Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Yuji Tsutsumi Last modified date:2023.11.27

Professor / Sustainable Bioresources Science
Department of Agro-environmental Sciences
Faculty of Agriculture


Graduate School
Undergraduate School
Other Organization
Administration Post
Other


E-Mail *Since the e-mail address is not displayed in Internet Explorer, please use another web browser:Google Chrome, safari.
Homepage
https://kyushu-u.elsevierpure.com/en/persons/yuji-tsutsumi
 Reseacher Profiling Tool Kyushu University Pure
http://ffpsc.agr.kyushu-u.ac.jp/chem/
Phone
092-802-4664
Fax
092-802-4664
Academic Degree
PhD.
Country of degree conferring institution (Overseas)
No
Field of Specialization
Forestry and Forest Products
Total Priod of education and research career in the foreign country
01years11months
Outline Activities
(1) Studies on lignin biosynthesis in woody plant cell walls
Lignin is the second abundant biomass on the earth. Biosynthetic mechanisms of lignin in woody plant are investigated from biochemical and molecular biological aspects.

(2)Bioremediation of organic pollutants by white-rot fugi.
Biodegradation of organic pollutants such as dioxins, PCBs, and other chlorinated compounds are investigated. The enzymes and reaction mechanisms involved in the degradation reaction are studied.

(3)Phyto-remediation
Phyto-remediation is an approach for remediating the polluted environments by using plants. Study on the potential of phyto-remediation using woody plants has been started.
Research
Research Interests
  • Development of functional lignin-cellulose composite film
    keyword : Lignin. All-round peroxidase, Composite film
    2020.04~2026.03.
  • Utilization of woody-biomass for sustainable energy
    keyword : woody-biomass, sustainable energy
    2005.04.
  • Mechanisms on the formation of woody plant cell walls -lignin biosynthesis-.
    keyword : lignin, biosynthesis, cell wall
    1993.04Mechanisms on the formation of woody plant cell walls -lignin biosynthesis-..
  • Degradation and inactivation of prion by white-rot fungi and enzymes
    keyword : white-rot fungi, enzyme, prion, inactivation
    2005.04~2011.05.
  • Biodegradation of recalcitrant organic pollutants by white-rot fungi.
    keyword : biodegradation, degradation, white-rot fungi.
    1996.01Biodegradation of recalcitrant organic pollutants by white-rot fungi..
Academic Activities
Reports
1. Jun Shigeto, Yuji Tsutsumi, Diverse functions and reactions of class III peroxidases, New Phytologist, Volume 209, Issue 4, Pages 1395–1402, 2016.03, [URL], Higher plants contain plant-specific peroxidases (class III peroxidase; Prxs) that exist as large multigene families. Reverse genetic studies to characterize the function of each Prx have revealed that Prxs are involved in lignification, cell elongation, stress defense and seed germination. However, the underlying mechanisms associated with plant phenotypes following genetic engineering of Prx genes are not fully understood. This is because Prxs can function as catalytic enzymes that oxidize phenolic compounds while consuming hydrogen peroxide and/or as generators of reactive oxygen species. Moreover, biochemical efforts to characterize Prxs responsible for lignin polymerization have revealed specialized activities of Prxs. In conclusion, not only spatiotemporal regulation of gene expression and protein distribution, but also differentiated oxidation properties of each Prx define the function of this class of peroxidases..
Papers
1. Diego Alonso Yoshikay‐Benitez, Kaori Ohira, Kasturi Banerjee, Koki Fujita, Jun Shigeto, Yuji Tsutsumi, The Populus alba cationic cell‐wall‐bound peroxidase (CWPO‐C) regulates plant growth, lignin
content and composition in poplar, 10.1186/s10086-023-02086-1, 12-12, 2023.03.
2. Diego Alonso Yoshikay‐Benitez, Yusuke Yokoyama, Kaori Ohira, Koki Fujita, Azusa Tomie, Yoshio Kijidani, Jun Shigeto, Yuji Tsutsumi, Populus alba cationic cell-wall-bound peroxidase (CWPO-C) regulates the plant growth and affects auxin concentration in Arabidopsis thaliana, Physiology and Molecular Biology of Plants, 10.1007/s12298-022-01241-0, 2022.10, The poplar cationic cell-wall-bound peroxidase (CWPO-C) mediates the oxidative polymerization of lignin precursors, especially sinapyl alcohols, and high molecular weight compounds that cannot be oxidized by other plant peroxidases, including horseradish peroxidase C. Therefore, CWPO-C is believed to be a lignification-specific peroxi- dase, but direct evidence of its function is lacking. Thus, the CWPO-C expression pattern in Arabidopsis thaliana (Arabi- dopsis) was determined using the β-glucuronidase gene as a reporter. Our data indicated that CWPO-C was expressed in young organs, including the meristem, leaf, root, flower, and young xylem in the upper part of the stem. Compared with the wild-type control, transgenic Arabidopsis plants overexpressing CWPO-C had shorter stems. Approximately 60% of the plants in the transgenic line with the highest CWPO-C content had curled stems. These results indicate that CWPO-C plays a role in cell elongation. When plants were placed horizontally, induced CWPO-C expression was detected in the curved part of the stem during the gravitropic response. The stem curvature associated with gravitropism is controlled by auxin localization. The time needed for Arabi- dopsis plants overexpressing CWPO-C placed horizontally to bend by 90° was almost double the time required for the similarly treated wild-type controls. Moreover, the auxin content was significantly lower in the CWPO-C-overex- pressing plants than in the wild-type plants. These results strongly suggest that CWPO-C has pleiotropic effects on plant growth and indole-3-acetic acid (IAA) accumulation. These effects may be mediated by altered IAA concentration due to oxidation..
3. Manami Takeuchi, Watanabe Atsushi, Miho Tamura, Yuji Tsutsumi, The gene expression analysis of Arabidopsis thaliana ABC transporters by real-time PCR for screening monolignol-transporter candidates, Journal of Wood Science, 10.1007/s10086-018-1733-9, 64, 477-484, 2018.10, The transport of monolignols from the cytosol to the cell wall is essential for lignin synthesis. The ATP-binding cassette (ABC) transporters may be involved in the transport of lignin precursors. ABC transporter genes subjected to expression analysis were chosen based on two criteria for screening candidate transporter genes related to lignification. The expression levels of 15 target genes in five plant organs were analyzed by real-time PCR. Five transporter genes (ABCG29, ABCG30, ABCG33, ABCG34, and ABCG37), which were simultaneously expressed with the reference genes, were selected as candi- dates. The candidate gene expression levels in root tissues of T-DNA insertion mutants were determined by semi-quantitative reverse transcription PCR. ABCG30 was more highly expressed in the abcg34 mutant than in the wild-type plants, while the expression of ABCG34 was twofold higher in the abcg30 mutant plants than in the wild-type plants. Thus, the expression of ABCG30 and ABCG34 may affect each other. There was no significant change in lignin content and composition in the single-gene knockout mutants of the candidate transporter genes, which suggested that each candidate gene did not solely contribute to lignin synthesis..
4. Jun Shigeto, Hiroki Honjo, Koki Fujita and Yuji Tsutsumi, Generation of lignin polymer models via dehydrogenative polymerization of coniferyl alcohol and syringyl alcohol via several plant peroxidases involved in lignification and analysis of the resulting DHPs by MALDI-TOF analysis, Holzforschung, 10.1515/hf-2017-0125, 72, 4, 267-274, 2017.12, The mechanism of lignin dehydrogenative poly- merization (DHP), made by means of horseradish peroxi- dase (HRP), was studied in comparison with other plant peroxidases. Interestingly, HRP is efficient for guaiacyl type polymer formation (G-DHPs), but is not efficient in the case of syringyl type DHPs (S-DHPs). It was previously demonstrated that lignification-related Arabidopsis thali- ana peroxidases, AtPrx2, AtPrx25 and AtPrx71, and cati- onic cell-wall-bound peroxidase (CWPO-C) from Populus alba are successful to oxidize syringyl- and guaiacyl-type monomers and larger lignin-like molecules. This is the reason why in the present study the DHP formation by means of these recombinant peroxidases was tested, and all these enzymes were successful for formation of both G-DHP and S-DHP in acceptable yields. CWPO-C led to S-DHP molecular size distribution similar to that of iso- lated lignins..
5. Manami Takeuchi, Takahiro Kegasa, Watanabe Atsushi, Miho Tamura, Yuji Tsutsumi, Expression analysis of transporter genes for screening candidate monolignol transporters using Arabidopsis thaliana cell suspensions during tracheary element differentiation, Journal of Plant Research, 10.1007/s10265-017-0979-4, 131, 297-305, 2018.03, The mechanism of monolignol transportation from the cytosol to the apoplast is still unclear despite being an essential step of ligni cation. Recently, ATP-binding cas- sette (ABC) transporters were suggested to be involved in monolignol transport. However, there are no reliable clues to the transporters of the major lignin monomers coniferyl and synapyl alcohol. In this study, the ligni cation progress of Arabidopsis cultured cells during tracheary element dif- ferentiation was monitored. The expression of selected trans- porter genes, as well as ligni cation and cell-wall formation related genes as references, in di erentiating cultured cell samples harvested at 2-day intervals was analyzed by real- time PCR and the data were statistically processed. The cell wall formation transcription factor MYB46, programmed- cell death related gene XCP1 and lignin polymerization peroxidase AtPrx25 were classi ed into the same cluster. Furthermore, the cluster closest to the abovementioned cluster contained the lignin synthesis transcription factor..
6. Jun Shigeto, Yukie Ueda, Shinya Sasaki, Koki Fujita, Yuji Tsutsumi, Enzymatic activities for lignin monomer intermediates highlight the biosynthetic pathway of syringyl monomers in Robinia pseudoacacia, Journal of Plant Research, 10.1007/s10265-016-0882-4, 130, 1, 203-210, 2017.01, Most of the known 4-coumarate:coenzyme A ligase (4CL) isoforms lack CoA-ligation activity for sinapic acid. Therefore, there is some doubt as to whether sinapic acid contributes to sinapyl alcohol biosynthesis. In this study, we characterized the enzyme activity of a protein mixture extracted from the developing xylem of Robinia pseudoacacia. The crude protein mixture contained at least two 4CLs with sinapic acid 4-CoA ligation activity. The crude enzyme preparation displayed negligible sinapaldehyde dehydrogenase activity, but showed ferulic acid 5-hydroxylation activity and 5-hydroxyferulic acid O-methyltransferase activity; these activities were retained in the presence of competitive substrates (coniferaldehyde and 5-hydroxyconiferaldehyde, respectively). 5-Hydroxyferulic acid and sinapic acid accumulated in the developing xylem of R. pseudoacacia, suggesting, in part at least, sinapic acid is a sinapyl alcohol precursor in this species..
7. Premjet Siripong, Premjet Duangporn, Eri Takata, Yuji Tsutsumi, Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis, Bioresource Technology, 10.1016/j.biortech.2015.12.037, 203, 303-308, 2016.03, Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility..
8. Jun Shigeto, Itoh Yoshitaka, Hrao Sakie, Ohhira Kaori, Koki Fujita, Yuji Tsutsumi, Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem, JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 10.1111/jipb.12334, 57, 4, 349-356, 2015.04, Lignins are aromatic heteropolymers that arise from oxidative coupling of lignin precursors, including lignin monomers (p-coumaryl, coniferyl, and sinapyl alcohols), oligomers, and polymers. Whereas plant peroxidases have been shown to catalyze oxidative coupling of monolignols, the oxidation activity of well-studied plant peroxidases, such as horseradish peroxidase C (HRP-C) and AtPrx53, are quite low for sinapyl alcohol. This characteristic difference has led to controversy regarding the oxidation mechanism of sinapyl alcohol and lignin oligomers and polymers by plant peroxidases. The present study explored the oxidation activities of three plant peroxidases, AtPrx2, AtPrx25, and AtPrx71, which have been already shown to be involved in lignification in the Arabidopsis stem. Recombinant proteins of these peroxidases (rAtPrxs) were produced in Escherichia coli as inclusion bodies and successfully refolded to yield their active forms. rAtPrx2, rAtPrx25, and rAtPrx71 were found to oxidize two syringyl compounds (2,6-dimethoxyphenol and syringaldazine), which were employed here as model monolignol compounds, with higher specific activities than HRP-C and rAtPrx53. Interestingly, rAtPrx2 and rAtPrx71 oxidized syringyl compounds more efficiently than guaiacol. Moreover, assays with ferrocytochrome c as a substrate showed that AtPrx2, AtPrx25, and AtPrx71 possessed the ability to oxidize large molecules. This characteristic may originate in a protein radical. These results suggest that the plant peroxidases responsible for lignin polymerization are able to directly oxidize all lignin precursors..
9. Jun Shigeto, Mariko Nagano, Koki Fujita, Yuji Tsutsumi, Catalytic Profile of Arabidopsis Peroxidases, AtPrx-2, 25 and 71, Contributing to Stem Lignification , PLoS ONE, 10.1371/journal.pone.0105332, 9, 8, e105332, 2014.08, Lignins are aromatic heteropolymers that arise from oxidative coupling of lignin precursors, including lignin monomers (p-coumaryl, coniferyl, and sinapyl alcohols), oligomers, and polymers. Whereas plant peroxidases have been shown to catalyze oxidative coupling of monolignols, the oxidation activity of well-studied plant peroxidases, such as horseradish peroxidase C (HRP-C) and AtPrx53, are quite low for sinapyl alcohol. This characteristic difference has led to controversy regarding the oxidation mechanism of sinapyl alcohol and lignin oligomers and polymers by plant peroxidases. The present study explored the oxidation activities of three plant peroxidases, AtPrx2, AtPrx25, and AtPrx71, which have been already shown to be involved in lignification in the Arabidopsis stem. Recombinant proteins of these peroxidases (rAtPrxs) were produced in Escherichia coli as inclusion bodies and successfully refolded to yield their active forms. rAtPrx2, rAtPrx25, and rAtPrx71 were found to oxidize two syringyl compounds (2,6-dimethoxyphenol and syringaldazine), which were employed here as model monolignol compounds, with higher specific activities than HRP-C and rAtPrx53. Interestingly, rAtPrx2 and rAtPrx71 oxidized syringyl compounds more efficiently than guaiacol. Moreover, assays with ferrocytochrome c as a substrate showed that AtPrx2, AtPrx25, and AtPrx71 possessed the ability to oxidize large molecules. This characteristic may originate in a protein radical. These results suggest that the plant peroxidases responsible for lignin polymerization are able to directly oxidize all lignin precursors..
10. Eri Takata, Tatsushi Tsuruoka, Ken Tsutsumi, Yuji Tsutsumi, Kenji Tabata, Production of xylitol and tetrahydrofurfuryl alcohol from xylan in napier grass by a hydrothermal process with phosphorus oxoacids followed by aqueous phase hydrogenation, Bioresource Technology, 10.1016/j.biortech.2014.05.112, 167, 74-80, 2014.06, The production of xylitol and tetrahydrofurfuryl alcohol (THFA) from napier grass was studied using two
steps: a hydrothermal process with phosphorus oxoacids followed by aqueous phase hydrogenation with
Pd/C. Xylose obtained from the napier grass by the hydrothermal treatment with 3.0 wt% phosphorous
acid was subsequently converted into xylitol at 51.6% yield of the xylan in napier grass by hydrogenation
with 5.0 wt% Pd/C. The furfural produced from napier grass with a 3.0 wt% phosphoric acid treatment was
also directly subjected to the hydrogenation as a hydrolysate to yield 41.4% THFA based on the xylan in
napier grass. The yields of xylitol and THFA obtained by hydrogenation using the napier grass hydrolysate
containing xylose or furfural were almost the same as those of hydrogenation using commercial materi-
als. To our knowledge, this is the first report on the production of THFA in high yield by hydrogenation
directly from biomass hydrolysate..
11. Eri Takata, Ken Tsutsumi, Yuji Tsutsumi, Kenji Tabata, Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid, Bioresource Technology, 10.1016/j.biortech.2013.05.112, 143, 53-58, 2013.09.
12. Jun Shigeto, Yuko Kiyonaga, Koki Fujita, RYUICHIRO KONDO, Yuji Tsutsumi, Putative Cationic Cell-Wall-Bound Peroxidase Homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, Are Involved in Lignification, J. Agric. Food Chem., 10.1021/jf400426g, 61, 16, 3781-3788, 2013.04, The final step of lignin biosynthesis, which is catalyzed by a plant peroxidase, is the oxidative coupling of the
monolignols to growing lignin polymers. Cationic cell-wall-bound peroxidase (CWPO-C) from poplar callus is a unique enzyme
that has oxidative activity for both monolignols and synthetic lignin polymers. This study shows that putative CWPO-C
homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignin biosynthesis. Analysis of stem tissue using the
acetyl bromide method and derivatization followed by the reductive cleavage method revealed a significant decrease in the total
lignin content of ATPRX2 and ATPRX25 deficient mutants and altered lignin structures in ATPRX2, ATPRX25, and ATPRX71
deficient mutants. Among Arabidopsis peroxidases, AtPrx2 and AtPrx25 conserve a tyrosine residue on the protein surface, and
this tyrosine may act as a substrate oxidation site as in the case of CWPO-C. AtPrx71 has the highest amino acid identity with
CWPO-C. The results suggest a role for CWPO-C and CWPO-C-like peroxidases in the lignification of vascular plant cell walls..
13. Shigeto Jun;Itoh Yoshitaka;Tsutsumi Yuji;et al., Identification of Tyr74 and Tyr177 as substrate oxidation sites in cationic cell wall-bound peroxidase from Populus alba L., FEBS JOURNAL, 10.1111/j.1742-4658.2011.08429x, 279, 2, 348-357, 2012.01.
14. I. Kamei, C. Daikoku, Y. Tsutsumi, R. Kondo , Saline-dependent regulation of manganese peroxidase genes in the hypersaline-tolerant white rot fungus Phlebia sp. MG-60, Applied and Environmental Microbiology, 74(9), 2709-2716 , 2008.04.
15. Sasaki S, Shimizu S, Wariishi H, Tsutsumi Y, Kondo R, Transcriptional and translational analyses of poplar anionic peroxidase isoenzymes. J. Wood. Sci., , J. Wood. Sci., 53:427-435, 2007.12.
16. Shinya Sasaki, Daisuke Nonaka, Hiroyuki Wariishi, Yuji Tsutsumi, Ryuichiro Kondo, Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: Potentially unique oxidation sites for oxidative polymerization of lignin., Phytochemistry, 69 (2) 348-355 (2008), 2007.03.
17. K. Oshiman, Y. Tsutsum, T. Nishida, Y. Matsumura, Isolation and characterization of a novel bacterium, Sphingomonas bisphenolicum strain AO1, that degrades bisphenol A , Biodegradation, 18, 247-255 , 2007.02.
18. S. Sasaki, K. Baba, T. Nishida, Y. Tsutsumi, R. Kondo, The cationic cell-wall-peroxidase having oxidation ability for polymeric substrate participates in the late stage of lignification of Populus alba L, Plant Mol. Biol., 62(6), 797-807, 2006.12.
19. K. Hamada, T. Nishida, K. Yamauchi, K. Fukushima, R. Kondo, Y. Tsutsumi, 4-Coumarate:coenzyme A ligase in black locust (Robinia pseudoacacia) catalyses the conversion of sinapate to sinapoyl-CoA., Journal of Plant Research, 10.1007/s10265-004-0159-1, 117, 4, 303-310, 117(4) 303-310 (2004), 2004.08.
20. S. Sasaki, T. Nishida, Y. Tsutsumi, R. Kondo., Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage., FEBS Letters, 10.1016/S0014-5793(04)00224-8, 562, 1-3, 197-201, 562: 197-201 (2004), 2004.04.
21. K Hamada, Y. Tsutsumi, T. Nishida, Treatment of poplar callus with ferulic and sinapic acids II: Effect on related monolignol biosynthetic pathway enzyme activities., J. Wood Sci., 10.1007/s10086-002-0475-9, 49, 4, 366-370, 49:366-370 (2003)
 , 2003.08.
22. K Hamada, Y. Tsutsumi, K. Yamauchi, K. Fukushima, T. Nishida, Treatment of poplar callus with ferulic and sinapic acids I: Incorporation and enhancement of lignin biosynthesis., J. Wood Sci., 10.1007/s10086-002-0477-7, 49, 4, 333-338, 49:333-338 (2003)
 , 2003.08.
23. K.Yamauchi, S. Yasuda, K. Hamada, Y. Tsutsumi, K. Fukushima, Multiform biosynthetic pathway of syringyl lignin in angiosperms, Planta, 10.1007/s00425-002-0865-7, 216, 3, 496-501, 216(3):496-501 (2003), 2003.01.
24. W. Aoyama, S. Sasaki, S. Matsumura, T. Mitsunaga, H. Hirai, Y. Tsutsumi, T. Nishida, Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol., J. Wood Sci., 10.1007/BF00766646, 48, 6, 497-504, 48(6):497-504 (2002), 2002.12.
25. Aoyama W., Matsumura A., Tsutsumi Y., Nishida T, Lignification and peroxidase in tension wood of Eucalyptus viminalis seedlings., J. Wood Sci., 47:419-424 (2001), 2001.01.
26. Tsutsumi Y., Haneda T., Nishida T., Removal of estrogenic activities of bisphenol a and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes., Chemosphere, 42(3): 271-276, (2001), 2001.01.
Presentations
1. Hiroshima Shota,Kakoi Takumi,Hayashi Junya,Tsutsumi Yuji,Shimizu Kuniyoshi, Cytotoxicity of lignin-derived compounds isolated from bamboo (Phyllostachys pubescence) on cancer cell line, 1st International Lignin Symposium, 2019.09.
2. Diego A. Yoshikay,Yusuke Yokoyama ,Jun Shigeto, Yuji Tsutsumi , Regulation of differentiation and growth by plant peroxidase CWPO-C, 1st International Lignin Symposium, 2019.09.
3. Diego Yoshikay, Jun Shigeto, Yusuke Yokoyama, Yuji Tsutsumi, The contribution of CWPO-C to primary stage of plant growth and organogenesis, 5th Symposium of Biotechnology Applied to Lignocelluloses, 2018.08, Cationic cell-wall-bound peroxidase (CWPO-C) from poplar has been believed as a lignification-specific peroxidase, but direct evidence that demonstrates the role of CWPO-C remained unachieved. To promote better understanding about CWPO-C functions, transcriptional analysis of CWPO-C using laser microdissection, gene expression quantification and reporter gene techniques were performed. The results showed that CWPO-C expressed in the most of young tissues including xylem of upper stem, but scarcely expressed in interfascicular fiber and undifferentiated tissue such as apical meristem and cambium. Heterologous overexpression of CWPO-C in Arabidopsis inhibited plant growth and caused stem curvature. In addition, CWPO-C expressed in the outer site of the curved stem that was subjected to gravity stress. These results indicate that CWPO-C plays a role in cell elongation and differentiation; suggesting a new aspect to the role of CWPO-C. CWPO-C may contribute to catabolism of plant hormones such as auxin, involved in cell elongation, differentiation and geotropism..
Awards
  • “Peroxidase and 4-coumarate:CoA ligase related to lignin biosynthesis”
Educational
Educational Activities
Advanced Watershed Geo-system Science

Advanced Forest Geo-and Bio-system Science
Social
Professional and Outreach Activities
Editor of Journal of Wood Science (The Japan Wood Reseach Society)
Scientific Committee of LignoBiotech symposium (2012-2018).