuda, T. Masumura, T. Tsuchiyama, Y. Onuki, M. Takanashi, T. Maeda, Y. Kawamoto, H. Shirahata, R. Uemori, Reverse Transformation Behavior in Multi-phased Medium Mn Martensitic Steel Analyzed by in-situ Neutron Diffraction, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2023-053, 64, 2, 486-490, 2024.02.
7. S. Uranaka, M. Takanashi, T. Maeda, T. Masumura, T. Tsuchiyama, Y. Kawamoto, H. Shirahata, Y. Kobayashi, Effects of Retained Austenite upon Softening during Low-temperature Tempering in Martensitic Carbon Steels, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2023-100, 64, 2, 449-458, 2024.02.
8. 松田恭輔、増村拓朗、土山聡宏、小貫祐介、高梨美咲、前田拓也、川本雄三、白幡浩幸、植森龍治, その場中性子回析による複相マルテンサイト組織を有する中Mn鋼の逆変態挙動の解析, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2023-070, 110, 2, 83-88, 2024.02.
9. 末松直幸、増村拓朗、大賀光陽、竹田健悟、土山聡宏, 18%Niマルテンサイト鋼の組織と不均一変形挙動に及ぼす炭素添加の影響, 熱処理, 63, 4, 192-198, 2023.08.
10. 浦中祥平、平嶋一誠、前田拓也、増村拓朗、土山聡宏、川本雄三、白幡浩幸、植森龍治, マルテンサイト鋼における炭素による固溶硬化の定量解析, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2023-002, 109, 7, 649-660, 2023.07.
11. 川原弘太郎、松田恭輔、増村拓朗、土山聡宏, 中Mn鋼の冷間圧延による結晶粒微細化メカニズム, 熱処理, 63, 2, 49-50, 2023.07.
12. 土山聡宏、天野良則、浦中祥平、増村拓朗, One-step Q&P処理を施した中炭素鋼の組織発達および機械的性質に及ぼす初期オーステナイト粒径の影響, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2022-111, 109, 4, 343-352, 2023.03.
13. S. Uranaka, I. Hirashima, T. Maeda, T. Masumura, T. Tsuchiyama, Y. Kawamoto, H. Shirahata, R. Uemori, Quantitative Analysis of Hardening Due to Carbon in Solid Solution in Martensitic Steels, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2022-416, 63, 3, 569-578, 2023.03.
14. 徳永辰也, 元村優太, 恵良秀則, 土山聡宏, 菖蒲一久, 長谷部光弘, 大谷博司, α鉄におけるホウ素, 炭素の粒界偏析に及ぼす合金元素の影響, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2022-081, 109, 3, 158-166, 2023.03.
15. Y. Takenouchi, S. Wada, T. Masumura, T. Tsuchiyama, H. Okano, S. Takagi, Relation between Low Elastic Limit and Mobile Dislocation , ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2022-196, 62, 10, 2000-2007, 2022.10.
16. S. Uranaka, C. Nishimura, I. Hirashima, T. Maeda, T. Masumura, T. Tsuchiyama, Y. Kawamoto, H. Shirahata, R. Uemori, Dependance of solute carbon concentration on electrical resistivity of retained austenite, Scripta Materialia, https://doi.org/10.1016/j.scriptamat.2022.114791, 218, 114791, 2022.09.
17. T. Tsuchiyama, K. Tsugumi, T. Ma, T. Masumura, Y. Ono, Nitrogen-Enhanced Temperature Dependence of Grain Refinement Strengthening in Austenitic Stainless Steel, steel research international, https://doi.org/10.1002/srin.202200428, 2200428, 2022.07.
18. T. Masumura, K. Inami, K. Matsuda, T. Tsuchiyama, S. Nanba, A. Kitahara, Quantitative evaluation of dislocation density in as-quenched martensite with teteragonality by X-ray line profile analysis in a medium-carbon steel, Acta Materialia, https://doi.org/10.1016/j.actamat.2022.118052, 218, 118052, 2022.05.
19. 土山聡宏、坂本孝之、田中祥平、増村拓朗, 中Mn鋼の中断焼入-二相域焼鈍により形成されるコア-シェル型第二相組織の制御, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2021-123, 108, 5, 306-315, 2022.05.
20. T. Masumura, T. Honda, K. Naridomi, S. Uranaka, T. Tsuchiyama, G. Miyamoto, S. Yamasaki, Age-Hardening Behavior in High-Nitrogen Stable Austenitic Stainless Steel, Materials Transactions, https://doi.org/10.2320/matertrans.MT-H2021001, 63, 2, 163-169, 2022.02.
21. M. Kubota, D. Takazaki, R. Komoda, K. Wada, T. Tsuchiyama, M. Dadfarnia, B.P.Somerday, P. Sofronis, Effect of Hydrogen on Creep Properties, Minerals, Metals and Materials Series(TMS2022), 1541-1548, 2022.01.
22. Y. Oba, S. Morooka, K. Ohishi, J. Suzuki, T. Tsuchiyama, Characterization of Deformation by Cold Rolling in Ferritic Steel Containing Cu Particles Using Neutron Transmission Analysis, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2021-144, 62, 1, 173-178, 2022.01.
23. Y. Zhou, T. Masumura, T. Tsuchiyama, Verification of Thermodynamic Models for Predicting Grain Boundary Segregation of Carbon and Nitrogen in Ferritic Steels, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2021-386, 62, 1, 278-280, 2022.01.
24. 土山聡宏, Q&Pプロセスにおける基礎原理の究明およびさらなる鋼の特性改善を目指した取り組み, ふぇらむ, 26, 8, 497-501, 2021.08.
25. T.Maeda, S.Okuhata, K.Matsuda, T.Masumura, T.Tsuchiyama, H.Shirahata, Y.Kawamoto, M.Fujioka, R.Uemori, Toughening mechanism in 5%Mn and 10%Mn martensitic steels treated by thermo-mechanical control process, Materials Science & Engineering A, https://doi.org/10.1016/j.msea.2021.141058, 812, 141058, 2021.04.
26. L. Meng, T. Kitashima, T. Tsuchiyama, M. Watanabe, β-Texture evolution of a Near-β Titanium Alloy During Cooling After Forging in the β Single-Phase and (α + β) Dual-Phase Regions, Metallurgical and Materials Transactions A, 52, 303-315, 2021.01.
27. 増村拓朗, 本多竜也, 成富光佑, 浦中祥平, 土山聡宏, 宮本吾郎, 山先祥太, 高窒素安定オーステナイト系ステンレス鋼の時効硬化挙動, 熱処理, 61, 3, 112-118, 2021.06.
28. 兵頭克敏, 大岩根駿, 宗藤伸治, 土山聡宏, 鉄中の刀状転位への窒素偏析によるコットレル雰囲気形成シミュレーション, 熱処理, 61, 3, 55-56, 2021.06.
29. T. Masumura, T. Taniguchi, S. Uranaka, I. Hirashima, T. Tsuchiyama, N. Maruyama, H. Shirahata, R.Uemori, Estimation of Solute Carbon Concentration by Electrical Resistivity Measurement in Martensitic Steel, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2020-669, 61, 5, 1708-1715, 2021.05.
30. K.Kaneko, T.Maeda, Y.Kawahara, K.Ichino, T.Masumura, T.Tsuchiyama, H.Shirahata, R.Uemori, Formation of core-shell type structure in Duplex Martensitic Steel, Scripta Materialia, https://doi.org/10.1016/j.scriptamat.2020.10.044, 193, 112-116, 2021.03.
31. T. Masumura, T. Tsuchiyama, Effect of Carbon and Nitrogen on Work-hardening Behavior in Metastable Austenitic Stainless Steel, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2020-535, 61, 2, 617-624, 2021.02.
32. T. Masumura, K. Fujino, T. Tsuchiyama, S. Takaki, K. Kimura, Effect of Carbon and Nitrogen on Md30 in Metastable Austenitic Stainless Steel, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2020-719, 61, 2, 546-555, 2021.02.
33. T. Tsuchiyama. Y. Amano, S. Uranaka, T. Masumura, Effect of Initial Austenite Grain Size on Microstructure Development and Mechanical Properties in a Medium-carbon Steel Treated with One-step Quenching and Partitioning, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2020-543, 61, 2, 537-545, 2021.02.
34. 増村拓朗、 高木節雄、 土山聡宏, オーステナイト系ステンレス鋼における弾性スティフネスの見積もり, 材料, https://doi.org/10.2472/jsms.70.31, 70, 1, 31-34, 2021.01.
35. T. Tsuchiyama, T. Sakamoto, S. Tanaka, T. Masumura, Control of Core-shell Type Second Phase Formed via Interrupted Quenching and Intercritical Annealing in a Medium Manganese Steel
, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2020-164, 60, 12, 2954-2962, 2020.12, Medium manganese steel (Fe-5.0%Mn-1.2%Si-0.10%C alloy) was subjected to interrupted quenching from the austenite single-phase region to a temperature between Ms and Mf followed by intercritical annealing in the ferrite and austenite dual-phase region at 923 K. As a result, a core-shell type second phase, which consisted of a fresh martensite core surrounded by a film-like retained austenite shell, was formed. The mechanism and kinetics of reversion for the interrupted-quenched specimens were analyzed with DICTRA simulation and TEM observation. With regard to the effect of the core-shell type second phase on mechanical properties, it was inferred that the fresh martensite core functioned as a hard second phase and enhanced work hardening by stress partitioning similar to DP steel, while the film-like retained austenite contributed to improved ductility due to the TRIP effect. As the interrupted quenching temperature decreased, the volume fraction of the fresh martensite core decreased, while the stability of the retained austenite shell increased. This showed potential for controlling the strength and ductility balance of medium manganese steel. A possible beneficial effect of the core-shell type second phase on the ductile fracture behavior was also discussed in terms of stress/strain relaxation at the interfaces between hard martensite and ferrite matrix..
36. 高木節雄、増村拓朗、土山聡宏, フェライト鋼におけるヤング率と弾性スティフネスの関係, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2020-011, 106, 11, 867-870, 2020.11.
37. 増村拓朗、谷口大河、浦中祥平、平嶋一誠、土山聡宏、丸山直樹、白幡浩幸、植森龍治, 電気抵抗測定法によるマルテンサイト中の固溶炭素量の評価, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2020-050, 106, 11, 835-843, 2020.11, Electrical resistivity of low-carbon martensitic steels was measured to estimate the carbon concentration in solid solution. Since electrical resistivity is influenced not only by solute carbon but also by substitu-tional elements, lattice defects and second phase, the effects of these factors need to be subtracted from total electrical resistivity, in order to obtain the accurate solute carbon concentration by this method. As a result, the effects of dislocations and grain boundaries were much smaller than that of solute elements, being only 1 - 2% of the measured electrical resistivity, in martensitic steel. On the other hand, substi-tutional elements and retained austenite were found to be significantly effective. By subtracting these effects from the measured value, the change in electrical resistivity due to solute carbon, Δρsol.C, could be formulated as a function of the carbon concentration in solid solution of martensite, Csol, as follows:
Δρsol.C [mΩmm] = 0.25 × Csol [mass%]
The estimated solute carbon concentration was confirmed to correspond to the directly measured value by atom probe tomography..
38. 増村拓朗、浦中祥平、松田恭輔、高木節雄、土山聡宏, Direct-fitting/modified Williamson-Hall(DF/mWH)法を用いた低炭素焼戻しマルテンサイト鋼の転位密度解析, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2020-049, 106, 11, 826-834, 2020.11.
39. L. Meng, T. Kitashima, T. Tsuchiyama, M. Wstanabe, β-Texture Evolution During α Precipitation in the Two-Step Forging Process of a Near-βTitanium Alloy, Metallurgical and Materials Transactions A, https://doi.org/10.1007/s11661-020-05981-0, 51A, 5912-5922, 2020.11.
40. @高木節雄、@増村拓朗、@土山聡宏, 単結晶鉄におけるヤング率と弾性スティフネス, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2019-129, 106, 9, 679-682, 2020.09.
41. 高木節雄、増村拓朗、土山聡宏, 理想多結晶金属における弾性定数, 材料, https://doi.org/10.2472/jsms.69.657, 69, 9, 657-660, 2020.09.
42. 高木節雄、増村拓朗、土山聡宏, Modified Williamson-Hall法における解析精度向上手法の提案, 材料, https://doi.org/10.2472/jsms.69.661, 69, 9, 661-665, 2020.09.
43. 小貫祐介、 増村拓朗、 土山聡宏、 佐藤成男、 富田俊郎、 高木節雄, 中性子回折測定に基づくRietveld Texture Analysisおよび飽和磁化測定による加工誘起マルテンサイトを含有する鋼の相分率解析精度の相互検証, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2019-103, 106, 7, 457-464, 2020.07.
44. 土山聡宏、 荒木理、 高木節雄, 臨界粒界せん断応力に基づいた多結晶フェライト鋼における上降伏点の解釈, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2019-105, 106, 6, 92-100, 2020.06.
45. K. Hyodo, S. Munetoh, T. Tsuchiyama, Empirical interatomic potential for Fe-C system using original FinnisSinclair potential function, Computational Materials Science, https://doi.org/10.1016/j.commatsci.2020.109871, 184, 109871, 2020.06.
46. 増村拓朗、 高木節雄、 土山聡宏, Modified Williamson-Hall法での解析に必要なパラメーターCh00ならびにqの提案, 材料, https://doi.org/10.2472/jsms.69.290, 69, 4, 290-292, 2020.04.
47. Y. Tanaka, T. Masumura, T. Tsuchiyama, S. Takaki, Effect of dislocation distribution on the yield stress in ferritic steel under identical dislocation density conditions, Scripta Materialia, https://doi.org/10.1016/j.scriptamat.2019.10.018, 177, 176-180, 2020.03.
48. 増村拓朗、高木節雄、土山聡宏, Direct-fitting/modified WilliamsonHall(DF/mWH)法による極低炭素マルテンサイト鋼の転位解析, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2019-053, 106, 3, 183-186, 2020.03.
49. Y. Tanaka, T. Masumura, T. Tsuchiyama, S. Takaki, Effect of dislocation distribution on the yield stress in ferritic steel under identical dislocation density conditions, Scripta Materialia, https://doi.org/10.1016/j.scriptamat.2019.10.018, 177, 176-180, 2020.03.
50. T. Masumura, Y. Seto, T. Tsuchiyama, K. Kimura, Work-Hardening Mechanism in High-Nitrogen Austenitic Stainless Steel, Materials Transactions, https://doi.org/10.2320/matertrans.H-M2020804, 61, 4, 678-684, 2020.03.
51. K. Hyodo, S. Munetoh, T. Tsuchiyama, S. Takaki, Empirical interatomic potential for Fe-N binary system based onFinnis–Sinclair potential, Computational Materials Science, https://doi.org/10.1016/j.commatsci.2019.109500, 174, 109500, 2020.03, 後ほど入力.
52. F. Jiang, S. Takaki, T. Masumura, R. Uemori, H. Zhang, T. Tsuchiyama, Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling, International Journal of Plasticity, https://doi.org/10.1016/j.ijplas.2020.102700, 129, 102700, 2020.02.
53. M. Koyama, K. Habib, T. Masumura, T. Tsuchiyama, H. Noguchi, Gaseous hydrogen embrittlement of a Ni-free austenitic stainless steel containing 1mass% nitrogen: Sffects of nitrogen-enhanced dislocation planarity, International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2020.02.014, 45, 10209-10218, 2020.02.
54. 増村拓朗, 藤野昂平, 土山聡宏, 高木節雄, 木村謙 , 準安定オーステナイト系ステンレス鋼のMd30に及ぼす炭素および窒素の影響, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2019-062, 105, 12, 1163-1172, 2019.12.
55. 高木節雄, 増村拓朗, 土山聡宏, 直接平均化法による多結晶金属のヤング率の見積もり, 材料, https://doi.org/10.2472/jsms.68.917, 68, 12, 917-922, 2019.12.
56. F. Jiang, T. Masumura, T. Tsuchiyama, S. Takaki, Effect of Substitutional Element Addition on Hall-Petch Relationship in Interstitial Free Ferritic Steels , ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2019-100, 59, 10, 1929-1931, 2019.10.
57. 浦中祥平、 田中将太郎、 増村拓朗、 土山聡宏、 植森龍治、 白幡浩幸, 中Mn鋼におけるマルテンサイト組織の特徴, 熱処理, 59, 5, 271-272, 2019.10.
58. 高木節雄, 増村拓朗, 土山聡宏, Bcc構造を有する鋼における弾性定数比c12/c44ならびに異方性パラメーターAiの見積もり, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2019-009, 105, 9, 935-937, 2019.09.
59. 増村拓朗, 瀨戸雄樹, 土山聡宏, 木村謙, 高窒素オーステナイト系ステンレス鋼の加工硬化機構, 熱処理, 59, 4, 222-229, 2019.08.
60. 高木節雄, 増村拓朗, 土山聡宏, 冷間加工した鉄に関してdirect-fitting法ならびにmodified Williamson-Hall 法で得られるパラメーターの相関性, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2018-167, 106, 6, 648-654, 2019.06.
61. S.Araki, K.Mashima, T.Masumura, T.Tsuchiyama, S.Takaki, T.Ohmura, Effect of grain boundary segregation of carbon on critical grain boundary strength of ferritic steel, Scripta Materialia, https://doi.org/10.1016/j.scriptamat.2019.05.001, 169, 38-41, 2019.05.
62. S. Takaki, T. Masumura, T. Tsuchiyama, Dislocation Characterization by the Direct-fitting/modified Williamson–Hall (DF/mWH) Method in Cold Worked Ferritic Steel, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2018-623, 59, 3, 567-572, 2019.03.
63. 土山聡宏、 古賀茉冬、 下地いずみ、 平林秀、 増村拓朗, 硬質VC粒子および軟質Cu粒子を分散させたフェライト鋼における局部変形能と延性破壊挙動の相違, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2018-088, 105, 2, 182-189, 2019.02.
64. F. Jiang, T. Masumura, K. Hirata, T. Tsuchiyama, S. Takaki, A new diffraction line profile breadth analysis approach for evaluating plastic lattice strain anisotropy in cold-worked nickel under various strain paths, International Journal of Plasticity, https://doi.org/10.1016/j.ijplas.2018.08.006, 112, 89-107, 2019.01.
65. A.Macadre, T.Masumura, R.Manabe, T.Tsuchiyama, S.Takaki, Effect of nitrogen-addition on the absorption and diffusivity of hydrogen in a stable austenitic stainless steel, International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2018.11.031, 44, 2, 1263-1271, 2019.01.
66. T. Tsuchiyama, K. Inoue, K. Hyodo, D. Akama, N. Nakada, S. Takaki, T. Koyano, Comparison of Microstructure and Hardness between Highcarbon and High-nitrogen Martensites, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2018-404, 59, 1, 161-168, 2019.01.
67. K.Habib, M.Koyama, T.Tsuchiyama, H.Noguchi, ECCI Characterization of Dislocation Structures at a Non-propagating Fatigue Crack Tip: Toward Understanding the Effects of Mn-C and Cr-N Couples on Crack Growth Resistance, Metallurgical and Materials Transactions A, https://doi.org/10.1007/s11661-018-4972-x, 50, 1, 426-435, 2019.01.
68. 高木節雄、増村拓朗、Jiang Fulin、土山聡宏, 冷間加工した低炭素フェライト鋼の転位密度評価, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2018-054, 104, 11, 683-688, 2018.11.
69. 増村拓朗、高木節雄、Jiang Fulin、土山聡宏, Modified Williamson-Hall法におけるパラメータα導出法に関する考察, 鉄と鋼, https://doi.org/10.2355/tetsutohagane.TETSU-2018-095, 104, 11, 717-719, 2018.11.
70. S. Araki, K. Fujii, D. Akama, T. Tsuchiyama, S. Takaki, T. Ohmura, J. Takahashi, Effect of Low Temperature Aging on Hall-Petch Coefficient in Ferritic Steels Containing a Small Amount of Carbon and Nitrogen, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2018-130, 58, 10, 1920-1926, 2018.10.
71. Y.Tanaka, S.Takaki, T.Tsuchiyama, R.Uemori, Effect of Grain Size on the Yield Stress of Cold Worked Iron, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2018-371, 58, 10, 1927-1933, 2018.10.
72. T. Masumura, T. Tsuchiyama, S. Takaki, T. Koyano, K. Adachi, Difference between carbon and nitrogen in thermal stability of metastable 18%Cr-8%Ni austenite, Scripta Materialia, https://doi.org/10.1016/j.scriptamat.2018.05.019, 154, 8-11, 2018.09.
73. 高木節雄、増村拓朗、Jiang Fulin、土山聡宏, 金属の弾性異方性と回析ヤング比率の関係, 材料, https://doi.org/10.2472/jsms.67.860, 67, 9, 855-860, 2018.09.
74. S. Hamada, J. Zhang, K. Zhang, M. Koyama, T. Tsuchiyama, T. Yokoi, H. Noguchi, Ductile-to-brittle transition in tensile failure due to shear-affected -zone with a stress-concentration source: A comparative study on punched-plate tensile-failure characteristics of precipitation-hardened and dual-phase steels, International Journal of Fracture, https://doi.org/10.1007/s10704-018-0304-9, 212, 237-248, 2018.08.
75. 田中友基、高木節雄、土山聡宏、植森龍治, 冷間加工した鉄の降伏強度に及ぼす結晶粒径の影響, 鉄と鋼, 104, 5, 284-291, 2018.06.
76. S. Takaki, T. Masumura, F. Jiang, T. Tsuchiyama, Effect of Instrumental Correction on X-ray Line Profile Analysis in Cold Rolled Ferritic Steel, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2018-021, 58, 6, 1181-1183, 2018.06.
77. S. TAKAKI, F. JIANG, T. MASUMURA, T. TSUCHIYAMA, Correction of Elastic Anisotropy in Williamson-Hall Plots by Diffraction Young’s Modulus and Direct Fitting Method, ISIJ International, 58, 4, 769-775, 2018.04.
78. T. Tsuchiyama, T. Taniguchi, D. Akama, S. Takaki, K. Kaneko, M. Yoshimura, M. Fujioka, R. Uemori, Estimation of Solute Carbon Concentration by Electrical Resistivity Method in Low-Carbon Martensitic Steel, ICOMAT2017, https://doi.org/10.1007/978-3-319-76968-4_39, 251-254, 2018.04.
79. 高木節雄、赤間大地、Jiang Fulin、土山聡宏, 回折ヤング率によるWilliamson-Hallプロットの補正, 材料, 67, 3, 383-388, 2018.03.
80. 高木節雄、土山聡宏, 冷間加工した鉄の転位強化に関する理論的検討, 鉄と鋼, 104, 2, 117-120, 2018.02.
81. F. Jiang, K. Hirata, T. Masumura, T. Tsuchiyama, S. Takaki, Effect of the surface layer strained by mechanical grinding on x-ray diffraction analysis, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2017-578, 58, 2, 376-378, 2018.02.
82. S. Takaki, T. Masumura, T. Tsuchiyama, Proposal of Simplified Modified Williamson-Hall Equation, ISIJ International, https://doi.org/10.2355/isijinternational.ISIJINT-2018-517, 58, 12, 2354-2356, 2018.02.
83. N. Nakada, T. Tsuchiyama, S. Takaki, Transformation mechanism of diffusional reversion from lath martensite to austenite, ISSS2017, 35-42, 2017.11.
84. 荒木 理, 藤井浩平, 赤間大地, 土山 聡宏, 高木 節雄, 大村孝仁, 高橋 淳, 微量炭素・窒素を添加したフェライト鋼のHall-Petch係数に及ぼす低温時効処理の影響, 鉄と鋼, 103, 8, 491-497, 2017.08.
85. 赤間大地, 土山 聡宏, 高木 節雄, X線回折法を用いた純鉄加工材の転位密度評価, 材料, 66, 7, 522-527, 2017.07.
86. Kishan Habib, Motomichi Koyama, Toshihiro Tsuchiyama & Hiroshi Noguchi, Visualization of dislocations through electron channeling contrast imaging at fatigue crack tip, interacting with pre-existing dislocations, Materials Research Letters, 6, 1, 61-66, 2017.06.
87. 土山 聡宏, 赤間大地, 高木 節雄, 鉄の転位強化に及ぼすNiの影響, 鉄と鋼, 103, 5, 230-235, 2017.05.
88. Michiharu Asano, Takuro Masumura, Toshihiro Tsuchiyama, Setsuo Takaki, Jun Takahashi, Kosaku Ushioda, Quantitative evaluation of Cu particle dissolution in cold-worked ferritic iron, Scripta Materialia, 140, 18-22, 2017.05.
89. Nobuo Nakada, Shouhei Kawasaki, Yuuki Kogakura, Toshihiro Tsuchiyama, Setsuo Takaki, Matrix switch related to microstructural connectivity and its effect on strength in metals with duplex microstructure, Materials Science and Engineering A, 690, 270-276, 2017.01.
90. 高木 節雄, 赤間 大地, 土山 聡宏, 焼入れ中に起こる自己焼戻しの定量評価, 熱処理, 56, 6, 340-344, 2016.12.
91. Toshihiro Tsuchiyama, Taishi Inoue, Junya Tobata, Akama Daichi, Setsuo Takaki, Microstructure and mechanical properties of a medium manganese steel treated with interrupted quenching and intercritical annealing, Scripta Materialia, 122, 36-39, 2016.10.
92. Yuki Tanaka, Nobuo Nakada, Toshihiro Tsuchiyama, Setsuo Takaki, Effect of pre-deformation temperature on yield strength of IF-steel, The 9th Pacific Rim International Conference on Advanced Materials and Processing , 598-601, 2016.08.
93. 中田伸生, 池田賢一, 首藤洋志, 横井龍雄, 土山 聡宏, 波多 聰, 中島 英治, 高木 節雄, DP鋼の打抜き大変形の定量的評価とそのミクロ組織変化(第2報) −電子線後方散乱法とデジタル画像相間法を組み合わせたDP鋼の局所ひずみマッピング−, 鉄と鋼, 102, 5, 253-259, 2016.05.
94. 横井龍雄, 首藤洋志, 池田賢一, 中田伸生, 土山 聡宏, 大村孝仁, 峯 洋二, 高島和希, DP鋼の打抜き大変形の定量的評価とそのミクロ組織変化(第1報) −DP鋼の打ち抜きダメージの定量化手法の提案−, 鉄と鋼, 102, 5, 244-252, 2016.05.
95. MACADRE ARNAUD PAUL ALAIN, Toshihiro Tsuchiyama, Setsuo Takaki, Hydrogen-induced increase in phase stability in metastable austenite of various grain sizes under strain, Journal of Materials Science, 52, 3419-3428, 2016.05.
96. Akama Daichi, Toshihiro Tsuchiyama, Setsuo Takaki, Change in Dislocation Characteristics with Cold Working in Ultralow-carbon Martensitic Steel, ISIJ International, 56, 1675-1680, 2016.05.
97. Yojiro Oba, Satoshi Morooka, Kazuki Ohishi, Nobuhiro Sato, Rintaro Inoue, Nozomu Adachi, Jun-ichi Suzuki, Toshihiro Tsuchiyama, Elliot Paul Gilbert, Masaaki Sugiyama, Magnetic scattering in the simultaneous measurement of small-angle neutron scattering and Bragg edge transmission from steel, Journal of Applied Crystallography, 49, 1659-1664, 2016.05.
98. Toshihiro Tsuchiyama, Shinji Yamamoto, Satoshi Hata, Mitsuhiro Murayama, Satoshi Morooka, Akama Daichi, Setsuo Takaki, Plastic deformation and dissolution of ε-Cu particles by cold rolling in an over-aged particle dispersion strengthening Fe-2mass%Cu alloy, Acta Materialia, 113, 48-55, 2016.03.
99. Nobuo Nakada, Yuji Ishibashi, Toshihiro Tsuchiyama, Setsuo Takaki, Self-stabilization of untransformed austenite by hydrostatic pressure via martensitic transformation, Acta Materialia, 110, 95-102, 2016.01.
100. Takuro Masumura, Kohei Fujino, Nobuo Nakada, Toshihiro Tsuchiyama, Setsuo Takaki, Kazuhiko Adachi, Effects of Carbon and Nitrogen Additions on Mechanical Stability of Metastable Austenitic Stainless Steel, Asia Steel 2015, 96-97, 2015.10.
101. Toshihiro Tsuchiyama, Arnaud MACADRE, Setsuo Takaki, Nobuo Nakada, Critical grain size to limit the hydrogen-induced ductility drop in a metastable austenitic steel, International Journal of Hydrogen Energy, 40, 10697-10703, 2015.06.
102. Takuro Masumura, Nobuo Nakada, Toshihiro Tsuchiyama, Setsuo Takaki, Difference in Martensitic Transformation Behavior between Carbon- and Nitrogen-added Metastable Austenitic Stainless Steels, PTM2015, 591-592, 2015.06.
103. Toshihiro Tsuchiyama, Nasayuki Akita, Yoshihiko Uematsu, Toshihfumi Kakiuchi, Masaki Nakajima, Yu Bai, Kenta Isino, Effect of sensitization on corrosion fatigue behavior of type 304 stainless steel annealed in nitrogen gas, Materials Science and Engineering A, 640, 33-41, 2015.05.
104. Nobuo Nakada, Norimitsu Koga, Yuki Tanaka, Toshihiro Tsuchiyama, Setsuo Takaki, Masaharu Ueda, Strengthening of Pearlitic Steel by Ferrite/Cementite Elastic Misfit Strain (Note), ISIJ International, 55, 2036-2038, 2015.05.
105. Hata, Satoshi, Kazuhisa SATO, Mitsuhiro Murayama, Toshihiro Tsuchiyama, Hideharu Nakashima, An Experimental Protocol Development of Three-Dimensional Transmission Electron Microscopy Methods for Ferrous Alloys: Towards Quantitative Microstructural Characterization in Three Dimensions, ISIJ International, 55, 623-631, 2015.05.
106. 戸畑 潤也, 江頭 努, 土山 聡宏, 高木 節雄, 高Cr 鋼の焼入-分配処理におけるCr の役割, 熱処理, 55, 181-188, 2015.05.
107. Takuro Masumura, Nakada Nobuo, Toshihiro Tsuchiyama, Setsuo Takaki, Tamotsu Koyano, Kazuhiko Adachi, The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels, ACTA MATERIALIA, 10.1016/j.actamat.2014.10.041, 84, 330-338, 2015.02, In order to evaluate the effects of carbon and nitrogen addition on the stability of austenite, athermal and deformation-induced
a0-martensitic transformation behaviors were investigated using type 304-metastable austenitic stainless steels containing 0.1 mass% carbon or
nitrogen. The difference in the development of the deformation microstructure in particular is discussed in terms of the stacking-fault energy
(SFE). Since carbon-added steel has a lower SFE than that of nitrogen-added steel, deformation twins and e-martensite were preferentially formed
in the carbon-added steel, whereas a dislocation cell structure developed in the nitrogen-added steel. Crystallographic analysis using the electron
backscatter diffraction method revealed that the difference in the deformation microstructure has a significant influence on the growth behavior
of deformation-induced a0-martensite, that is, the interface of the deformation twins and e-martensite suppresses the growth of a0-martensite, whereas
dislocation cell boundaries are not effective. As a result, the mechanical stability of carbon-added steel is slightly higher than that of nitrogen-added
steel, although the thermal stabilization effect of carbon is much lower than that of nitrogen..
108. Toshihiro Tsuchiyama, Duck-Soo Kang, Setsuo Takaki, Kwang-jin Lee, Eui-pyo Kwon, Variation of work hardening rate by oxygen contents in pure titanium alloy, Materials Science and Engineering A, 632, 120-126, 2015.02.
109. Hirokazu Tsukahara, Takuro Masumura, Toshihiro Tsuchiyama, Setsuo Takaki, Koichi Nakashima, Kazukuni Hase, Shigeru Endo, Design of Alloy Composition in 5%Mn-Cr-C Austenitic Steels, ISIJ INTERNATIONAL, 55, 1, 312-318, 2015.01, The range of chemical compositions that can obtain an austenitic single structure was defined for
medium-manganese (Mn) carbon (C) steels. Among the potential compositions, Fe-5%Mn-4%Cr-(0.8–
1.4)%C (mass%) was selected as the optimized composition range to form a stable austenitic structure.
The tensile properties and deformation substructure were investigated in the austenitic steels having this
composition. The work hardening behavior of the steels varied depending on the carbon content, which
was closely related to the deformation microstructure. In the 0.8%C steel, both a deformation-induced
martensitic phase as well as the formation of deformation twins generated a high work hardening until
fracture. With an increasing carbon content, which increased the stacking fault energy (SFE), the deformation
tended to shift towards dislocation slipping, resulting in a lower work hardening rate. This trend
appears similar to conventional twinning-induced plasticity steel where the work hardening behavior is
tied to the SFE..
110. Nakada Nobuo, Koichi Tsuboi, Tatsuro Onomoto, Toshihiro Tsuchiyama, Setsuo Takaki, G. Inden, Thermodynamics and kinetics of solution nitriding, CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 10.1016/j.calphad.2014.09.006, 47, 168-173, 2014.12, In ordertoclarifythethermodynamicsandkineticsofsolutionnitriding,thenon-uniformnitrogen
distribution formedbysolutionnitridingwasinvestigatedinaustenitic(18Cr–10Ni)andferritic(25Cr)
stainless steels,andthenitwassimulatedwith DICTRA. Themainissueforausteniticstainlesssteelisthe
surface reactiondeterminedbythemasstransferfromgastosolid,whilethatforferriticstainlesssteelis
the ferritetoaustenitetransformationandtheaustenitegrowthkineticsinducedbynitrogenabsorption.
DICTRA simulations gavecloseagreementwiththeexperimentalresultsanddemonstratedthatsolution
nitriding isobviouslycontrolledbymasstransferofnitrogenfromgastosolidaswellasdiffusioninthe
solid, andaustenitegrowthiscontrolledbynitrogendiffusioninaustenite.Inaddition,theanalysis
suggests thatnitrogenshouldhaveastrongerinteractionwithchromiumthanthattreatedinthe
thermodynamic databaseandaustenitenucleationinducedbynitrogenabsorptiontakesplacewithout
anychangeinCrcomposition..
111. Toshihiro Tsuchiyama, Koichi Tsuboi, Shuichi Iwanaga, Takuro Masumura, MACADRE ARNAUD PAUL ALAIN, Nakada Nobuo, Setsuo Takaki, Suppression of hydrogen embrittlement by formation of a stable austenite layer in metastable austenitic stainless steel, SCRIPTA MATERIALIA, 10.1016/j.scriptamat.2014.07.005, 90-91, 14-16, 2014.11, Solution nitriding was applied to a metastable austenitic stainless steel plate (Fe–18Cr–8Ni alloy) to stabilize the austenite near
the plate surface. After cold rolling, the interior austenite almost entirely transformed to martensite, but the stabilized surface austenite
remained unchanged. The interior deformation-induced martensite contributes to the material’s high strength and the surface
stable austenite-layer plays an important role in preventing hydrogen permeation. As a result, the resistance to hydrogen embrittlement
was significantly improved for the cold-rolled specimen..
112. 田中 友基, 赤間 大地, 中田 伸生, 土山 聡宏, 高木 節雄, Williamson-Hall法で求めたフェライト格子ひずみに及ぼすパーライト組織の影響, 鉄と鋼, http://dx.doi.org/10.2355/tetsutohagane.100.1229, 100, 10, 1229-1231, 2014.10, The effect of pearlite on the X-ray diffraction peak reflected
from ferrite phase in ferrite-pearlite steel was investigated
using normalized carbon steels with different volume fraction
of pearlite and a hypereutectoid steel with various
pearlite lamellar spacing. The lattice strain in ferrite phase,
which causes the broadening of X-ray diffraction peak, was
increased in proportion to both of the volume fraction of
pearlite and the inverse of pearlite lamellar spacing. As a
result, the lattice strain in ferrite-pearlite steel can be simply
formulated as functions of them. On the other hand, TEM observation
reveals that pearlite has low-density dislocation in
ferrite phase. This result suggests that the misfit between ferrite
and cementite in pearlite generates the significant amount
of elastic strain, which leads to the increasing in lattice strain.
Therefore, the dislocation density must be overestimated in
carbon steels with pearlite, if it is estimated from the experimental
lattice strain directly..
113. 中田 伸生, 西山 真郷, 古賀 紀光, 土山 聡宏, 高木 節雄, 金属組織写真とデジタル画像相関法を活用したDP鋼の階層的ひずみ分布解析, 鉄と鋼, http://dx.doi.org/10.2355/tetsutohagane.100.1238, 100(2014), 10, 1238-1245, 2014.10, For a better understanding the relation between the heterogeneous microscopic strain caused by metallographic microstructure and the macroscopic
strain concentration responsible for ductile fracture, digital image correlation (DIC) method was applied to the digital images obtained
by a scanning electron microscope (SEM) to analyze a strain distribution in a low carbon dual-phase steel in multiple scales. As well as grain
boundaries, a substructure in martensite grains and a corrosion shade in ferrite matrix were clearly observed in SEM image and they enhance
the random nature of SEM digital image. Therefore, the combination of SEM image and DIC method (SEM-DIC method) is able to evaluate a
heterogeneous strain distribution in metal in multiple scales. The development of strain distribution looks different depending on the magnification
of SEM observation due to the difference in pixel-dependent spatial resolution; micro-scale strain map indicated that strain is localized
in ferrite matrix, while macro-scale strain map revealed that strain seems to exist over a width of tensile specimen. This result suggests that
macroscopic strain concentration is accompanied by a percolation of microscopic localized strains. In addition, the strain in martensite grains
is increased considerably as the hardness of martensite is reduced by tempering treatment, which leads to the reduction in the strain gap between
ferrite and martensite. As a result, the developments of not only microscopic localized strain but also macroscopic strain concentration
are retarded, leading to the significant recover of ductility in DP steel..
114. Tomoya Fujisawa, shigeru hamada, Norimitsu Koga, Daisuke Sasaki, Toshihiro Tsuchiyama, Nakada Nobuo, Kazuki Takashima, Masaharu Ueda, Hiroshi Noguchi, Proposal for an engineering definition of a fatigue crack initiation unit for evaluating the fracture limit on the basis of crystallographic analysis of pearlitic steel, International Journal of Fracture, 10.1007/s10704-013-9895-3, 185, 17-29, 2014.10.
115. 古賀 紀光, 福山 道紀, 中田 伸生, 土山 聡宏, 高木 節雄, 高窒素オーステナイト系ステンレス鋼におけるMn添加による相変態機構の遷移, 鉄と鋼, http://dx.doi.org/10.2355/tetsutohagane.100.1165, 100(2014), 9, 1165-1171, 2014.09, Fe-25Cr-1N-0, 2, 5Mn mass% alloys were subjected to isothermal heat treatment, and their microstructure formation and phase transformation
behavior were investigated in order to clarify the effect of Mn addition on the transformation mechanism of high nitrogen austenite.
Microstructure observation for the 1073 K heat-treated specimens revealed that the Fe-25Cr-1N alloy exhibited (α+Cr2N) lamellar eutectoid
structure, while the Fe-25Cr-1N-2Mn and -5Mn alloys did finer (α’(or retained γ)+Cr2N) lamellar structure as well as (α+Cr2N) lamellar eutectoid
structure. It was suggested that the (α’+Cr2N) lamellar structure had been formed through γ1→γ2+Cr2N cellular precipitation followed
by martensitic transformation of γ2 on cooling to ambient temperature. Nitrogen concentration in untransformed austenite in the Fe-25Cr-1N-
2Mn and -5Mn alloys was continuously decreased with progressing of (γ+Cr2N) cellular precipitation due to nitrogen long-range diffusion
from untransformed austenite to (γ+Cr2N) cellular structure. As a result of decreased nitrogen concentration in untransformed austenite, transformation
mechanism switched from (γ+Cr2N) cellular precipitation to (α+Cr2N) eutectoid transformation..
116. Masaki Tanaka, Tatsuro Onomoto, Chihiro Furusho, Toshihiro Tsuchiyama, Kenji Higashida, Decrease in the Brittle-to-ductile Transition Temperature in Cu Added Nickel-free Austenitic Stainless Steels, ISIJ INTERNATIONAL, 10.2355/isijinternational.54.1735, 54, 7, 1735-1740, 2014.07, Brittle-to-ductile transition (BDT) in Cu added Ni-free austenitic stainless steel was investigated. Temperature
dependence of apparent fracture toughness was measured using four-point bending tests, indicating
that the BDT temperature was decreased with the increase in the Cu content. The activation energy
was obtained from the deformation rate dependence of BDT temperatures. It was found that the values
of the activation energy was decreased with the increase in the Cu content, suggesting that the dislocation
mobility in austenitic stainless steels was increased by Cu addition. The increase in the dislocation
mobility induces the decrease in the BDT temperature. The values of the activation energy are deviated
from the regression line drawn on the data which obtained from the materials with high Peierls potentials.
Temperature dependence of 0.2% proof stress indicated that the effective stress was nearly independent
from the Cu content while the values of activation volume were decreased with the increase in the Cu
content. A model for dislocation glide was proposed to explain the both decrease in the activation energy
and the activation volume with the increase in the Cu content..
117. 波多 聰, 佐藤 和久, 村山 光宏, 土山 聡宏, 中島 英治, 鉄鋼材料における定量的三次元組織解手法:電子線トモグラフィーの強磁性材料への適用に向けて, 鉄と鋼, 100, 7, 889-896, 2014.07, The majority of engineering steels are ferromagnetic and structually inhomogeneous on special scales ranging from nanometers to micrometers,
and physical properties of engineering steels arise from three-dimensional (3D) features of the microstructure. Thus, obtaining 3D representation
with a large field of view is desired for transmission electron microscopy (TEM) based microstructure characterization to establish
microstructure - physical properties relationships with reasonable statistical relevancy. Here, we venture to use a conventional sample preparation
process, i.e., mechanical polishing followed by electro-polishing, and experimental protocols optimization for electron tomography (ET)
for ferromagnetic materials, especially engineering steels’ microstructural characterization are carried out. We found that the sample thickness
after the mechanical polishing step is a critical experimental parameter affecting the success rate of tilt-series image acquisition. For example,
for a ferritic heat-resistant 9Cr steel with lath martensite structure, mechanically thinning down to 30 μm or thinner was necessary to acquire
an adequate tilt-series image of carbide precipitates in the high-angle annular dark-field scanning TEM (HAADF-STEM) mode. On the other
hand, tilt-series image acquisition from dislocation structures remains challenging because the electron beam deflection during specimen-tilt
was unavoidable and significant in the HAADF-STEM mode. To overcome the electron beam deflection problem, we evaluate several relatively
accessible approaches including the “Low-Mag and Lorentz” TEM/STEM modes; although they are rarely used for ET, both the modes
reduce or even zero the objective lens current and likely weaken the magnetic interference between the ferromagnetic specimen and the objective
lens magnetic field. The advantages and disadvantages of those experimental components are discussed..
118. Duck-soo Kang, Norimitsu Koga, Masayuki Sakata, Nakada Nobuo, Toshihiro Tsuchiyama, Setsuo Takaki, Enhanced work hardening by redistribution of oxygen in (α+β)-type Ti-4Cr-0.2O alloys, Materials Science and Engineering A, 606, c, 101-107, 2014.04.
119. Kyosun Park, Masato Nishiyama, Nakada Nobuo, Toshihiro Tsuchiyama, Setsuo Takaki, Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel, Materials Science & Engineering A, 604, 135-141, 2014.03, In ordertoclarifytheeffectsofthemartensitedistributiononthemechanicalpropertiesoflow-carbon
dual-phase steel,fourtypesofdual-phasesteelwithdifferentferritegrainsizesandmartensite
distributions werepreparedusingathermomechanicaltreatment.Thetensilepropertiesofthesesteels
wereinvestigated;inparticular,thestrainhardeningandtheductilefracturebehaviorswerediscussed
in termsofthestrainpartitioningbetweentheferriteandmartensiteandtheformationandgrowth
of micro-voids,respectively.Whenthemartensitegrainssurroundtheferritegrainsandformachain-
like networkedstructure,thestrainhardenabilityisgreatlyimprovedwithoutasignificant lossof
elongation, whiletheneckingdeformabilityisconsiderablyreduced.Adigital-imagecorrelationanalysis
revealedthatthetensilestraininthemartensiteregioninthechain-likenetworkeddual-phase
structure ismarkedlyincreasedduringtensiledeformation,whichleadstoanimprovementinthestrain
hardenability.Ontheotherhand,thejointpartofthemartensitegrainsinthestructureactsasa
preferentialformationsiteformicro-voids.Thenumberdensityofthemicro-voidsrapidlyincreases
with increasingtensilestrain,whichwouldcausethelowerneckingdeformability..
120. Akama Daichi, Nakada Nobuo, Toshihiro Tsuchiyama, Setsuo Takaki, Akira Hironaka, Discontinuous yielding induced by the addition of nickel to interstitial-free steel, Scripta Materialia, 82, 13-16, 2014.03, Interstitial-free steels containing 1–3% Ni were tensile tested. A clear yield point and yield point elongation were observed in each
steel, even though they contained no solute carbon or nitrogen in the ferrite matrix. The mechanism could be explained by grain
refinement strengthening enhanced by the addition of Ni, which is derived from the increase in Hall–Petch coefficient caused by
grain boundary segregation..
121. Nakada Nobuo, K. Mizutani, Toshihiro Tsuchiyama, Setsuo Takaki, Difference in transformation behavior between ferrite and austenite formations in medium manganese steel, ACTA MATERIALIA, 10.1016/j.actamat.2013.10.067, 65, 251, 258, 2014.02.
122. Setsuo Takaki, Akama Daichi, Nakada Nobuo, Toshihiro Tsuchiyama, Effect of Grain Boundary Segregation of Interstitial Elements on Hall-Petch Coefficient in Steels, MATERIALS TRANSACTIONS, 10.2320/matertrans.MA201314, 55, 1, 28-34, 2014.01.
123. Nakada Nobuo, Toshihiro Tsuchiyama, Setsuo Takaki, Dirk Ponge, Dierk Raabe, Transition from Diffusive to Displacive Austenite Reversion in Low-Alloy Steel, ISIJ INTERNATIONAL, 10.2355/isijinternational.53.2275, 53, 12, 2275-2277, 2013.12.
124. 土山 聡宏, 塚原大和, 増村拓朗, 高木 節雄, 中島孝一, 長谷和邦, 遠藤 茂, 5%Mn-Cr-C系オーステナイト鋼の合金設計, 鉄と鋼, 99, 8, 509-516, 2013.08.
125. Nakada Nobuo, Reiji Fukagawa, Toshihiro Tsuchiyama, Setsuo Takaki, Dirk Ponge, Dierk RAABE, Inheritance of Dislocations and Crystallographic Texture during Martensitic Reversion into Austenite, ISIJ INTERNATIONAL, 10.2355/isijinternational.53.1286, 53, 7, 1286-1288, 2013.07.
126. Yoshikazu Matsuoka, Tatsuya Iwasaki, Nakada Nobuo, Toshihiro Tsuchiyama, Setsuo Takaki, Effect of Grain Size on Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel, ISIJ INTERNATIONAL, 10.2355/isijinternational.53.1224, 53, 7, 1224-1230, 2013.07.
127. Nakada Nobuo, Y. Arakawa, Toshihiro Tsuchiyama, Setsuo Takaki, Microstructural Control of Dual Phase Structure formed by Partial Reversion from cold-deformed Martensite, REX & GG 2013, 753, 191-194, 2013.05.
128. Nakada Nobuo, Norihide Fukuzawa, Toshihiro Tsuchiyama, Setsuo Takaki, Tamotsu Koyano, Takashi Iwamoto, Yasuhiro Omori, Isothermal Transformation in Fe-N Hypereutectoid Alloy, ISIJ INTERNATIONAL, 10.2355/isijinternational.53.139, 53, 1, 139-144, 2013.01.
129. 土山 聡宏, Koichi Tsuboi, 高木 節雄, Seiichiro Tstsumi, Mechanical Properties of Strength-Gradient Steel Sheets Produced by Solution Nitriding, ISIJ International, 52, 10, 1872-1878, 2012.10.
130. N. NAKADA, Y. ARAKAWA, K. S. PARK, T. TSUCHIYAMA and S. TAKAKI, Dual Phase structure formed by partial reversion of sold-deformed martensite, Materials Science and Engineering A, 553, pp. 128-133, 2012.08.
131. 田中將己、小野本達郎、土山聡宏、東田賢二, Niフリー高窒素オーステナイト鋼における脆性-延性遷移挙動, 鉄と鋼, 98, 6, pp. 237-244, 2012.08.
132. Junya Tobata, K. L. NGO-HUYNH, Nakada Nobuo, Toshihiro Tsuchiyma, Setsuo Takaki, Role of Silicon in Quenching and Partitioning Treatment of Low-carbon Martensitic Stainless Steel, ISIJ International, 52, 7, 1377-1382, 2012.07.
133. 吉武睦海、土山聡宏、高木節雄, 安定オーステナイト系ステンレス鋼の加工硬化と変形組織に及ぼす炭素および窒素の影響, 鉄と鋼, 98, 6, pp. 223-228, 2012.06.
134. 土山 聡宏, 田中 將己, 東田 賢二, Tatsuro Onomoto, Brittle-to-ductile Transition in Nickel-free Austenitic Stainless Steels with High Nitrogen, ISIJ International, 52, 5, 915-921, 2012.05.
135. 赤間 大地, Akira Hironaka, Nakada Nobuo, Toshihiro Tsuchiyma, Setsuo Takaki, Yield Point Phenomenon in Ni Bearing IF Steel, Proceedings of The 3rd International Symposium on Steel Science 2012, 179-182, 2012.05.
136. S. TAKAKI, K. L. NGO-HUYNH, N. NAKADA and T. TSUCHIYAMA, Strengthening Mechanism in Ultra Low Carbon Martensitic Steels, ISIJ International, 52, 4, pp. 710-716, 2012.04.
137. Toshihiro Tsuchiyma, Nakada Nobuo, Setsuo Takaki, Norimitsu Koga, Distribution of elastic strain in a pearlite structure, Scripta Materialia, 67, 400-403, 2012.04.
138. ゴ フィン キン ルアン、中島孝一、土山聡宏、高木節雄, 12%Crマルテンサイト系ステンレス鋼の組織と硬さに及ぼす固相窒素吸収処理の影響, 鉄と鋼, 90, 1, pp. 25-31, 2012.01.
139. J. TAKAHASHI, K. KAWAKAMI, K. USHIODA, S. TAKAKI, N. NAKADA and T. TSUCHIYAMA, Quantitative analysis of grain boundaries in carbon- and nitrogen-added ferritic steels by atom prove tomography, Scripta Materialia, 66, pp. 207-210, 2012.01.
140. N. NAKADA, M. MURAKAMI, T. TSUCHIYAMA and S. TAKAKI, Work Hardening Mechanism in Soft Particle Dispersion Ferritic Steel, Materials Science Forum Vols. 706-709 (THERMEC 2011), 706-709, pp. 2199-2204, 2012.01.
141. A. HIRONAKA, N. NAKADA, T. TSUCHIYAMA and S. TAKAKI, Influence of Chromium on the Hall-Petch Coefficient in Ferritic Steel, Materials Science Forum Vols. 706-709 (THERMEC 2011), 706-709, pp. 2130-2133, 2012.01.
142. T. TSUCHIYAMA, J. TOBATA, T. TAO, N. NAKADA and S. TAKAKI, Microstructure Control of a Low Carbon Martensitic Stainless Steel by Quenching and Partitioning Treatment, Materials Science Forum Vols. 706-709 (THERMEC 2011), 706-709, pp. 2338-2341, 2012.01.
143. T. TSUCHIYAMA, J. TOBATA, T. TAO, N. NAKADA and S. TAKAKI, Quenching and Partitioning treatment of a low-carbon martensitic stainless steel, Materials Science and Engineering A, 532, pp. 585-592, 2012.01.
144. N. NAKADA, H. ITO, Y. MATSUOKA, T. TSUCHIYAMA and S. TAKAKI, Microstructural and Crystallographic Characteristics of Deformation-induced Martensite formed in Cold-drawn 316 type Stainless Steel, Solid State Phenomena Vols., vol. 172-174, pp. 99-104, 2011.07.
145. 村上真宏、北浦知之、中田伸生、土山聡宏、高木節雄, 塑性変形を伴う軟質第二相粒子が分散したフェライト鋼における転位蓄積および加工硬化挙動の評価, 鉄と鋼, 97, 3, pp. 152-158, 2011.03.
146. N. NAKADA, T. TSUCHIYAMA, S. TAKAKI and N. MIYANO, Temperature Dependence of Austenite Nucleation Behavior from Lath Martensite, ISIJ International, 51, 2, pp. 299-304, 2011.02.
147. T. TSUCHIYAMA, M. NATORI, N. NAKADA and S. TAKAKI, Conditions for Grain Boundary Bulging during Tempering of Lath Martensite in Ultra-low Carbon Steel, ISIJ International, 50, 5, 771-773, 2010.05.
148. K. TSUBOI, T. TSUCHIYAMA and S. TAKAKI, Mechanical Property of Steel Sheets with Strength Gradient through Thickness Direction, Processing and Fabrication of Advanced Materials XVIII, pp. 609-616, 2010.04.
149. M. MURAKAMI, N. NAKADA, T. TSUCHIYAMA, S. TAKAKI and Y. ADACHI, Multiple Precipitation Behavior of Niobium Carbide and Copper in Martensitic Steel, Advanced Materials Research Vols. 89-91(THERMEC 2009), pp. 395-399, 2010.04.
150. N. NAKADA, T. TSUCHIYAMA, S. TAKAKI and N. MIYANO, Temperature Dependence of Austenite Nucleation Site on Reversion of Lath Martensite, Advanced Materials Research Vols. 89-91(THERMEC 2009), pp. 3424-3429, 2010.04.
151. T. TSUCHIYAMA, T. ONOMOTO, K. TSUBOI and S. TAKAKI, Effect of Grain Refinement on Mechanical Properties in 25Cr-1N Austenitic Steel, Advanced Materials Research Vols. 89-91(THERMEC 2009), pp. 3549-3554, 2010.04.
152. T. TSUCHIYAMA, H. TAKEBE, K. TSUBOI and S. TAKAKI, Surface-layer microstructure control for metastable austenitic stainless steel to prevent hydrogen permeation, Scripta Materialia, 62, pp. 731-734, 2010.03.
153. N. NAKADA, H. ITO, Y. MATSUOKA, T. TSUCHIYAMA and S. TAKAKI, N. NAKADA, H. ITO, Y. MATSUOKA, T. TSUCHIYAMA and S. TAKAKI, Acta Materialia, 58, pp. 895-903, 2010.01.
154. T. TSUCHIYAMA, T. ANDO and S. TAKAKI, Strengthening of Titanium Alloys by Interstitial Elements, Processing and Fabrication of Advanced Materials XVIII, pp. 777-786, 2009.12.
155. Y. MATSUOKA, N, NAKADA, T. TSUCHIYAMA and S. TAKAKI, Effect of Solute Carbon on Stability of Reversed Austenite in Low Carbon 13Cr Martensitic Stainless Steel, Processing and Fabrication of Advanced Materials XVIII, pp. 617-624, 2009.12.
156. Y. IMANAMI, M. MURAKAMI, N. NAKADA, T. TSUCHIYAMA and S. TAKAKI, Contribution of Soft Copper Particle on Work Hardening Behavior in Ferritic Iron, ISIJ International, 49, 8, pp. 1225-1228, 2009.08.
157. T. ONOMOTO, Y. TERAZAWA, T. TSUCHIYAMA and S. TAKAKI, Effect of Grain Refinement on Tensile Properties in Fe-25Cr-1N Alloy, ISIJ International, 49, 8, pp. 1246-1252, 2009.08.
158. Y. TERAZAWA, T. ANDO, T. TSUCHIYAMA and S. TAKAKI, Relationship between Work Hardening Behavior and Deformation Structure in Ni-free High Nitrogen Austenitic Stainless Steels, steel research international, 80 (2009), pp. 473-476, 2009.07.
159. Y. IMANAMI, M. MURAKAMI, N. NAKADA, T. TSUCHIYAMA and S. TAKAKI, Contribution of Soft Cu Particles to Tensile Deformation Behavior in Iron, Journal of The Japan Society for Heat Treatment (Special Issue), 49, 2, pp. 526-528, 2009.04.
160. K. L. NGO HUYNH, H. TAKEBE, K. NAKASHIMA, T. TSUCHIYAMA and S. TAKAKI, Effect of Solution Nitriding on Hardness and Microstructure of Martensitic Stainless Steel, Journal of The Japan Society for Heat Treatment (Special Issue), 49, 2, pp. 549-552, 2009.04.
161. M. MURAKAMI, Y. TAKANAGA, N. NAKADA, T. TSUCHIYAMA and S. TAKAKI, Precipitation of Copper Particles during Pearlite Transformation, Journal of The Japan Society for Heat Treatment (Special Issue), 49, 2, pp. 588-591, 2009.04.
162. N. Nakada, N. Koga, T. Tsuchiyama and S. Takaki, Crystallographic orientation rotation and internal stress in pearlite colony, Scripta Materialia, 61 (2009) 133–136, 2009.03.
163. 小野本達郎、土山聡宏、高木節雄、安部幸佑、山口淳二、荒木信仁, Fe-25Cr合金線材の窒素吸収に伴う組織変化, 熱処理, 第49巻1号、pp. 1-2, 2009.02.
164. 土山聡宏、細田 孝、尾上高清、北浦知之、村上真宏、高木節雄, 銅含有フェライト鋼の時効処理に伴う引張特性の変化, 金属, Vol.79 No.1, pp. 27-32, 2009.01.
165. 波多 聰、光原昌寿、池田賢一、中島英治、土山聡宏、高木節雄, 走査透過電子顕微鏡による鉄鋼材料の中・低倍率観察の有用性, 金属, Vol.79 No.1、pp.33-38, 2009.01.
166. 安東知洋, 土山聡宏, 高木節雄 , チタンの引張変形挙動および変形組織発達に及ぼす窒素の影響, 日本金属学会誌, Vol. 72 (2008) No. 12 pp.949-954 , 2008.12.
167. T. TSUCHIYAMA, K. TASHIRO, N. NAKADA and S. TAKAKI, Microstructure and Mechanical Property of (Ferrite + Cr2N) Eutectoid-Structured High Nitrogen Steel, 1st International Conference on Interstitially Alloted Steels, pp. 25-28, 2008 , 2008.11.
168. Y. TERAZAWA, T. ANDO, T. TSUCHIYAMA and S. TAKAKI, Relationship between Work Hardening Behavior and Deformation Structure in Ni-free High Nitrogen Austenitic Stainless Steels, 1st International Conference on Interstitially Alloted Steels, pp. 21-24, 2008 , 2008.11.
169. M. MURAKAMI, Y. TAKANAGA, N. NAKADA, T. TSUCHIYAMA and S. TAKAKI, Microstructure and Mechanical Property of Copper Bearing Eutectoid Steel, ISIJ International, vol. 48 No. 10, pp. 1467-1472, 2008 , 2008.10.
170. S. TAKAKI, K. TAKEDA, N. NAKADA and T. TSUCHIYAMA, Effect of Interstitial Impurity on Yielding Behavior in Ferritic Iron, 1st International Conference on Interstitially Alloted Steels, pp. 107-113, 2008 , 2008.10.
171. 今浪祐太、村上真宏、中田伸生、土山聡宏、高木節雄, Fe-Cu合金の冷間圧延に伴う分散Cu粒子の塑性変形と転位組織発達, 熱処理, 第48号第5号、pp. 299-300, 2008.10.
172. K. TAKEDA, N. NAKADA, T. TSUCHIYAMA, S. TAKAKI, Effect of Interstitial Elements on Hall-Petch Coefficient of Ferritic Iron, ISIJ International, vol. 48 No. 8, pp. 1122-1125, 2008 , 2008.08.
173. T. TSUCHIYAMA, Y. FUJII, Y. TERAZAWA, K. NAKASHIMA, T. ANDO and S. TAKAKI, Factors Inducing Intergranular Fracture in Nickel-free High Nitrogen Austenitic Stainless Steel Produced by Solution Nitriding, ISIJ International, vol. 48 No. 6, pp. 861-867, 2008, 2008.06.
174. Tomohiro ANDO, Koichi NAKASHIMA, Toshihiro TSUCHIYAMA and Setsuo TAKAKI, Microstructure and mechanical properties of a high nitrogen titanium alloy, Materials Science and Engineering A, 486 (2008) 228–234, 2008.01.
175. T. ANDO, K. NAKASHIMA, T. TSUCHIYAMA and S. TAKAKI, Precipitation of Fine Beta-Phase in High Nitrogen Titanium Alloy, Ti-2007 Science and Technology, vol. 1, pp. 587-590, 2007 , 2007.12.
176. T. TSUCHIYAMA, S. HAMAMOTO, K. NAKASHIMA and S. TAKA, Fabrication of Fine-Grained β-Type Titanium Alloy through Mechanical Alloying Treatment, Ti-2007 Science and Technology, vol. 1, pp. 587-590, 2007 , 2007.12.
177. N. NAKADA, T. TSUCHIYAMA, S. TAKAKI and S. HASHIZUME, Variant Selection of Reveresed Austenite in Lath Martensite, ISIJ International, vol. 47 No. 10, pp. 1527-1532, 2007, 2007.10.
178. N. NAKADA, R. MATOBA, T. TSUCHIYAMA and S. TAKAKI, Relation between Yield strength and Nominal Grain Size in Duplex-grained IF steel, 4th International Symposium on Ultrafine Grained Steels (ISUGS-2007), pp. 117-122, 2007 , 2007.10.
179. K. TAKEDA, N. NAKADA, T. TSUCHIYAMA, S. TAKAKI, Effect of Carbon and Nitrogen on Hall-Petch coefficient in Iron, 4th International Symposium on Ultrafine Grained Steels (ISUGS-2007), pp. 111-116, 2007 , 2007.10.
180. T. TSUCHIYAMA, N. NAKADA, N. HIRAKAWA and S. TAKAKI, Grain Refinement through Reversion of Eutectoid Structure in High Nitrogen Austenitic Steel, 4th International Symposium on Ultrafine Grained Steels (ISUGS-2007), pp. 16-19, 2007 , 2007.10.
181. T. INOUE, T. FUKUMARU, T. TSUCHIYAMA and S. TAKAKI, Tensile Property of Ultra Fine-grained Austenitic Steel Thin Wire Produced by Reversion of Deformation-induced Martensite, 4th International Symposium on Ultrafine Grained Steels (ISUGS-2007), pp. 133-137, 2007 , 2007.10.
182. 的場理一郎、中田伸生、二村裕一、土山聡宏、高木節雄, IF鋼の降伏強度に及ぼす混粒組織の影響, 鉄と鋼, vol. 93, No. 7, pp. 513-517, 2007.07.
183. 中田伸生、深江大輔、北浦知之、土山聡宏、高木節雄, 剪断型逆変態により形成されたラス組織を有するオーステナイト鋼のクリープ特性, 熱処理, vol. 47 No. 6, pp. 371-377, 2007, 2007.06.
184. 土山聡宏、鶴丸宇位、中島孝一、高木節雄、稲葉智一、三阪佳孝, 準安定オーステナイト系ステンレス鋼における加工誘起マルテンサイトの分布制御と水素吸蔵挙動に及ぼすその効果, 熱処理, vol. 47 No. 6, pp. 355-362, 2007 , 2007.06.
185. 小野本達郎、土山聡宏、高木節雄, メカニカルアロイング処理粉末から製造した超微細粒フェライト系ステンレス鋼極細ワイヤの機械的性質, 熱処理, vol. 47 No. 6, pp. 378-384, 2007, 2007.06.
186. 中島孝一,藤村佳幸,松林弘泰,土山聡宏,高木節雄, 極低炭素マルテンサイト鋼における降伏挙動と転位組織の変化, 鉄と鋼, Vol. 93 No. 6 (2007) pp. 459-465, 2007.06.
187. T. FUKUMARU, T. INOUE, T. TSUCHIYAMA and S. TAKAKI, Formation of Ultra Fine Grained Structure during Annealing of Heavily Drawn Metastable Steel Wire, Materials Science Forum Vols. 558-559 (ReX and GG III), pp. 1309-1312, 2007, 2007.06.
188. M. NATORI, T. TSUCHIYAMA and S. TAKAKI, Grain Boundary Bulging during Tempering in Lath-Martensitic Steel, Materials Science Forum Vols. 558-559 (ReX and GG III), pp. 1309-1312, 2007 , 2007.06.
189. K. NAKASHIMA, Y. FUJIMURA, T. TSUCHIYAMA and S. TAKAKI, Work Hardening Behavior of Low Carbon Martensitic Steel, Key Engineering Materials Vols. 345-346 (Mechanical Behavior of Materials X), pp. 189-192, 2007.05.
190. T. ANDO, K. NAKASHIMA, T. TSUCHIYAMA and S. TAKAKI, Microstructure Control of High Nitrogen Alpha + Beta Type Titanium Alloy, Key Engineering Materials Vols. 345-346 (Mechanical Behavior of Materials X), pp. 189-192, 2007.05.
191. N. NAKADA, N. HIRAKAWA, T. TSUCHIYAMA and S. TAKAKI, Grain Refinement of Nickel-free High Nitrogen Austenitic Stainless Steel by Reversion of Eutectoid Structure, Scripta Materialia, vol. 57 No. , pp. 153-156, 2007.03.
192. 中島孝一、大内田伸顕、江頭 誠、土山聡宏、高木節雄, 水素ガス雰囲気中でのセメンタイト粉末の還元および焼結処理によるFe-C合金の創製, 鉄と鋼, 2007.03.
193. J. SYARIF, K. NAKASHIMA, T. TSUCHIYAMA and S. TAKAKI, Effect of Solute Copper on Yield Strength in Dislocation-strengthened Steels, ISIJ International, vol. 47 No. 2, pp. 340-345, 2007.02.
194. T. TSUCHIYAMA, S. HAMAMOTO, K. NAKASHIMA and S. TAKAKI , Microstructure of Fine-Grained β Type Titanium Alloy Produced by Mechanical Alloying and Consolidation Process, Materials Science and Engineering A, vol. 474 No. 1-2, pp. 120-127, 2007, 2007.01.
195. T. NAKANISHI, T. TSUCHIYAMA, H. MITSUYASU, Y. IWAMOTO and S.TAKAKI, Effect of Partial Solution Nitriding on Mechanical Properties and Corrosion Resistance in a Type 316L Austenitic Stainless Steel Plate, Materials Science and Engineering A, vol. 460-461, pp. 186-194, 2007 , 2007.01.
196. T. TSUCHIYAMA, N. HIRAKAWA, N. NAKADA and S. TAKAKI, Grain Refinement by Phase Transformations in Nickel-free High Nitrogen Steel, proceedings of International Conference on High Nitrogen Steels 2006, 2006.08.
197. N. HIRAKAWA, N. NAKADA, T. TSUCHIYAMA and S. TAKAKI, Decomposition of Austenite in Fe-25Cr-1N Alloy Produced by Solution Nitriding, proceedings of International Conference on High Nitrogen Steels 2006, 2006.08.
198. T. NAKANISHI, T. TSUCHIYAMA, H. MITSUYASU, Y. IWAMOTO and S.TAKAKI, Mechanical Properties of Partially Solution-nitrided 316L Austenitic Stainless Steel, proceedings of International Conference on High Nitrogen Steels 2006, 2006.08.
199. S. TAKAKI, K. KAWASAKI and T. TSUCHIYAMA, Hall-Petch Relation at Elevated Temperature for Ultar Fine Grained Iron, proceedings of ICASS 2006, 2006.08.
200. N. NAKADA, T. TSUCHIYAMA, S. TAKAKI and S. HASHIZUME, Deformation -Induced Martensitic Transformation of Fine Austenite Grains Dispersed in Tempered Martensite
, proceedings of ICASS 2006, 2006.08.
201. S. TAKAKI, Y. FUJIMURA, K. NAKASHIMA and T. TSUCHIYAMA, Effect of Dislocation Distribution on the Yielding of Highly Dislocated Iron, Materials Science Forum Vols. 539-543 (proceedings of THERMEC 2006), 2006.07.
202. K. NAKASHIMA, Y. FUJIMURA, T. TSUCHIYAMA and S. TAKAKI, Effect of Carbon on Work Hardening Behavior of 18%Ni Martensitic Steel, Materials Science Forum Vols. 539-543 (proceedings of THERMEC 2006), 2006.07.
203. T. TSUCHIYAMA, N. HIRAKAWA, N. NAKADA and S. TAKAKI, Decomposition of Austenite in Fe-25Cr-1N Alloy Produced by Solution Nitriding, Materials Science Forum Vols. 539-543 (proceedings of THERMEC 2006), 2006.07.
204. T. FUKUMARU, T. TSUCHIYAMA and S. TAKAKI, Effect of (Wire Diameter/Grain Size) Ratio on Tesile Properties in Austenitic Stainless Fine Wire, proceedings of Asia Steel International Conference 2006, 2006.05.
205. T. TSUCHIYAMA, R. HIROTA, K. FUKUNAGA and S. TAKAKI, Formation of Isotropic Structure through Recrystallization in a Ferritic Stainless Steel, proceedings of Asia Steel International Conference 2006, 2006.05.
206. M. NATORI, T. TSUCHIYAMA and S. TAKAKI, Change in Recrystallization Behavior by Prior Deformation in Ultralow Carbon Martensitic Steel, proceedings of Asia Steel International Conference 2006, 2006.05.
207. N. NAKADA, K. IMAKAWA, Y. FUTAMURA, S. HATA, T. TSUCHIYAMA and S. TAKAKI, Retardation of Austenitic Grain Growth by Grain Boundary Segregation of Copper in Low Carbon Steels, proceedings of Asia Steel International Conference 2006, 2006.05.
208. Y. FUJIMURA, K. NAKASHIMA, T. TSUCHIYAMA and S. TAKAKI, Dislocation Strengthening in Ultralow Carbon 18%Ni Martensitic Steel, TheJoint International Conference of HSLA Steels 2005 and ISUGS 2005 PROCEEDINGS, 2005.11.
209. T. ANDO, K. NAKASHIMA, T. TSUCHIYAMA and S. TAKAKI, Formation of Fine (α+β) Structure by Aging Treatment in Solution-nitrided Ti-4Cr Alloy, TheJoint International Conference of HSLA Steels 2005 and ISUGS 2005 PROCEEDINGS, 2005.11.
210. Y. FUTAMURA M. NATORI T. TSUCHIYAMA and S. TAKAKI, Difference in Recrystallization Behavior between Martensite and Deformed Ferrite, Materials Science Forum Vols. 467-470 (ReX and GG II), 467-470, 263-268, Vol. No. pp.263-268, 2004.09.
211. T. TSUCHIYAMA Y. NAKAMURA H. HIDAKA and S. TAKAKI, Effect of Initial Microstructure on Superplasticity in Ultrafine Grained 18Cr-9Ni Stainless Steel, Materials Transactions, 10.2320/matertrans.45.2259, 45, 7, 2259-2263, Vol.45 No.7 pp.2259-2263, 2004.07.
212. S. TAKAKI K. FUKUNAGA J. SYARIF and T. TSUCHIYAMA, Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel, Materials Transactions, 10.2320/matertrans.45.2245, 45, 7, 2245-2251, Vol.45 No.7 pp.2245-2251, 2004.07.
213. M. NATORI Y. FUTAMURA T. TSUCHIYAMA and S. TAKAKI, Effect of Initial Microstructure on Recrystallization Behavior during Annealing, Proceedings of 8th Ultra-Steel Workshop, Vol. No. pp.222-223, 2004.07.
214. T. KITAURA H. HIDAKA T. TSUCHIYAMA and S. TAKAKI, Importance of Size-Distribution of Dispersed Particles in Particle Dispersion Strengthening, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2003), Vol.CD-ROM No. pp.-, 2003.01.
215. 吉弘辰明,土山聡宏,高木節雄, TiB/Ti複合材における反応焼結中のTiB粒子の生成挙動, 日本金属学会誌, Vol.67 No.7 pp.362-367, 2003.01.
216. H. HIDAKA K. KAWASAKI T. TSUCHIYAMA and S. TAKAKI, Effect of Carbon on Nano-Crystallization in Steel during Mechanical Milling Treatment, Materials Transactions, 10.2320/matertrans.44.1912, 44, 10, 1912-1918, Vol.44 No.10 pp.1912-1918, 2003.01.
217. H. HIDAKA T. TSUCHIYAMA and S. TAKAKI, Microstructural Change during Mechanical Milling Treatment in Fe-C Alloy Powders with Different Initial Microstructure, Materials Science Forum Vols. 426-432, 426-4, 2717-2722, Vol.3 No. pp.2717-2722, 2003.01.
218. T. TSUCHIYAMA and S. TAKAKI, Thermodynamics of Nitrogen Absorption into Solid Solution in Fe-Cr-Mn Ternary Alloys, Materials Science Forum Vols. 426-432, 426-4, 957-962, Vol.2 No. pp.957-962, 2003.01.
219. T. TSUCHIYAMA H. ITO K. KATAOKA and S. TAKAKI, Fabrication of Ultrahigh Nitrogen Austenitic Steels by Nitrogen Gas Absorption into Solid Solution, Metallurgical and Materials Transactions A, 10.1007/s11661-003-0018-z, 34A, 11, 2591-2599, Vol.34A No.11 pp.2591-2599, 2003.01.
220. Y. FUTAMURA T. TSUCHIYAMA and S. TAKAKI, Ostwald Ripening Behavior of Cu Particles in Martensitic Steels, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2003), Vol.CD-ROM No. pp.-, 2003.01.
221. T. TSUCHIYAMA Y. NAKAMURA H. HIDAKA and S. TAKAKI, Superplasticity of Austenitic Stainless Steel Containing Thermally Unstable Martensite Particles, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2003), Vol.CD-ROM No. pp.-, 2003.01.
222. 高野光司,中尾隆二,福元成雄,土山聡宏,高木節雄, オーステナイト系ステンレス鋼の酸化物の分散を利用した結晶粒径調整, 鉄と鋼, Vol.89 No.5 pp.616-622, 2003.01.
223. S. TAKAKI K. FUKUNAGA and T. TSUCHIYAMA, Effect of Grain Refinement on Thermal Stability of Metastable Austenite, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2003), 10.2320/matertrans.45.2245, 45, 7, 2245-2251, Vol.CD-ROM No. pp.-, 2003.01.
224. S. NAKADA S. JUNAIDI T. TSUCHIYAMA and S. TAKAKI, Effect of Copper Particles on Softening Behavior During Tempering in 9% Nickel Martensitic Steels, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2003), Vol.CD-ROM No. pp.-, 2003.01.
225. M. SUZUKI K. NAKASHIMA Y. FUTAMURA S. JUNAIDI T. TSUCHIYAMA and S. TAKAKI, Bailey-Hirsch Relationship in Deformed Iron and Martensitic Steels, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2003), Vol.CD-ROM No. pp.-, 2003.01.
226. K. KAWASAKI T. TSUCHIYAMA and S.TAKAKI, Temperature Dependence of Hall-Petch Relationship in Ultra Fine Grained Iron, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2003), Vol.CD-ROM No. pp.-, 2003.01.
227. 中田伸生,山下 徹,シャリフ・ジュナイディ,土山聡宏,高木節雄, 9%Ni鋼の逆変態オーステナイト生成と硬さに及ぼすCu添加の影響, 鉄と鋼, Vol.89 No.10 pp.1050-1056, 2003.01.
228. 二村裕一,河村知浩,土山聡宏,高木節雄, 極低炭素マルテンサイト鋼の再結晶挙動に及ぼすボロンの影響, 鉄と鋼, Vol.80 No.3 pp.335-341, 2003.01.
229. J. SYARIF T. TSUCHIYAMA and S. TAKAKI, Mechanism of Toughening in Ferritic Iron by Solute Copper at Low Temperature, ISIJ International, 10.2355/isijinternational.43.1100, 43, 7, 1100-1104, Vol.43 No.7 pp.1100-1104, 2003.01.
230. 中島孝一,二村裕一,土山聡宏,高木節雄, Fe-Cu合金における高温での析出強化, 鉄と鋼, Vol.89 No.5 pp.524-529, 2003.01.
231. 高野光司,土山聡宏,高木節雄, 12%Cr-0.1%C鋼の等温変態により析出する炭化物の分散状態に及ぼす前加工の影響, 鉄と鋼, Vol.88 No.11 pp.779-785, 2002.01.
232. K. NAKASHIMA Y. FUTAMURA T. TSUCHIYAMA and S. TAKAKI, Interaction between Dislocation and Copper Particles in Fe-Cu Alloys, Proceedings of First International Conference on Advanced Structural Steels (ICASS 2002), Vol. No. pp.177-178, 2002.01.
233. H. HIDAKA T. TSUCHIYAMA and S. TAKAKI, Effect of Oxide Addition on Thermal Stability of Ultra Fine-Grained Structure in Iron, Proceedings of First International Conference on Advanced Structural Steels (ICASS 2002), Vol. No. pp.59-60, 2002.01.
234. K. NAKASHIMA Y. FUTAMURA T. TSUCHIYAMA and S. TAKAKI, Interaction between Dislocation and Copper Particles in Fe-Cu Alloys, ISIJ International, 10.2355/isijinternational.42.1541, 42, 12, 1541-1545, Vol.42 No.12 pp.1541-1545, 2002.01.
235. Y. FUTAMURA T. TSUCHIYAMA and S. TAKAKI, Embrittlement in Copper Bearing Heat Resistant Martensitic Steels, Proceedings of First International Conference on Advanced Structural Steels (ICASS 2002), Vol. No. pp.201-202, 2002.01.
236. T. TSUCHIYAMA H. UCHIDA K. KATAOKA and S. TAKAKI, Fabrication of Fine-Grained High Nitrogen Austenitic Steels through Mechanical Alloying Treatment, ISIJ International, 10.2355/isijinternational.42.1438, 42, 12, 1438-1443, Vol.42 No.12 pp.1438-1443, 2002.01.
237. T. TSUCHIYAMA H. UCHIDA K. KATAOKA and S. TAKAKI, Fabrication of Fine-Grained High Nitrogen Austenitic Steels through Mechanical Alloying Treatment, Proceedings of First International Conference on Advanced Structural Steels (ICASS 2002), Vol. No. pp.57-58, 2002.01.
238. H. HIDAKA T. TSUCHIYAMA and S. TAKAKI, Relation between Microstructure and Hardness in Fe-C Alloys with Ultra Fine Grained Structure, Scripta Materialia, 10.1016/S1359-6462(01)00714-X, 44, 8-9, 1503-1506, Vol.44 No.8/9 pp.1503-1506, 2001.01.
239. 三上真人,土山聡宏,高木節雄, 12%Cr-0.3%C鋼における恒温変態挙動, 鉄と鋼, Vol.87 No.1 pp.49-54, 2001.01.
240. 内田啓之,片岡公太,土山聡宏,後藤秀人,高木節雄, メカニカルアロイング法を用いて作製した高窒素微細粒鋼の組織と機械的性質, 粉体および粉末冶金, Vol.48 No.10 pp.980-985, 2001.01.
241. K. KAWASAKI H. HIDAKA T. TSUCHIYAMA and S. TAKAKI, Temperature Dependence of Deformation Behavior in Ultra Fine-Grained Iron, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2001), Vol. No. pp.244-247, 2001.01.
242. K. KASUYA H. HIDAKA T. TSUCHIYAMA and S. TAKAKI, Transformation Behavior Controlled by Fine Oxide Particles in Fine-Grained Eutectoid Steel, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2001), Vol. No. pp.202-205, 2001.01.
243. J. SYARIF T. TSUCHIYAMA and S. TAKAKI, Mechanism of Grain Refining of Austenite by Copper Addition in 8mass%Ni Martensitic Steel, Proceedings of the Fourth Pacific Rim International Conference on Advanced Materials and Processing (PRICM4), 1955-1958, Vol. No. pp.1955-1958, 2001.01.
244. Y. FUTAMURA T. TSUCHIYMA and S. TAKAKI, Embrittlement through Cu addition and Its Improvement in Heat Resistant Martensitic Steels, Proceedings of International Conference on Processing and Manufacturing of Advanced Materials (THERMEC 2000), Vol. No. pp.CD ROM C1-7, 2001.01.
245. 稲葉智一,三上真人,小野嘉則,土山聡宏,高木節雄, 部分溶体化処理した12%Cr-0.3%C鋼の恒温変態挙動, 鉄と鋼, Vol.87 No.9 pp.613-618, 2001.01.
246. T. TSUCHIYAMA and S. TAKAKI, Recrystallization Mechanism of Lath Martensite in High Chromium Steel, Recrystallization and Grain Growth, 803-808, Vol.2 No. pp.803-808, 2001.01.
247. Y. FUTAMURA T. TSUCHIYAMA and S. TAKAKI, Effect of Solute Copper on Grain Growth of Austenite in High Chromium Steels, Recrystallization and Grain Growth, 367-372, Vol.1 No. pp.367-372, 2001.01.
248. 弘中 諭,土山聡宏,高木節雄, 焼結Ti-4%Cr-Al合金の組織制御と超塑性, 粉体および粉末冶金, Vol.48 No.1 pp.39-44, 2001.01.
249. Y. FUTAMURA T. TSUCHIYAMA and S. TAKAKI, Strengthening Mechanism of Cu bearing Heat Resistant Martensitic Steels, ISIJ International (Supplement), 10.2355/isijinternational.41.Suppl_S106, 41, S106-S110, Vol.41 No.0 pp.S106-S110, 2001.01.
250. T. TSUCHIYAMA Y. MIYAMOTO and S. TAKAKI, Recrystallization of Lath Martensite with Bulge Nucleation and Growth Mechanism, ISIJ International, 10.2355/isijinternational.41.1047, 41, 9, 1047-1052, Vol.41 No.9 pp.1047-1052, 2001.01.
251. H. UCHIDA H. HIDAKA T. TSUCHIYAMA and S. TAKAKI, Microstructure and Mechanical Properties of Fine-Grained High Nitrogen Stainless Steels Fabricated through Mechanical Alloying Treatment, Proceedings of International Symposium on Ultrafine Grained Steels (ISUGS 2001), Vol. No. pp.298-301, 2001.01.
252. K. KATAOKA T. TSUCHIYAMA H. GOTO and S. TAKAKI, Fabrication of a High Nitrogen Stainless Steel by Powder Metallurgy Process through Mechanical Milling Treatment, Proceedings of International Conference on Processing and Manufacturing of Advanced Materials (THERMEC 2000), Vol. No. pp.CD ROM B1-4, 2001.01.
253. T. TSUCHIYAMA Y. ONO and S. TAKAKI, Microstructure Control for Toughening a High Carbon Martensitic Stainless Steel, ISIJ International (Supplement), Vol.40 No.0 pp.S184-S188, 2000.01.
254. H. HIDAKA S. NAKAMYO T. TSUCHIYAMA and S. TAKAKI, Contribution of Oxide Particles to Thermal Stability of Ultra Fine-Grained Structure, Proceedings of 1st International Conference on Advanced Materials Processing, Vol.0 No.0 pp.601-606, 2000.01.
255. シャリフ・ジュナイディ,星野俊幸,土山聡宏,高木節雄, α鉄の硬さと延性-脆性遷移に及ぼす固溶Cuの影響, 鉄と鋼, Vol.86 No.8 pp.558-562, 2000.01.
256. T. TSUCHIYAMA Y. FUTAMURA and S. TAKAKI, Strengthening of Heat Resistant Steel by Cu Addition, Key Engineering Materials Vols. 171-174 (Creep and Fracture of Engineering Materials and Structures), 171-1, 411-417, Vol.0 No.0 pp.411-418, 2000.01.
257. J. SYARIF T. HOSHINO T. TSUCHIYAMA and S. TAKAKI, Effect of Solute Copper on Low Temperature Toughness in α-Iron, Proceedings of the 10th Iketani Conference on Materials Research Toward 21st Century, Vol.0 No.0 pp.117-118, 2000.01.
258. K. IWANAGA T. TSUCHIYAMA and S. TAKAKI, Strengthening Mechanisms in Heat-Resistant Martensitic 9Cr Steels, Key Engineering Materials Vols. 171-174 (Creep and Fracture of Engineering Materials and Structures), 171-1, 477-482, Vol.0 No.0 pp.477-482, 2000.01.
259. K. IWANAGA T. TSUCHIYAMA and S. TAKAKI, Effect of Solute Alloying Elements on Creep Deformation Behavior in High Cr Martensitic Steels, Proceedings of STAINLESS STEEL99 SCIENCE AND MARKET, Vol.2 No.0 pp.447-452, 1999.01.
260. Y. ONO T. TSUCHIYAMA and S. TAKAKI, Reversion from Eutectoid Structure to Austenite in High Manganese Austenitic Steels, Solid-Solid Phase Transformations II, 1641-1644, Vol.0 No.0 pp.1641-1644, 1999.01.
261. Y. FUTAMURA T. TSUCHIYAMA and S. TAKAKI, Microstructure and Strengthening Mechanism of Cu Bearing High Cr Martensitic Steels, Solid-Solid Phase Transformations II, 1601-1604, Vol.0 No.0 pp.1601-1604, 1999.01.
262. T. TSUCHIYAMA and S. TAKAKI, Effect of Partial SolutionTreatment on Toughness of 12%Cr-0.3%C Steels, ISIJ International, 10.2355/isijinternational.39.202, 39, 2, 202-208, Vol.39 No.2 pp.202-208, 1999.01.
263. T. TSUCHIYAMA and S. TAKAKI, Variants of M23C6 Type Carbide Precipitate in Deformed High Chromium Martensitic Steel, Solid-Solid Phase Transformations II, 1613-1616, Vol.0 No.0 pp.1613-1616, 1999.01.
264. K. OKAZAKI T. TSUCHIYAMA N. Nakamura and S. TAKAKI, Superplasticity of Sintered Titanium Alloy with Martensitic Structure, Materials Science Forum Vols. 304-306 (Towards Innovation in Superplasticity II), 304-3, 121-126, Vol.0 No.0 pp.121-126, 1999.01.
265. T. TSUCHIYAMA and S. TAKAKI, Effect of Ni addition on Softening Behavior During Tempering in Martensitic Stainless Steels, Proceedings of STAINLESS STEEL99 SCIENCE AND MARKET, Vol.2 No.0 pp.127-135, 1999.01.
266. N. NAKAMURA T. TSUCHIYAMA and S. TAKAKI, Effect of Structural Factors on the Mechanical Properties of High Nitrogen Austenitic Steel, Materials Science Forum Vols. 318-320 (High Nitrogen Steels), 318-3, 209-214, Vol.0 No.0 pp.209-214, 1999.01.
267. 片岡公太,土山聡宏,後藤秀人,高木節雄, 粉末冶金法による高窒素オーステナイト系ステンレス鋼の製造, 粉体および粉末冶金, Vol.46 No.11 pp.1249-1255, 1999.01.
268. 片岡公太,中村展之,土山聡宏,後藤秀人,高木節雄, 窒素吸収焼結による複合組織ステンレス鋼の作製, 粉体および粉末冶金, Vol.46 No.11 pp.1136-1140, 1999.01.
269. 二村裕一,土山聡宏,高木節雄, 9mass%Crマルテンサイト鋼の相変態と組織に及ぼすCu添加の影響, 鉄と鋼, Vol.85 No.9 pp.697-702, 1999.01.
270. 小野義則,土山聡宏,高木節雄, 高Mnオーステナイト鋼の恒温変態に伴う組織変化, 鉄と鋼, Vol.84 No.4 pp.309-314, 1998.01.
271. T. TSUCHIYAMA and S. TAKAKI, Formation of Reversed Austenite from M23C6 Type Carbide in High Chromium Martensitic Steel, Proceedings of the Third Pacific Rim International Conference on Advanced Materials and Processing (PRICM3), Vol.1 No.0 pp.1187-1192, 1998.01.
272. 中村展之,土山聡宏,高木節雄, フェライト系ステンレス鋼の窒素吸収挙動に伴う相変態機構, 鉄と鋼, Vol.84 No.6 pp.441-445, 1998.01.
273. 岩永健吾,土山聡宏,高木節雄, マルテンサイト系耐熱鋼のクリープ変形挙動と組織の関係, 鉄と鋼, Vol.84 No.12 pp.896-901, 1998.01.
274. T. TSUCHIYAMA and S. TAKAKI, Microstructure Control of a High Carbon Martensitic Stainless Steel by Partial Solution Treatment, Proceedings of International Conference on Thermomechanical Processing of Steels & Other Materials (THERMEC97), 203-208, Vol.2 No.0 pp.203-208, 1997.01.
275. T. TSUCHIYAMA Y. ONO and S. TAKAKI, Mechanism of Isothermal Eutectoid Transformation in High Carbon Stainless Steels, ISIJ International, 10.2355/isijinternational.37.715, 37, 7, 715-720, Vol.37 No.7 pp.715-720, 1997.01.
276. 土山聡宏,高木節雄, 12%Cr鋼のマルテンサイト変態に及ぼす部分溶体化処理の影響, 鉄と鋼, Vol.82 No.12 pp.1035-1040, 1996.01.
277. 土山聡宏,高木節雄,中村定幸, 未固溶炭化物によるマルテンサイト系ステンレス鋼のオーステナイト粒径の制御, 鉄と鋼, Vol.81 No.2 pp.147-152, 1995.01.
278. 土山聡宏,高木節雄,中村定幸, マルテンサイト系ステンレス鋼の組織および硬さに及ぼす未固溶炭化物の影響, 鉄と鋼, Vol.80 No.12 pp.938-943, 1994.01.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。