九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
島ノ江 憲剛(しまのえ けんごう) データ更新日:2024.04.23

教授 /  総合理工学研究院 物質科学部門 機能材料設計学


主な研究テーマ
新規固体電解質を用いた機能デバイスの研究
キーワード:固体電解質, 酸素分離, センサ
2018.04.
ガスセンサの設計と高性能化
キーワード:ガスセンサ、設計、高感度、高選択性
1995.08.
リチウム空気電池用空気極の研究
キーワード:酸素還元電極、リチウム空気電池、ぺロブスカイト、ナノ粒子
2009.04.
水熱処理法を用いた酸化スズナノ粒子の作製とガスセンサの高感度化
キーワード:ガスセンサ、水熱処理、高感度、酸化スズ、ナノ粒子
1995.08.
高次構造制御による超高感度半導体ガスセンサの設計
キーワード:高次構造制御、超高感度、半導体、ガスセンサ、レセプター
1999.04.
マイクロガスセンサのための要素技術開発
キーワード:マイクロ、ガスセンサ、ユビキタス、IT
2004.04.
環境関連ガス検知のための固体電解質ガスセンサの設計
キーワード:酸化性ガス、環境、ガスセンサ、固体電解質、補助相
1995.08.
走査型トンネル顕微鏡を用いた酸化スズ表面の電子構造解析
キーワード:トンネル顕微鏡、酸化スズ、電子構造、酸素吸着、ガスセンサ
2001.04~2007.03.
半導体トランスデューサと固体電解質を組み合わせた新規ガスセンサの研究
キーワード:トランジスタ、ダイオード、ガスセンサ、固体電解質、トランスデューサ
1998.04.
新規固体電解質を用いたガスセンサに関する研究
キーワード:固体電解質、ガスセンサ、ビスマス酸化物、ペロブスカイト
2001.04.
医療用ガスセンサの開発
キーワード:医療用ガス、エチレンオキサイド、亜酸化窒素、ガスセンサ、システム
1998.04.
食塩電解および金属空気電池のための高性能酸素還元電極の開発
キーワード:酸素還元電極、食塩電解、金属空気電池、ぺロブスカイト、ナノ粒子
1995.08.
高性能酸素分離膜の設計
キーワード:酸素分離、酸素富化、ペロブスカイト、混合導電体、酸素欠陥
1999.10.
湿式法を用いたセラミックコーティング法に関する研究
キーワード:湿式法、セラミック、コーティング、防食、高温
2001.04~2006.03.
高密度メモリのためのPZT誘電体薄膜に関する研究
キーワード:PZT、湿式法、メモリ、低温化、薄膜、高密度
1996.04~2005.03.
従事しているプロジェクト研究
新規固体電解質の応用研究
2018.09, 代表者:島ノ江憲剛, 九州大学.
ビッグデータ時代に対応したセンサに関する動向調査
2016.04~2017.03, 代表者:島ノ江憲剛, 九州大学大学院総合理工学研究院, 一般社団法人未踏科学技術協会(日本)
エネジーハーベストに基づいたセンシングシステムの検討.
中国海外連携研究プロジェクト
2015.10~2020.09, 代表者:島ノ江憲剛, 九州大学大学院総合理工学研究院, 中国
高性能環境ガスセンサの設計.
KU-KU joint workshop on functional materials
2008.09~2018.11, 代表者:島ノ江憲剛, 九州大学, 日本および韓国
機能材料に関する研究交流会.
「文化財保全技術」に関する先導的研究開発委員会
2007.04~2010.07, 代表者:委員長 志水隆一, 国際高等研究所, 日本
文化財の深刻な劣化状況を憂慮し、三つの分科会により諸問題の明確化、解決に向けたアプローチ、課題提言を基本として活動した。島ノ江は環境モニタリングを主とする第一分科会の主査を務めた。.
二国間交流事業 マイクロガスセンサ及びそれを用いたセンサシステムの設計開発
2008.07~2010.06, 代表者:島ノ江憲剛, 九州大学大学院総合理工学研究院, 日本
マイクロガスセンサ及びそれを用いたセンサシステムの設計開発.
大気環境浄化に資する酸化物触媒の表面・界面設計による高機能化
2008.06~2011.03, 代表者:島ノ江 憲剛, 九州大学, 財団法人 日産科学振興財団
最適の材料設計とナノプロセッシングの開発と高度化やデバイス化に不可欠なメソプロセッシングの開発が重要という観点から、材料表面•界面の制御、粒子形態の制御、異物質との傾斜接合などの詳細な検討と機能•物性の発現機構の解明が重要であることを提案している。そこで本研究では、(イ)材料の粒子径およびポア径のナノ・メソレベル制御、(ロ)粒子表面の化学処理あるいは物理処理による吸着•触媒活性の制御、(ハ)粒子表面の化学成分制御、(ニ)異種界面における化学的•電気的接合面の安定化と傾斜化、粒子集合形態制御などを可能にする基礎プロセスについて検討し、大気環境浄化に資する上記化学デバイス分野に応用可能な基礎研究を行う。.
ナノ構造制御ペロブスカイト触媒システムの構築
2002.10~2007.09, 代表者:寺岡 靖剛, 九州大学, 独立行政法人科学技術振興機構.
次世代化学機能デバイスの基盤研究としてのセラミックスウェットプロセッシング−ナノレベルからの構造と機能の制御−
2002.04~2004.01, 代表者:寺岡 靖剛, 九州大学, 九州大学.
研究業績
主要著書
1. Kengo SHIMANOE, Noboru Yamazoe, Semiconductor gas sensors (2nd edition), Woodhead Publishing, pp.4-38, 2019.09.
2. 島ノ江憲剛, 山添 曻, セラミックス機能化ハンドブック, NTS, 第3章電磁気機能・第5章センサ・2.化学センサ, 225-246, 2011.01.
3. 島ノ江憲剛, 先進化学センサ-ガス・バイオ・イオンセンシングの最新技術-, “ナノ構造制御した半導体ガスセンサ”
電気化学会化学センサ研究会編, pp.15-20, 2008.05.
4. 島ノ江憲剛, MATERIALS INTEGRATION, “ナノ構造制御した半導体ガスセンサ”
Vol.21, No05.06, pp.13-18, 2008.04.
5. 島ノ江憲剛, バイオセンサ・ケミカルセンサ事典, (株)テクノシステム, ”2. 固体電解質ガスセンサ”
第1章ケミカルセンサの原理および分類、第2編ケミカルセンサ、第1節 ガスセンサ, pp. 485-494, 2007.10.
6. 島ノ江 憲剛, シリコンウェーハの洗浄と分析, リアライズ社, 1998.04.
7. 島ノ江憲剛, 田中 暁, 坂下雅雄, 走査型トンネル顕微鏡/原子間力顕微鏡利用技術集成, 株式会社ティー・アイ・シィー, 第7節 Hg1-xCdxTe半導体表面のEC-STM観察, p. 157-163, 1994.07.
8. 島ノ江 憲剛, シリコンの科学, 株式会社リアライズ社, ウェーハの洗浄, 第1項ウェット洗浄,(c)重金属, p. 328-337, 1996.06.
主要原著論文
1. Koichi Suematsu, Wataru Harano, Shigeto Yamasaki, Ken Watanabe, Kengo Shimanoe, One-Trillionth Level Toluene Detection Using a Dual-Designed Semiconductor Gas Sensor: Material and Sensor-Driven Designs, ACS Appl. Electron. Mater., /10.1021/acsaelm.0c00902, 2, 4122-4126, 2020.11, Lowering the volatile organic compound (VOC) gas detection limit toward the ppt level on a resistive-type semiconductor gas sensor was achieved by combining the material and sensor-driven designs. We fabricated Pd-SnO2 clustered nanoparticles, a material that is highly sensitive to VOC gas, on a microsensor device with a double-pulse-driven mode. This mode was involved in switching the heater-on periods at high-temperature preheating and measurement phases and the rest phase during a heater-off period between preheating and measurement phases. The electrical resistance in synthetic air and the sensor response to toluene increased as preheating temperatures increased because of an increase in the amount of O2– adsorbed on the particle surface. In addition, extending the rest time between the preheating and measurement phases significantly improved the sensor response to toluene. According to the relationship between the sensor response and toluene concentration, we improved the lower detection limit for toluene gas to below 10 ppt, with preheating and measurement temperatures at 400 and 250 °C, respectively, and rest time at 100 s. Therefore, the combination of the material and sensor-driven designs may play a key role in improving the sensor performance..
2. Ken WATANABE, Shingo IDE, Takashi KUMAGAI, Takaaki FUJINO, Koichi SUEMATSU, Kengo SHIMANO, Oxygen pumping based on c-axis-oriented lanthanum silicate ceramics : challenge toward low operating temperature, Journal of the Ceramic Society of Japan, 127, 1-4, 2018.11, A new electrochemical oxygen separation pump was developed by using c-axis-oriented La9.66Si5.3B0.7O26.14 (c-LSBO), which has high oxide-ionic conductivity (>10−3 S cm−1) up to 300°C. Interfacial resistance between the electrode and c-LSBO was investigated to realize the full potential of LSBO as an oxygen separation material. The formation of a Sm-doped CeO2 (SDC) thin film (thickness: 300 nm) between the electrode and c-LSBO was effective for suppressing the interfacial resistance. Furthermore, a mixed conductive La0.6Sr0.4Co0.78Ni0.02Fe0.2O3−δ (LSCFN) was applied to the electrode for enhancing the oxygen reduction/evolution activity on the electrode. The LSCFN/SDC/c-LSBO symmetric cell showed an oxygen permeation flux of 3.5 mL cm−2 min−1 (1.0 A cm−2) at 600°C under an applied DC voltage of 1.5 V; this value was 67 times that of Pt/c-LSBO. This oxygen pump based on the LSCFN/SDC/c-LSBO symmetric cell would find promising application in oxygen separation at intermediate temperatures. Further reduction of the interfacial resistance and polarization resistance of the electrode may decrease the operating temperatures to below 400°C..
3. Shingo Ide, Hiroki Takahashi, Isamu Yashima, Koichi Suematsu, Ken Watanabe, Kengo Shimanoe, Effect of Boron Substitution on Oxide-ion Conduction in c-axis-oriented Apatite-type Lanthanum Silicate, J. Phys. Chem. C 2020, 124, 5, 2879-2885(2020), 124, 5, 2879-2885, 2020.02.
4. Koichi Suematsu, Tokiharu Oyama, Wataru Mizukami, Yuki Hiroyama, Ken Watanabe, Kengo Shimanoe, Selective Detection of Toluene Using Pulse-Driven SnO2 Micro Gas Sensors, ACS Appl. Electron. Mater, /10.1021/acsaelm.0c00547, 2, 2913-2920, 2020.08.
5. Koichi Suematsu, Yuki Hiroyama, Wataru Harano, Wataru Mizukami, Ken Watanabe, Kengo Shimanoe, Double-Step Modulation of Pulse-Driven Mode for High Performance SnO2 Micro Gas Sensor: Designing the Particle Surface via Rapid Preheating Process, ACS sensors, /10.1021/acssensors.0c01365, 2020.10.
6. Koichi Suematsu, Wataru Harano, Tokiharu Oyama, Yuka Shin, Ken Watanabe, Kengo Shimanoe, Pulse-driven semiconductor gas sensors toward ppt level toluene detection, Analytical chemistry, 90, 11219-11223, 2018.09.
7. Masayoshi Yuasa, Naoki Tachibana, Kengo Shimanoe, Oxygen reduction activity of carbon-supported La1-xCa xMn1-yFeyO3 nanoparticles, Chemistry of Materials , 25 (15) , pp. 3072-3079 (2013.7), 2013.07.
8. Masayoshi Yuasa, Tsubasa Matsuyoshi, Tetsuya Kida, Kengo Shimanoe, Discharge/charge characteristic of Li-air cells using carbon-supported LaMn0.6Fe0.4O3 as an electrocatalyst, Journal of Power Sources , 242 , pp. 216-221, 2013.11.
9. Kengo Shimanoe, Kohei Yoshida, Masayoshi Yuasa, Noboru Yamazoe, Microstructure Control of SnO2-based Gas Sensor Using Cluster Sols, International Conference on Sol-Gel Processes for Advanced Ceramics, pp.185-186, 2009.10.
10. Kengo Shimanoe, Masayoshi Yuasa, Tetsuya Kida, Noboru Yamazoe, Material design based on wet process for highly sensitive semiconductor gas sensors, Gas sensors based on semiconducting metal oxides –new directions, pp.16-17, 2009.12.
11. Kengo Shimanoe, Aya Nishiyama, Masayoshi Yuasa, Tetsuya Kida, Noboru Yamazoe, Microstructure control of WO3 film by adding nano-particles of SnO2 for NO2 detection in ppb level, EurosensorXXIII(Procedia Chemistry), Vol. 1 (1), pp. 212-215, 2009.09.
12. 島ノ江 憲剛、山添 曻, 半導体ガスセンサの設計-新しい理論的解釈-, CERAMICS JAPAN, Vol.44, pp.80-87, 2009.02.
13. J. P. Lukaszewicz, S. Imaizumi, M. Yuasa, K. Shimanoe, N. Yamazoe, New approach towards preparation of efficient gas diffusion-type oxygen reduction electrode, Journal of Materials Science, Vol. 41, pp. 6215-6220, 2006, 2006.10.
14. Y. Muroya, K. Shimanoe, Y. Haruta, Y. Teraoka, N. Yamazoe, Addition of alkali silicate to grain size-controlled ceramic coatings for dense film, Journal of the Ceramic Society of Japan, 114(4), 308-312, 2006, 2006.04.
15. K. Shimanoe, K. Ikari, Y. Shimizu, N. Yamazoe, STM observation of SnO2 (110) thermal-treated under oxidative condition, Sensors and Actuators B, Vol. 118, pp. 90-93, 2006, 2006.10.
16. M. Kugishima, K. Shimanoe, N. Yamazoe, C2H4O sensing properties for thick film sensor using La2O3-modified SnO2, Sensors and Actuators B, Vol. 118, pp. 171-176, 2006, 2006.10.
主要総説, 論評, 解説, 書評, 報告書等
1. 島ノ江憲剛, 半導体ガスセンサの材料設計, Cearamics Japan (日本セラミックス協会), 52(8),534-542 (2017), 2017.08, 理論的および実践的な取り組みを基に半導体ガスセンサの材料設計を示した.また,マイクロガスセンサである MEMS 型ガスセンサへの展開と課題についても紹介した.ガスセンサは安全・安心のために必要不可欠であり,最近では快適空間の構築にも活用されつつある.情報の入り口を担うセンサとして,ガスセンサは今後も必要不可欠なデバイスでる.最近の情報分野,特に IoT とガスセンサを組み合わせた新たな分野構築も重要となるであろう.そのためには,材料分野に限らず,いろいろな分野の研究者と様々な観点から議論し,新しいガスセンサを具現化することが必要である.
.
2. 島ノ江憲剛, ビッグデータ時代に対応したセンサに関する動向調査報告, 2017.03, ビッグデータ時代に相応しいセンサの発展動向に関する調査を,主にIoT,エナジーハーベストとセンサとの関わりに焦点を当てて行うと共に,センサの科学技術と社会経済との関連について検討した..
3. 島ノ江 憲剛、山添 曻, 半導体ガスセンサの理論と設計, 材料の科学と工学, pp.2-7, 2011.08, 近年の環境への配慮や情報の多様化から,半導体ガスセンサにも様々な要望が生じている.例えば,検知対象となるガスの種類は増加し,場合によってはその濃度はppbレベルになることもある.また,複数のガスが混在する中から一つのガスを高感度かつ選択的に検知することも要求される.これらの要望に応えるためには,理論に裏付けされた設計指針が必要である.本稿では,その理論と設計指針を簡単に概説し,その設計を基にしたガスセンサの例を紹介する..
4. 島ノ江 憲剛, 第一分科会「文化財保存環境下における環境実地検証」, (独)日本学術振興会, pp.10-24, 2010.08.
5. 島ノ江 憲剛, 半導体ガスセンサの材料設計-理論面からのアプローチといくつかの実験的検証-, 第75回化学センサ研究会, pp.11-21, 2010.01.
6. 島ノ江憲剛, 手のひらサイズのNO2センサーで環境を測る!, 化学同人, 化学, Vol.55, No.11, p.64-65, 2000.11.
7. 島ノ江憲剛, においセンサー, 日本分析化学会, 日本分析化学会誌「ぶんせき」, Vol.1999, No.8, p.663-668, 1999.08.
主要学会発表等
1. Kengo Shimanoe, Koichi Suematsu, Ken Watanabe, Toward a New Concept for Development of MEMS-Type Gas Sensor, The International Union of Materials Research Societies – International Conference in Asia 2021 (IUMRS-ICA 2021), Jeju, Korea, on-line, 2021.10.
2. Kengo Shimanoe, Shingo Ide, Koichi Suematsu, Ken Watanabe, Functional Devices Using c-Axis-Oriented Apatite-Type Lanthanum Silicate as new solid electrolyte, The 8th International Biennial Conference on Ultrafine Grained and Nanostructured Materials (UFGNSM2021), 2021.11.
3. Kengo Shimanoe, Koichi Suematsu, Ken Watanabe, Development of Ultra-High-Sensitive MEMS-type Gas Sensor in ppt Level, The 6th International Conference on Advanced Electromaterials (ICAE 2021), 2021.11.
4. Kengo Shimanoe, New Design of MEMS-Type Gas Sensors Based on SnO2, The 8th International Conference on Ceramics(ICC8), 2021.04.
5. Kengo Shimanoe, Koichi Suematsu,Ken Watanabe, MEMS -Type Gas Sensor of Pd-Loaded SnO2 for Ultra-High-Sensitive Detection in ppt Level, 米国MRS FALL MEETING & EX HIBITE, 2019.12, Ultra-High-Sensitive gas detection in ppt level have been proposed by using pulse-heating of MEMS attached with Pd-SnO2. My group reported three important factors, receptor, transducer functions and utility factor, for gas sensor material designs and their integration in 2003 and 2006, respectively. In 2014, the gas sensor using Pd-SnO2 clusters based on the idea of the above integration could successfully detect toluene in ppb level. To enhance the sensor response more, we investigated the combination of utility factor and pulse-heating of MEMS. The MEMS-type gas sensors are repeatedly heated and allowed to cool by the application of voltage to the microheater; the target gas can penetrate into the interior of the sensing layer (Pd-loaded SnO2 clusters) during its unheated state. In 2018, we reported that such sensor responded to toluene in 0.1 ppb. In addition, the sensor response was found to increase by considering the oxygen adsorption state in the preheating and waiting-time before pulse-heating for measurement. The response of MEMS-type gas sensors showed a linearity to toluene concentration. It is found that the sensor response depends on the waiting-time between pre-heating and measure-heating. For example, in relationship of sensor response to gas concentration, the short waiting-time gave a steep slope, but the long waiting-time gave a gentle slope with lower detection limit. In the presentation, I will show the details as such Ultra-High Sensitive gas sensor..
6. K. Shimanoe, K. Suematsu, K. Watanabe, High performance MEMS-type gas sensors, The 22nd International Conference on Solid State Ionics, 2019.06.
7. Kengo Shimanoe, Materials Design for Semiconductor Gas Sensors, Special Seminar of UNIVERSITI BRUNEI DARUSSALAM, 2018.09.
8. Kengo Shimanoe, Development of Gas sensors for IoT Society
, The 1st Future Science Forum, 2018.09.
9. K.Shimanoe, K.suematsu, K.Watanabe, Ultra-High Senstivr Gas Sensors Usng MEMS Device, 2019 SPRING Meeting of The Korean Ceramic Society, 2019.04.
10. 島ノ江憲剛, 末松昂一, 渡邉 賢, 高性能ガスセンサのための材料設計, 日本セラミックス協会第31回秋季シンポジウム, 2018.09.
11. Kengo Shimanoe, Design of semiconductor gas sensor toward detection in ppt level, The 12th International Conference on Ceramic Materials and Components for Energy and Environmental Applications (CMCEE-12) , 2018.07, For material design of semiconductor gas sensors, we reported receptor function, transducer function and utility factor [1]. By using integration of such three factors, the possibility of ppb-level detection was confirmed [2]. Now such high performance gas sensors are desired for an MEMS-type because of low power and compact devices. MEMS-type gas sensors are operated by pulse-heating mode. For such MEMS gas sensors, we propose that the combination of receptor function and utility factor is important. In the case of receptor function, surface reaction including oxygen adsorption on metal oxide is enhanced by increasing oxygen partial pressure using oxygen evolution materials [3]. In the utility factor, the sensor in pulse-heating mode gives interesting sensing properties different from that of constant-heating mode. The gas response in pulse-heating mode is high at first 100ms and gradually reached to value obtained by constant-heating. In this presentation, the details will be shown clearly.
[1] N. Yamazoe, K. Shimanoe, Semiconductor gas sensors, pp.1-34 (2013), WOODHEAD PUBLISHING.
[2] K. Shimanoe, M. Yuasa, T. Kida, N. Yamazoe, IEEE Nanotech. Mater. Dev. Conf., pp. 38-43 (2011).
[3] K. Shimanoe, N. Ma, T. Oyama, M. Nishibori, K. Watanabe, ECS Trans., 75 (16) 31-37 (2016).
.
12. Kengo Shimanoe, Koichi Suematsu, Ken Watanabe, MEMS-Type Gas Sensor toward Ultra-High-Detection in Ppt Level, The 8th International Conference on Microelectronics and Plasma TechnologyⅠThe 9th International Symposium on Functional Materials(ICMAP2020&ISAM2020), 2021.01.
13. Kengo Shimanoe, Koichi Suematsu, Ken Watanabe, Design of Ultra-High-Sensitive Gas Sensors By Combination of Metal Oxides Semiconductor and MEMS, PRiME 2020, 2020.10.
14. 島ノ江 憲剛, 酸化物半導体ガスセンサの材料設計 ーどこまで性能を引き出せるか, セラミックス協会関西支部講演会, 2018.12.
15. 島ノ江憲剛, ガスセンサのマイクロ化に向けて, 物理化学トークシャワー in 愛媛, 2019.01.
16. Kengo Shimanoe, Ultra-High-Sensitive Detection Using Pulse-heating of MEMS-Type Gas Sensor, 中国電子学会, 2019.11.
17. Kengo Shimanoe, Koichi Suematsu, Ken Watanabe, Ultra-High-Sensitive Gas Detection Using Pulse-heating of MEMS-Type Pd-Sn02 Sensor, ICAE2019, 2019.11.
18. Kengo Shimanoe, Materials Design for Gas Sensors, Materials Colloquium in Seoul National University, 2016.09, Semiconductor gas sensors are widely used for detection of inflammable and toxic gases. To detect such low concentration gases, we have reported materials design including important three functions i.e. receptor function, transducer function and utility factor. Receptor function concerns the ability of the oxide surface to interact with the target gas. In addition, when the surface is loaded with a foreign receptor like PdO, it acts as a receptor stronger than the adsorbed oxygen. In addition, we found that small size of PdO (less than 3nm) shows high sensor response to inflammable gases even under humid condition. Transducer function concerns that the electron transport through the contact can thus be achieved by migration or tunneling of the surface electrons, indifferent to the bulk electrons inside. The device resistance is then inversely proportional to the surface density of electrons. Therefore the sensor response enhances with increasing oxygen partial pressure. For the utility factor, the target gas molecules diffuse the inside of a sensing body while reacting with the oxide surface. The above design and combination of three factors give gas detection in ppb level. However, for practical use, we must pay attention to water vapor poisoning. Under humid condition, it is well known that water molecules adsorbed on the surface give a large effects on the sensitivity and selectivity. For SnO2, the sensor response deeply concerns oxygen adsorption species which is O2- and O- in dry and wet atmosphere, respectively. To enhance the sensor response, we proposed importance of surface modification and nano-size Pd loading on SnO2. For surface modification, we found that Fe3+ and Sb5+ modifications gave O2- adsorption species under humid condition. In addition, Pd nano-size loading showed constant sensor response even by changing humidity. Those material designs are important for practical use, and should be introduced to MEMS gas sensors. In the presentation, the above will be shown..
19. Kengo Shimanoe, Materials Design for Metal Oxide Semiconductor Gas Sensors, Seminar on Functional Materials in KAIST, 2017.07.
20. Kengo Shimanoe, Update of Materials Design for Semiconductor Gas Sensors
, Special Seminar on Functional Devices in Jilin University, 2017.12.
21. Kengo Shimanoe, Materials design for MEMS-type metal oxide semiconductor gas sensors, The 3rd International conference & Exhibition for Nanopia(NANOPIA 2016), 2016.11.
22. Kengo Shimanoe, N. Ma, T. Oyama, H. Uchino, Maiko Nishibori, Ken Watanabe, Material Design of Semiconductor Gas Sensors for Practical Use, 2016 MRS Fall Meeting & Exhibit, 2016.11.
23. Kengo Shimanoe, Ken Watanabe, Koichi Suematsu, Maiko Nishibori, High performance of MEMS-type semiconductor gas sensor in operating pulse-heating, The 15th International Nanotech Symposium & Nano-Convergence Expo (NANO KOREA), 2017.07.
24. Kengo Shimanoe, High Performance of Semiconductor Gas Sensors: Which of transducer function and utility factor is effective for sensitivity ?, 8th International Conference on Electroceramics (ICE2017), 2017.05.
25. Kengo Shimanoe,Ken Watanabe,Suematsu Koichi, Gas sensing properties of MEMS-type metal oxide gas sensor: Design of receptor function for pulse-heating mode, 12th Asian Conference on Chemical Sensors, 2017.11.
26. @K. Shimanoe,W. Harano,T. Ohyama,@K. Suematsu,@K. Watanabe,@M. Nishibori, MEMS Gas Sensors Based on Metal Oxide Nano Particles, CIMTEC2018 (14th International Ceramics Congress), 2018.06, For materials design of the semiconductor gas sensors, my group reported three important key factors, receptor function, transducer function and utility factor [1]. Such material designs are useful for devices in operating constant-heating. On the other hand, however, MEMS-type gas sensors in operating pulse-heating, which is one of the candidates for IoT sensors, need additional designs. So, we report new idea of materials and operation for MEMS-type gas sensors. SnO2 is typical sensor material, but the sensor in operating pulse-heating gives interesting sensing properties different from that of constant-heating. By pulse-heating in inflammable gas, the gas response was high at first 100ms and gradually reached to value obtained by constant-heating. The magnitude of first response was dependent on the concentration of inflammable gas (toluene). Furthermore, special additives to the sensing film gave enhancement in gas response [2]. References [1] N. Yamazoe, K. Shimanoe (2007), Overview of gas sensor technology, In D. K. Aswal and S. K. Gupta (Eds.) Science and Technology of Chemiresistor Gas Sensors, Nova Science Publishers, Inc., pp. 1-31. [2] K. Shimanoe, N. Ma, T. Oyama, M. Nishibori, K. Watanabe, ECS Trans., 75 (16), 31-37 (2016)..
27. Kengo Shimanoe, Effect of water vapor on SnO2-based gas sensors:Toword high response under humid condition, 韓国センサ学会, 2013.11.
28. Kengo Shimanoe, New material designs for MEMS-type gas sensor, 15th ISOEN( International Symposium on Olfaction and Electronic Nose), 2013.07.
29. Kengo Shimanoe, Awaiting Solution toward New Generation of semiconductor Gas Sensor, Collaborative Conference on Materials Research (CCMR) 2013, 2013.06.
30. K. Shimanoe, K. Suematsu, M. Yuasa, T. Kida , Material Design For Mems-Type Semiconductor, The 7th Asia-Pacific Conference on Transducers and Micro/Nano Technologies (APCOT2014), 2014.06.
31. Kengo Shimanoe, Determination of oxygen adsorption species on oxide semiconductor for highly sensitive gas sensor under humid condition, GOSPEL Workshop 2015, 2015.06.
32. Kengo Shimanoe, Nan Ma, Ryohei Kato, Maiko Nishibori, New Semiconductor Gas Sensor Based on Enhancing Oxygen Partial Pressure, The 5th International Conference “Smart and Multifunctional Materials, Structures and Systems” (CIMTEC 2016), 2016.06, Semiconductor gas sensors are widely used for detection of inflammable and toxic gases. To detect such low concentration gases, we have reported materials design including important three functions i.e. receptor function, transducer function and utility factor. Receptor function concerns the ability of the oxide surface to interact with the target gas. In addition, when the surface is loaded with a foreign receptor like PdO, it acts as a receptor stronger than the adsorbed oxygen. In addition, we found that small size of PdO (less than 3nm) shows high sensor response to inflammable gases even under humid condition. Transducer function concerns that the electron transport through the contact can thus be achieved by migration or tunneling of the surface electrons, indifferent to the bulk electrons inside. The device resistance is then inversely proportional to the surface density of electrons. Therefore the sensor response enhances with increasing oxygen partial pressure. For the utility factor, the target gas molecules diffuse the inside of a sensing body while reacting with the oxide surface. In this presentation, we explain the above design and combination of three factors. In addition, the receptor function enhanced by increasing oxygen partial pressure in the sensing film will be presented for usual type and MEMS-type gas sensors..
33. 島ノ江 憲剛, 半導体ガスセンサの材料設計, 第一回セラミックス界面応用研究会, 2016.06.
34. K. SHIMANOE, T. Oyama, N. Ma, M. Nishibori, K. Watanabe, MEMS-type Gas Sensors using Metal Oxides Semiconductor, The International Conference on "nanoFIS 2016 - Functional Integrated nano Systems", 2016.06.
35. K. Shimanoe, N. Ma, T. Oyama, K. Suematsu, K. Watanabe, M. Mishibori, High Performance of Metal Oxide Semiconductor Gas Sensors Under Humid Condition: Approach from Materials Design, The 16th International Meeting on Chemical Sensors (IMCS 2016), 2016.07.
36. 島ノ江 憲剛, 酸化物半導体ガスセンサの微細構造制御とMEMS 素子への応用, (一社)未踏科学技術協会 ナノ粒子・構造応用研究会 第13回公開講演会, 2016.09.
37. K. Shimanoe, K. Suematsu, K. Watanabe, M. Nishibori, Materials design for MEMS-type metal oxide semiconductor gas sensors, The 6th NIMS‐UR1‐CNRS‐SG WORKSHOP, 2016.10.
38. Kengo Shimanoe, Yongjiao Sun, Koichi Suematsu, Ken Watanabe, Noriko Saito, Isao Sakaguchi, Reactive oxygen species on oxide semiconductors, GOSPEL WORKSHOP 2017, 2017.11, Semiconductor gas sensors for detecting inflammable gases generate signals in electric resistance by reaction of inflammable gases and oxygen adsorbed on metal oxides. In the case of SnO2, two kinds of oxygen adsorption species, O2- and O-, were reported. However, in 2013, we reported how two oxygen adsorption species were formed, and also it became clear that the influence of water vapor on sensor response was due to the change in oxygen adsorption species. To understand oxygen adsorption species on metal oxides is very important to obtain high sensor performance. In this presentation, we report oxygen adsorption species on various metal oxides under dry and humid conditions.
Table 1 shows oxygen adsorption species on various metal oxides and their modified oxides under dry and humid conditions. For neat-SnO2, the water vapor influences oxygen adsorption species. In short, dry air gives O2- at 350oC and wet air changes O2- to O-. Consequently, the thickness of space charge layer is reduced, and it brings a decrease in the electric resistance. In addition, the number of O- adsorption species is also decreased fairly. Therefore, the number of oxygen and electron to participate in a reaction with the inflammable gases decreases extraordinarily, and the sensor response lowers. However, such degradation in sensor response can be improved by surface modification and Pd-loading. The oxygen adsorption species remains O2- even in wet atmosphere although the number of adsorbed oxygen decreases. From these results, it is understood that such surface control is important for improvement of sensor response.
For other oxides such as In2O3 and ZnO, the oxygen adsorption species are also shown in Table 1. Interestingly, In2O3 gives O2- in both dry and wet atmospheres although the electric resistance in wet atmosphere decreases as compared with that in dry atmosphere. However, WO3 is in contrast to such oxides because oxygen adsorption species with negative charge, O2- and O-, were not observed. From the measurements of electric resistance under different oxygen partial pressure and the TPD (temperature program desorption), molecular-type oxygen (O2-) seems to adsorb on the surface of WO3 although such species doesn’t have strong oxidation power. However, WO3 shows ability for oxidation to inflammable gases. Therefore, it is thought that surface lattice oxygen participates in reaction with inflammable gases.
For practical use, we need materials design based on the understanding of oxygen adsorption species..
39. 島ノ江 憲剛、西堀麻衣子、渡邉 賢, 酸化物半導体ガスセンサ -研究開発の最前線-, 2016年電子情報通信学会ソサイエティ大会 (IoT時代に求められるセンサ技術・デバイス), 2016.09.
40. 島ノ江 憲剛, 酸化物半導体ガスセンサの高性能化に向けた材料設計の確立 -IoT に向けたガスセンサシステム-, 平成 30 年度 九州支部 支部大会・春季特別講演会, 2018.04.
41. 島ノ江 憲剛, 酸化物半導体ガスセンサの高性能化に向けた材料設計の確立, 日本セラミックス協会2018年年会, 2018.03.
42. Kengo Shimanoe, Material Design of Oxide Semiconductor Gas Sensors for High Performance under Humid Condition: Determination of Oxygen Adsorption Species, The11th Pacific Rim conference of Ceramic SOcienties (PACRIM11), 2015.08.
43. 島ノ江 憲剛, 末松 昂一, 湯浅 雅賀, 木田 徹也, 半導体ガスセンサの医療分野への応用, 公益社団法人日本セラミックス協会第27回秋季シンポジウム, 2014.09.
44. Kengo Shimanoe, Nan Ma, Miyuki Sasaki, Koichi Suematsu, Masayoshi Yuasa, Development of Oxide Semiconductor Gas Sensors for High Sensitivity under Humid Conditions, The 31th Internathional Korea-Japan Seminar on Ceramics, 2014.11.
45. K. Shimanoe, Material design of semiconductor gas sensors, 2012 summer Seminar in Chiang Mai University, 2012.08.
46. N. Yamazoe, K. Shimanoe, Gas Reception and signal Transduction of Neat Tin Oxide Semiconductor Gas Sensor, Ⅷ International Workshop on Semiconductor Gas Sensors, 2012.09.
47. K. Shimanoe, Y. Shin, K. Suematsu, M. Yuasa, T. Kida, Material design for high-sensitive semiconducting gas sensors - preparation of Pd-loaded SnO2 cluster sols, The 14th International Meeting on Chemical Sensors, 2012.05, Pd-loaded SnO2 cluster sols have been prepared by hydrothermal treatment to combine the three important design factors, receptor function, transducer function and utility factor, for high-sensitive gas sensors. Thin film sensing layers out of such cluster sols were subjected to H2, Co and toluene gas sensing tests. The sensing properties were compared to the films out of unloaded-SnO2 cluster sols and non-dispersed SnO2 sols. Among them, the sensor out of Pd-loaded SnO2 cluster sols showed higher sensor response to toluene, although no difference in the sensor response to H2 was found. Such sensor response could be explained from the receptor function and utility factor..
48. 島ノ江憲剛, ガスセンサ -医療系ガスの高感度検知を目指して-, 第30回日本麻酔集中治療テクノロジー学会, 2012.12, ある特定のガス群を選択的に感知し、その濃度や量を電気信号などに変換するデバイスはガスセンサと呼ばれ、これは日本から世界に向けて発信されたデバイスである。ガスセンサは当初、ガス漏れ警報器、酸素濃度検知、一酸化中毒防止などの安全確保のために開発されてきたが、1980年代からNOx、SOx、CO2、オゾンなどの環境関連ガスや硫化水素、アンモニア、メチルメルカプタン、硫化メチルなどの悪臭が研究開発の対象となり、その検知ガス濃度も数ppm~サブppmと格段に低くなった。これらの研究開発を基として、2000年頃からは多種多様な極低濃度ガス(ppbレベル)が研究開発対象となり、我々の研究室でも、ppbレベルの揮発性有機化合物の検知を目指す一方で、麻酔ガスの笑気ガス(N2O)やプロポフォール(C12H18O、図1)、殺菌ガスのエチレンオキサイド(C2H4O)などの研究を進めてきた。本講演では、医療用ガスセンサの最近の研究や意外な測定例などを紹介したい。.
49. K. Shimanoe, Development of environmental gas sensors using oxide semiconductors, The 14th International Symposium on Eco-Materials Processing and Design, 2013.01.
50. K. Shimanoe, Recent Progress in Material Design of Oxide Semiconducto Gas Sensors, 1st International Symposium on Chemical & Biological Detection, 2012.11.
51. K. Shimanoe, Basic understandings of oxide semiconductor gas sensors toward high performances, The 29th International Korea-Japan Semina on Ceramics, 2012.11.
52. K. Shimanoe, High-sensitive semiconducting gas sensors by combining receptor function, transducer function and utility factor, Ⅷ International Workshop on Semiconductor Gas Sensors, 2012.09.
53. K.Shimanoe, State of the art of gas sensor technology, 吉林大学研究交流セミナー, 2011.06.
54. K. Shimanoe, M. Yuasa, T. Kida, N. Yamazoe, Development of High-sensitive Gas Sensor based on Theoretical Material Design, International Conference on Advanced Electromaterials 2011, 2011.11.
55. K. Shimanoe, M. Yuasa, T. Kida, N. Yamazoe, Semiconductor gas sensor using nano-sized oxide for high-sensitive detection of environment-related gases, IEEE Nanotechnology Materials and Devices Conference, 2011.10.
56. K. Shimanoe, Toward development of semiconductor gas sensors for medical use, Research Institute of Protein Sensor International Symposium, 2011.10.
57. 島ノ江憲剛, 金属酸化物を用いたガスセンサの高性能化に向けた材料設計, 第45回基礎科学部会セミナー, 2011.08.
58. K. Shimanoe, Fundamental Aspects of Semiconductor Gas Sensors – Theories and Experiments –, The Korean Ceramic Society 2011 Spring Meeting, 2011.04.
59. K. Shimanoe, S. Nakata, N. Miura, N. Yamazoe, New type of gas sensor designed by coupling solid electrolyte with FET, 5th Japan-Italy Joint Seminar on Electrochemistry, 2002.09.
60. K. Shimanoe, S. Nakata, N. Miura, N. Yamazoe, WO3-based NO2 sensor combined with a field effect transistor, III International Seminar on Semiconductor Gas Sensors, 2002.09.
61. K. Shimanoe, G. Sakai, N. Yamazoe, Solid electrolyte gas sensor (CO2 or NO2), The 3rd Symposium on Sensor and Materials, 2002.11.
62. K. Shimanoe, M. Yuasa, Y. Teraoka, N. Yamazoe, High performance oxygen reduction cathode based on perovskite-type nano-sized oxides prepared through reverse micelle method, The 2nd Japan-China Workshop on Environmental Catalysis and Eco-materials, 2005.10.
63. K. Shimanoe, K. Yoshida, M. Yuasa, N. Yamazoe, High-sensitive gas sensor microstructure-controlled by SnO2 cluster prepared through hydrothermal treatment, The E-MRS 2006 Spring Meeting, 2006.06.
64. K. Shimanoe, Control of high order structure in nano-level for high-sensitive semiconductor gas sensor, The 4th AIST International Workshop on Chemical Sensors, 2006.11.
65. K. Shimanoe, N. Yamazoe, Design of high-performance oxide semiconductor gas sensor by wet process, The Fifth China International Conference on High-Performance Ceramics , 2007.05.
66. K. Shimanoe, T. Kida, N. Yamazoe, NO2 Gas Sensor Combined FET with Solid Electrolyte, 10th International Conference on Advanced Materials, 2007.09.
67. N. Yamazoe, K. Shimanoe, Importance of Basic Approaches to Semiconductor Gas Sensors, 10th International Conference on Advanced Materials, 2007.10.
68. K. Shimanoe, NO2 Gas Sensor for Control of Atmospheric Environment, Malaysia-Japan International Symposium on Advanced Technology 2007, 2007.11.
69. K. Shimanoe, M. Yuasa, T. Kida, N. Yamazoe, Development of solid electrolyte-based gas sensors for detection of oxydic gases
, 9th Cross Straits Symposium on Materials, Energy and Environmental Engineering, 2007.11.
70. 島ノ江憲剛、湯浅雅賀、木田徹也、山添 曻, 半導体ガスセンサの材料設計, 第2回安全・安心を見守るセンサ材料・技術の進展, 2008.03.
71. K.Shimanoe, To understand relationship between grain size effect and utility factor for semiconductor gas sensor, Meeting on nano-materials for applications of ion conductor and sensor, 2010.03.
72. K.Shimanoe, S.Fujiyama, M-H.Seo, M.Yuasa, T.Kida, N.Yamazoe, Material design for highly sensitive semiconductor gas sensor by combining grain size effect and utility factor, VII International Workshop on Semiconductor Gas Sensors, 2010.09.
73. K. Shimanoe, N. Yamazoe, Development of field effect transistor type NO2 sensor, 9th International Symposium on Advances in Electrochemical Science and Technology, 2010.12.
74. 島ノ江憲剛、藤山修平、湯浅雅賀、木田徹也, 半導体ガスセンサにおける粒子径効果と利用効率の相関, 2010電気化学秋季大会, 2010.09.
75. K.Shimanoe, K.Yoshida, M.Yuasa, N.Yamazoe, Microstructure Control of SnO2-based Gas Sensor Using Cluster Sols, International Conference on Sol-Gel Processes for Advanced Ceramics, 2009.10.
76. K.Shimanoe, A.Nishiyama, M.Yuasa, T.Kida, N.Yamazoe, Microstructure Control of Wo3 Film by Adding Nano-Particles of SnO2 for No2 Detection in ppb Level, EurosensorXXIII, 2009.09.
77. K. Shimanoe, S. Fujiyama, M. Yuasa, T. Kida, Toward the understanding of relationship between grain size effect and utility factor for semiconductor gas sensors, 3rd International Congress on Ceramics, 2010.11.
78. K.Shimanoe, N.Yamazoe, M.Yuasa, T.Kida, Key Factors in Oxide Semiconductor Gas Sensor for High-performance, International Symposium on Core Technology in Ceramics 2009, 2009.04.
79. K.Shimanoe, S.Fujiyama, M.Yuasa, T.Kida, N.Yamazoe, Importance of Utility Factor on Oxide Semiconductor Gas Sensors, IWPMA and ISE 2009, 2009.11.
80. 島ノ江 憲剛, 半導体ガスセンサの材料設計-理論面からのアプローチといくつかの実験的検証-, 第75回化学センサ研究会, 2010.01.
81. K.Shimanoe, M.Yuasa, T.Kida, N.Yamazoe, Material design based on wet process for highly sensitive semiconductor gas sensors, Gas sensors based on semiconducting metal oxides –new directions, 2009.11.
82. K.Shimanoe, K.Suematsu, M.Yuasa, T.Kida, N.Yamazoe, Toward basic understanding of transducer function on semiconductor gas sensors, 8th Asian Conference on Chemical Sensors, 2009.11.
83. 島ノ江憲剛、湯浅雅賀、木田徹也、山添 曻, 半導体ガスセンサの新展開に向けて, 日本化学会西日本大会2009, 2009.11.
84. K.Shimanoe, K.Suematsu, M.Yuasa, T.Kida, N.Yamazoe, Fe3+ doping to SnO2 nano-sized particles for high sensitivity of gas sensors, 6th International Workshop on SEMICONDUCTOR GAS SENSORS, 2008.09.
85. K.Shimanoe, M.Yuasa, T.Kida, N.Yamazoe, Material Design for High-performance Semiconductor Gas Sensors, IC MFMS HongKong , 2008.07.
86. 島ノ江憲剛, 超高感度半導体ガスセンサの材料設計, 日本セラミックス協会第19回秋季シンポジウム, 2006.09.
87. K. Shimanoe, N. Yamazoe, Wet process toward high-sensitive SnO2-based gas sensor, International Workshop on Semiconductor Gas Sensor 2006, 2006.09.
特許出願・取得
特許出願件数  28件
特許登録件数  0件
学会活動
所属学会名
(公社)日本化学会
(公社)日本セラミックス協会
(公社)電気化学会
(公社)電気化学会 化学センサ研究会
(公社)電気化学会 電解科学技術委員会
(公社)電気化学会 電池技術委員会
(公社)触媒学会
(公社)電気学会
(公社)日本分析化学会
(公社)日本表面真空学会
The Electrochemical Society, Inc.
学協会役員等への就任
2019.01~2019.12, 日本化学会, 九州支部化学教育協議会議長、副支部長.
2019.01~2022.12, 九州ファインセラミックスフォーラム, 委員長.
2011.01~2018.12, 九州ファインセラミックスフォーラム, 運営委員.
2021.01, 日本セラミックス協会, セッションオーガナイザー.
2011.01~2016.12, 日本セラミックス協会, セッションオーガナイザー.
2011.01~2012.12, 電気化学会九州支部, 運営委員.
2010.01~2011.12, 電気化学会九州支部, 運営委員.
2005.04~2013.03, 産業技術総合研究所 実環境計測・診断システム協議会, 運営委員.
1999.01~2018.12, 電気化学会化学センサ研究会, 委員.
2001.04~2002.03, 電気化学会九州支部, 幹事.
学会大会・会議・シンポジウム等における役割
2021.11.14~2021.11.18, 12th International Conference on High-Performance Ceramics (CICC-12), International Advisory Committee.
2019.12.01~2019.12.06, 米国MRS学会, 座長(Chairmanship).
2019.06.19~2019.06.22, 8th GOSPEL WORKSHOP, 座長(Chairmanship).
2019.06.16~2019.06.18, 22nd Solid State Ionics conference, 座長(Chairmanship).
2017.11.08~2017.11.11, 7th GOSPEL WORKSHOP, 座長(Chairmanship).
2015.08.30~2015.09.04, The 11th International Conference of Pacific Rim Ceramic Societies, 座長(Chairmanship).
2015.06.07~2015.06.09, 6th GOSPEL WORKSHOP, 座長(Chairmanship).
2014.11.26~2014.11.29, The 31th Japan-Korea International Seminar on Ceramics, 座長(Chairmanship).
2014.09.09~2014.09.11, 第27回日本セラミックス協会秋季大会, 座長(Chairmanship).
2014.06.29~2014.07.02, The 7th Asia-Pacific Conference on Transducers and Micro/Nano Technologies, 座長(Chairmanship).
2013.05.27~2013.05.29, 5th GOSPEL WORKSHOP, 座長(Chairmanship).
2012.09.10~2012.09.14, Semiconductor gas sensors seminar 2012, 座長(Chairmanship).
2012.09.19~2012.09.21, 第25回秋季シンポジウム, 座長(Chairmanship).
2011.11.22~2011.11.25, 13th Cross Straits Symposium on Materials, Energy and Environmental Engineering, オーガナイザー.
2011.11.07~2011.11.09, 2011 International conference on advanced electromaterials, 座長(Chairmanship).
2011.10.28~2011.10.28, 電気化学会九州支部 第50回工業物理化学講習会, 座長(Chairmanship).
2011.10.19~2011.10.21, IEEE Nanotechnology Materials and Devices Conference, 座長(Chairmanship).
2011.08.04~2011.08.05, 日本セラミックス協会第45回基礎科学部会セミナー, 座長(Chairmanship).
2011.06.05~2011.06.07, GOSPEL WORKSHOP on Gas sensors based on semiconducting metal oxides: basic understanding & applications, オーガナイザー、座長.
2010.11.14~2010.11.18, 3rd International congress on Ceramics, セッションオーガナイザー、座長.
2010.10.22~2010.10.22, 電気化学会九州支部 第49回工業物理化学講習会, 座長(Chairmanship).
2010.09.12~2008.09.15, The 7th International Workshop on Semiconductor Gas Sensors, 座長(Chairmanship).
2010.09.02~2010.09.03, 電気化学会 第50回化学センサ研究発表会, 座長(Chairmanship).
2009.11.30~2009.12.01, GOSPEL WORKSHOP on Gas sensors based on semiconducting metal oxides – new directions, オーガナイザー、基調講演、座長.
2009.11.10~2009.11.12, 8th Asian Conference on Chemical Sensors, 座長(Chairmanship).
2008.09.14~2008.09.18, The 6th International Workshop on Semiconductor Gas Sensors, 座長(Chairmanship).
2008.07.28~2009.07.31, The International Conference on Multifunctional Materials and Structures , 座長(Chairmanship).
2007.11, Malaysia-Japan International Symposium on Advanced Technology 2007, 座長(Chairmanship).
2007.10, 10th International Conference on Advanced Materials, 座長(Chairmanship).
2007.09, (社)日本セラミックス協会 第20回秋季シンポジウム, 座長(Chairmanship).
2007.05, The Fifth China International Conference on High-Performance Ceramics, 座長(Chairmanship).
2007.01, The 8th International Symposium on Eco-materials Processing and Design, 座長(Chairmanship).
2006.11, 2006年日本化学会西日本大会, 座長(Chairmanship).
2006.09, International Workshop on Semiconductor Gas Sensor 2006, 座長(Chairmanship).
2006.06, The E-MRS 2006 Spring Meeting, 座長(Chairmanship).
2005.09, 第96回触媒討論会, 座長(Chairmanship).
2005.04, 電気化学会第72回大会 第39回化学センサ研究発表会, 座長(Chairmanship).
2004.07, The 10th Int. Meeting on Chemical Sensors, 座長(Chairmanship).
2004.03, 電気化学会第71回大会 第38回化学センサ研究発表会, 座長(Chairmanship).
2003.04, 電気化学会創立70周年記念大会 第36回化学センサ研究発表会, 座長(Chairmanship).
2003.01, 第41回セラミックス基礎科学討論会, 座長(Chairmanship).
2015.12.13~2015.12.16, The 9th International Workshop on Semiconductor Gas Sensors, コミッティーメンバー.
2015.08.30~2015.09.04, The 11th International Conference of Pacific Rim Ceramic Societies (PacRim-11), セッションオーガナイザー.
2015.06.07~2015.06.09, GOSPEL WORKSHOP on Gas sensors based on semiconducting metal oxides: basic understanding & applications, 主催者.
2014.11.26~2015.11.29, The 31th Japan-Korea International Seminar on Ceramics, セッションオーガナイザー.
2014.09.09~2014.09.11, 第27回日本セラミックス協会秋季大会, 実行委員会委員、セッションオーガナイザー.
2013.05.26~2013.05.29, GOSPEL WORKSHOP on Gas sensors based on semiconducting metal oxides: basic understanding & applications, 主催者.
2012.09.09~2010.09.13, The 8th International Workshop on Semiconductor Gas Sensors, コミッティーメンバー.
2011.11.22~2011.11.25, 13th Cross Straits Symposium on Materials, Energy and Environmental Engineering , オーガナイザー.
2011.11.07~2011.11.09, 2012 International conference on advanced electromaterials, セッションオーガナイザー.
2011.10.19~2011.10.21, 2012 IEEE Nanotechnology Materials and Devices Conference, セッションオーガナイザー.
2011.06.05~2011.06.07, GOSPEL WORKSHOP on Gas sensors based on semiconducting metal oxides: basic understanding & applications, オーガナイザー.
2010.11.14~2010.11.14, 3rd International congress on Ceramics, セッションオーガナイザー.
2010.09.12~2010.09.15, The 7th International Workshop on Semiconductor Gas Sensors, コミッティーメンバー.
2009.11.30~2009.12.01, GOSPEL WORKSHOP on Gas sensors based on semiconducting metal oxides – new directions, オーガナイザー.
2009.11.08~2009.11.12, 8th Asian Conference on Chemical Sensors, プログラム委員.
2008.09.14~2008.09.18, The 6th International Workshop on Semiconductor Gas Sensors, オーガナイザー.
2008.09.17~2008.09.19, 第21回(社)日本セラミックス協会秋季シンポジウム「安全・安心のためのセラミックスセンサ材料の高度化」, セッションオーガナイザー.
2008.07.27~2008.07.31, International Conference on Multifunctional Materials and Structures , Session organizer.
2007.09, 第20回(社)日本セラミックス協会秋季シンポジウム特定セッション<安全・安心のためのセラミックスセンサ>, セッションオーガナイザー.
2004.07, 第10回化学センサ国際会議, 総務委員会委員.
2001.12, 第5回東アジア化学センサ会議, 実行委員会委員.
2001.07~2001.07, 第38回化学関連支部合同九州大会, 代表幹事.
1998.09, 49th Annual Meeting of ISE (International Society of Electrochemistry), 現地実行委員会委員.
学会誌・雑誌・著書の編集への参加状況
2020.10, Sensors, 国際, 編集委員.
2013.02, Sensors and Materials, 国際, 編集委員.
2011.01, Journal of Sensor Science and Technology, 国際, 編集委員.
2008.04~2010.05, Korean Journal of Materials Research (K-MRS), 国際, 編集委員.
2002.04~2003.03, Electrochemistry(電気化学および工業物理化学), 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2020年度 70  30  102 
2019年度 60  15  75 
2018年度 60  15  75 
2017年度 60  15  75 
2016年度 60  15  75 
2015年度 62  15  77 
2014年度 53  15  68 
2013年度 40  40 
2012年度 35  35 
2011年度 25  32 
2010年度 28  32 
2009年度 32  36 
2008年度 30  35 
2007年度 38  43 
2006年度 10  13 
2005年度 42  47 
2004年度 33  33 
2003年度 38  38 
その他の研究活動
海外渡航状況, 海外での教育研究歴
MRS, Mariott hotel, Boston, UnitedStatesofAmerica, 2019.12~2019.12.
Shanghai University, China, China, 2019.11~2019.11.
University of Ferrara, Italy, Italy, 2019.06~2019.06.
Pyeong Chang (winter olympic place), Korea, Korea, 2019.06~2019.06.
Ramada Plaza Jeju Hotel, Korea, Korea, 2019.04~2019.04.
Brunei University, Brunei, Brunei, 2018.09~2018.09.
Jinlin University, China, China, 2018.09~2018.09.
Raffles Convention Centre, Singapore, Singapore, 2018.07~2018.07.
Centro Congressi Hotel Quattrotorri, Perugia, Italy, 2018.06~2018.06.
Suntec Convention & Exhibition Centre, Singapore, Singapore, 2018.07~2018.07.
KINTEX, Ilsan, KAIST, SouthKorea, 2017.07~2017.07.
Pan Pacific Hanoi, Vietnam, 2017.11~2017.11.
Korea University, SouthKorea, 2017.11~2017.11.
Centro Congressi Hotel Quattrotorri, Italy, 2016.06~2016.06.
University of Graz, Austria, 2016.06~2016.06.
Ramada Plaza Hotel, Cheju, SouthKorea, 2016.07~2016.07.
Seoul National University, SouthKorea, 2016.09~2016.09.
Changwon Exhibition Convention Center , SouthKorea, 2016.11~2016.11.
Hynes Convention Center, Boston, UnitedStatesofAmerica, 2016.11~2016.12.
Hawaii Convention Center, UnitedStatesofAmerica, 2016.10~2016.10.
Korea University, Korea, 2016.11~2016.11.
チュービンゲン大学, カタルーニャ化学研究所, Germany, Spain, 2015.06~2015.06.
International Convention Center, SouthKorea, 2015.09~2015.09.
デグ, Korea, 2014.06~2014.07.
Korea University, Korea, 2014.11~2014.11.
チャンヲン, Korea, 2014.11~2014.11.
Ramada Plaza Jeju Hotel, Korea, 2013.06~2013.06.
大邸国際会議場, Korea, 2013.07~2013.07.
Korea University, Korea, 2013.11~2013.07.
ニュルンベルク, Germany, 2012.05~2012.05.
チェンマイ大学, Thailand, 2012.08~2012.09.
Kracow, Poland, 2012.09~2012.09.
カタルーニャ化学研究所, Spain, 2012.10~2012.11.
Taegu, Korea, 2012.11~2012.11.
Suwon, Korea, 2012.11~2012.11.
Korea University, Korean Ceramic Society, SouthKorea, 2011.04~2011.04.
The University of Tuebingen, Joint Research Center of EU, Germany, Italy, 2011.06~2011.06.
Jilin University, China, 2011.06~2011.06.
Yeungnam University, Shilla Hotel, Korea, 2011.10~2011.10.
Ramada Plaza Hotel, Korea, 2011.11~2011.11.
Krakow, University of Tuebingen, Poland, Germany, 2010.09~2010.09.
Korea University, SouthKorea, 2010.10~2010.10.
Hotel Green Park, Chennai, India, 2010.12~2010.12.
Linkoping University, University of Tuebingen, Sweden, Germany, 2009.03~2009.03.
POSTEC, SouthKorea, 2009.04~2009.04.
原子力研究所, India, 2009.10~2009.10.
KAL Hotel 済州島, SouthKorea, 2009.11~2009.11.
EXCO Daegu, SouthKorea, 2009.11~2009.11.
Hotel Stadt Tübingen, Germany, 2009.11~2009.12.
Ohio State University, UnitedStatesofAmerica, 2008.07~2008.07.
Hong Kong Polytechnic University, Hong Kong , 2008.07~2008.07.
Zakopane, University of Manchester, Poland, UnitedKingdom, 2008.09~2008.09.
Korea University, Seoul National University, Korea, 2008.10~2008.10.
Vaya Huatian International Hotel, China, 2007.05~2007.05.
University of Barcelona, Lyon Convention Center, EU-JRC, Spain, France, Italy, 2007.06~2007.06.
Hotel Grand Ashok, India, 2007.10~2007.10.
Seri Pacific Hotel, Malaysia, 2007.11~2007.11.
POSTEC, Korea, 2007.11~2007.11.
Novotel Clark Quay , Singapore, 2007.12~2007.12.
University of Oulu, Finland, 2006.03~2006.03.
Nice Acropolis, France, 2006.05~2006.06.
Muflon Hotel, Poland, 2006.09~2006.09.
Hotel Alimara, University of Tubingen(チュービンゲン大学), Spain, Germany, 2005.09~2005.09.
Guilin Royal Garden Hotel, China, 2005.11~2005.11.
シェラトンワイキキ、ヒルトンハワイアンヴィレッジ 他, UnitedStatesofAmerica, 2005.12~2005.12.
Pontificia Universitas Angelicum, Italy, 2004.09~2004.09.
Hilton Hawaian Village, UnitedStatesofAmerica, 2004.10~2004.10.
Le Palais des Congres de Paris, France, 2003.04~2003.05.
Boston Marriott Copley Place, UnitedStatesofAmerica, 2003.06~2003.06.
イタリア共和国ローマ大学, Italy, 2003.07~2003.10.
University of Minho, Portugal, 2003.09~2003.09.
外国人研究者等の受入れ状況
2019.11~2019.11, 2週間未満, 高麗大学, SouthKorea, 外国政府・外国研究機関・国際機関.
2019.05~2019.06, 2週間未満, ブルネイ大学, Brunei, 外国政府・外国研究機関・国際機関.
2019.05~2019.05, 2週間未満, 江原大学, SouthKorea, 外国政府・外国研究機関・国際機関.
2018.02~2018.02, 2週間未満, 江原大学, SouthKorea, 外国政府・外国研究機関・国際機関.
2018.01~2016.01, 2週間未満, ブルネイ大学, Brunei, 外国政府・外国研究機関・国際機関.
2017.10~2017.10, 2週間未満, 高麗大学, SouthKorea, 外国政府・外国研究機関・国際機関.
2017.10~2017.11, 2週間未満, Universitat Rovira i Virgili, Spain, 外国政府・外国研究機関・国際機関.
2016.10~2016.10, 2週間未満, KAIST, SouthKorea, 外国政府・外国研究機関・国際機関.
2016.07~2016.07, 2週間未満, チュービンゲン大学, Germany, 外国政府・外国研究機関・国際機関.
2015.11~2015.11, 2週間未満, 高麗大学, SouthKorea, 外国政府・外国研究機関・国際機関.
2015.11~2015.11, 2週間未満, 江原大学, SouthKorea, 外国政府・外国研究機関・国際機関.
2015.10~2016.03, 1ヶ月以上, 中国科学技術院, China, 外国政府・外国研究機関・国際機関.
2014.12~2015.06, 1ヶ月以上, 天津大学, China, 外国政府・外国研究機関・国際機関.
2011.11~2013.10, 1ヶ月以上, チュービンゲン大学, Russia, 日本学術振興会.
2010.10~2011.07, 1ヶ月以上, Pibulsongkhram Rajabhat大学, Thailand, タイ政府.
2005.04~2005.09, 1ヶ月以上, Iran, .
2004.04~2005.02, 1ヶ月以上, Korea, .
2003.04~2003.09, 1ヶ月以上, Korea, .
2002.10~2004.03, 1ヶ月以上, バルセロナ大学, Spain, 文部科学省.
2001.05~2001.09, 1ヶ月以上, ニコラス コペルニクス大学, Poland, .
2000.06~2001.02, 1ヶ月以上, テヘラン大学, Iran, 外国政府・外国研究機関・国際機関.
2000.01~2005.03, 1ヶ月以上, 圓光大学校, Korea, 日本学術振興会.
受賞
2019 JCS-JAPAN 優秀論文賞, (社)日本セラミックス協会, 2020.06.
学術賞 2017年度, 日本セラミックス協会, 2017.11.
Distinguished Paper Award (ICAE), International Conference on Advanced Electromaterials, 2011.11.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2019年度~2021年度, 基盤研究(B), 代表, 高選択性pptレベルマイクロガスセンサのための材料設計構築.
2016年度~2018年度, 基盤研究(B), 代表, ダブルレセプター機能によるバイオマーカーガスのppbレベル検知.
2012年度~2013年度, 萌芽研究, 分担, 呼気ガスバイオマーカーの周術期管理における有用性の検討.
2010年度~2012年度, 基盤研究(B), 代表, 環境計測用マイクロガスセンサの構築に向けた新しい材料設計.
2007年度~2008年度, 萌芽研究, 分担, 静脈麻酔薬の呼気中濃度測定センサーの開発.
2006年度~2007年度, 基盤研究(B), 代表, ヘテロクラスター粒子薄膜によるVOCガスのppbレベル検知.
2005年度~2005年度, 萌芽研究, 代表, 結晶性金属酸化物ナノ粒子を含むゾルの新規調製.
2003年度~2004年度, 基盤研究(B), 分担, ppbレベル対応超高感度半導体ガスセンサの展開.
日本学術振興会への採択状況(科学研究費補助金以外)
2008年度~2010年度, 二国間交流, 代表, マイクロガスセンサ及びそれを用いたセンサシステムの設計開発.
競争的資金(受託研究を含む)の採択状況
2016年度~2016年度, 新技術振興渡辺記念会 科学技術調査研究助成事業 ((一社)未踏科学技術協会/特別研究員として応募), 代表, ビッグデータ時代に対応したセンサに関する動向調査 .
2008年度~2011年度, (財)日産科学振興財団, 代表, 大気環境浄化に資する酸化物触媒の表面・界面設計による高機能化.
2008年度~2008年度, 社団法人日本ガス協会大学等研究助成資金, 代表, ナノレベルから構造と機能を制御した次世代化学機能デバイスのガスセンサーへの応用研究.
2002年度~2007年度, 戦略的創造研究推進事業CREST(JST), 分担, 研究領域「環境保全のためのナノ構造制御触媒と新材料の創製」
研究課題名「ナノ構造制御ペロブスカイト触媒システムの構築」.
共同研究、受託研究(競争的資金を除く)の受入状況
2017.10~2021.09, 代表, 固体電解質型デバイスに関する共同研究.
2019.07~2020.06, 代表, ガスセンサの研究.
2019.04~2020.03, 代表, CO2還元電極触媒の研究.
2018.07~2019.06, 代表, ガスセンサの研究.
2018.04~2019.03, 代表, CO2還元電極触媒の研究.
2017.07~2018.06, 代表, ガスセンサの研究.
2016.10~2017.09, 代表, 固体電解質型デバイスに関する共同研究.
2016.07~2017.06, 代表, ガスセンサの研究.
2015.10~2016.09, 代表, 高出力リチウム‐空気二次電池の探索と評価.
2015.07~2016.06, 代表, ガスセンサの研究.
2014.09~2015.08, 代表, 酸素還元触媒及びガス拡散電極の高性能化に関する共同研究.
2014.07~2015.06, 代表, ガスセンサの研究.
2014.05~2015.02, 代表, 高エネルギー密度・新型二次電池に関する研究.
2013.09~2014.08, 代表, 酸素還元触媒及びガス拡散電極に関する研究.
2013.07~2014.06, 代表, ガスセンサの研究.
2012.07~2015.03, 代表, リチウム空気二次電池.
2007.06~2008.03, 代表, NOxセンサシステム開発.
2006.08~2007.03, 代表, NOxセンサシステム開発.
学内資金・基金等への採択状況
2002年度~2004年度, 九州大学P&P, 分担, 次世代化学機能デバイスの基盤研究としてのセラミックスウェットプロセッシング−ナノレベルからの構造と機能の制御−.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。