Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Takuya Kitaoka Last modified date:2024.04.15

Professor / Sustainable Bioresources Science
Department of Agro-environmental Sciences
Faculty of Agriculture


Graduate School
Undergraduate School
Other Organization
Administration Post
Other


E-Mail *Since the e-mail address is not displayed in Internet Explorer, please use another web browser:Google Chrome, safari.
Homepage
https://kyushu-u.elsevierpure.com/en/persons/takuya-kitaoka
 Reseacher Profiling Tool Kyushu University Pure
https://bm.wood.agr.kyushu-u.ac.jp/index-e.html
Welcome to our laboratory: Bioresources Chemistry .
Phone
092-802-4665
Fax
092-802-4665
Academic Degree
Ph.D.
Field of Specialization
Biomaterials Science, Bioresources Chemistry
ORCID(Open Researcher and Contributor ID)
0000-0003-1691-9946
Outline Activities
Structural polysaccharides such as cellulose, the skeletal framework of wood cell walls, are not just macromolecules, but have unique nanostructures built in a hierarchical manner during biosynthesis. The only-one features of living organisms and biomaterials, accumulated in a bottom-up manner through their biological activities, are the secrets of nature, which will probably be impossible to synthesize in an artificial way. These nanostructures, realized by the regular arrangement of simple molecules, are ubiquitous in nature, and are very attractive as a stage for creating new materials. I am fascinated by "cellulose nanofibers", the ultrafine nanofibers that support giant trees, and I have devoted myself to research in the biomedical and cosmetic fields to explore the "unknown functions" inspired by the nanostructures of natural polysaccharides.

(1) Development of xeno-free (animal components-free) biomaterials for regenerative medicine
The cells that make up our bodies are surrounded by fibrous materials such as collagen and polysaccharides with regular structures. By focusing on the unique nanostructures of wood-derived nanofibers to mimic the in vivo cellular microenvironments, we are challenging the controlled culture of stem cells useful for xeno-free regenerative medicine (xeno-free: containing no components derived from other animal species to avoid the risk of immune rejection or infection).

(2) Development of immunoadjuvants to enhance the efficacy of vaccines against infectious diseases
Vaccines have played a crucial role in the fight against infectious diseases and cancer, but their susceptibility to the human body still remains an issue due to the personal immune variation. We have discovered that a novel Pickering emulsion using natural polysaccharide nanofibers as an emulsifier can significantly activate human immunity, and we are challenging to develop its function as an immunoadjuvant.

(3) Development of marine biodegradable wood-mimetic spherical microparticles for cosmetic applications
Marine biodegradability of materials is extremely important to solve the problem of marine pollution caused by microplastics. Plants and trees are safe and secure materials that have been biodegraded by marine microorganisms for 380 million years. Therefore, we are challenging to develop core-shell microparticles from wood components, and promoting the "Sea Forest Project" to develop new materials that can be biodegraded and capture carbon dioxide, a cause of global warming, in the ocean.

CALL FOR FOREIGN STUDENTS
Our Laboratory of Bioresources Chemistry would like to offer convenience to the foreign students studying in Japan. Please make contact with me by e-mail if you are interested in our research activities.
Research
Research Interests
  • Nano-/Bio-Architectonics of Structural Carbohydrates
    keyword : Structural Polysaccharides, Self-Assembly & Nano-Control, Interface & Functions, Biomaterial Design, Bio-Architecture
    2002.04Nano-Architectonics in Polysaccharide Material Science Keywords: Structural Polysaccharides, Self-Assembly & Nano-Control, Interface & Functions, Biomaterial Design, Bio-Architecture.
  • Architectural and Functional Design of Polysaccharide-Based Bio-Interfaces
    keyword : Cellulose I Nano-Layer, Vectorial Chain Control, Sugar Integration, Bio-Interface, Biomimetics
    2002.04Architectural and Functional Design of Polysaccharide-Based Bio-Interfaces Keywords: Cellulose I Nano-Layer, Vectorial Chain Control, Sugar Integration, Bio-Interface, Biomimetics.
  • Nonaqueous Biocatalysis: In Vitro Synthesis of Structural Polysaccharides and Surface Modification with Functional Sugars
    keyword : Cellulose Synthesis, Surfactant-Enveloped Enzyme, Nonaqueous Biocatalysis, Artificial Sugar Assembly, Bioactive Materials, Glycoengineering
    2002.04In Vitro Synthesis of Structural Polysaccharides and Surface Modification with Functional Sugars Keywords: Cellulose Synthesis, Enzyme/Surfactant Complexes, Nonaqueous Biocatalysis, Artificial Sugar Assembly, Bioactive Materials, Glycoengineering.
  • Paper-Structured Catalysts for Environmental and Energy Applications

    keyword : Paper-Structured Catalyst, Composites, Fiber Network Structure, Micro Reactor, Photoremediation, Hydrogen Fuel Cells
    2000.04Paperlike Fiber/Catalyst Composites for Environmental and Energy Applications Keywords: Paper-Structured Catalyst, Fiber Network Structure, Micro Reactor, Photoremediation, Hydrogen Fuel Cells.
  • Wet-End Chemistry Based on the Recognition of Cellulose Molecules
    keyword : Cellulose-Binding Domains, Direct Dyes, Sugar Assembly, Molecular Recognition, Non-Covalent Surface Modification
    2000.04~2007.03Wet-End Chemistry Based on the Recognition of Cellulose Molecules Keywords: Cellulose-Binding Domains, Direct Dyes, Sugar Assembly, Molecular Recognition, Non-Covalent Surface Modification.
  • Sizing Mechanism of Porous Materials Consisting of Cellulose Fiber Network
    keyword : Surface Morphology, Network Structure, Multi-Step Distribution, Water Repellency, Interfatial Phenomena
    2000.04~2007.03Sizing Mechanism of Porous Materials Consisting of Cellulose Fiber Network Keyword: Surface Morphology, Network Structure, Multi-Step Distribution, Water Repellency, Interfatial Phenomena.
Current and Past Project
  • R & D of Paper-Structured Catalyst for Exhaust Gas Cleanup
  • R & D of Catalyst Paper for Hydrogen Production by Biomethanol Steam Reforming
Academic Activities
Books
1. Takuya Kitaoka, Emerging Functions of Nano-Organized Polysaccharides, MDPI, 10.3390/books978-3-0365-4043-6, 164 pages, 2022.04.
2. Frontier in research and developments of cellulose nanofibers.
3. Chaniga Chuensangjun, Sarote Sirisansaneeyakul, Takuya Kitaoka, Structure and Surface Modification Techniques for Production of Value-Added Biocomposites, Chapter 6 in Value-Added Biocomposites: Technology, Innovation, and Opportunity, CRC Press, 10.1201/9781003137535-6, pp. 125-156 (32 pages), 2021.09.
4. New Horizons for Cellulose Nanofibers in Interfacial Catalysis.
5. Interfacial Nanoarchitecture and Cellular Response of Thin Glyco-nanolayers.
6. Hybrid Nanomaterials of Metal Catalysts and Cellulose Nanofibers for Fine Chemical and Electronics Applications.
7. Hybrid Nanomaterials of Metal Catalysts and Cellulose Nanofibers.
8. Hirotaka Koga, Takuya Kitaoka, Production and Applications of Cellulose Nanomaterials, Chapter 2: Cellulose Nanofibrils, 2.4 Composites, Liquid Gels and Aerogels: Crystalline Cellulose Nanofibrils Conjugated with Metal Nanocatalysts, TAPPI PRESS, Norcross, 313-316, 2013.06.
9. Paper-structured Catalysts.
10. Koga H., Kitaoka T., Advances in Materials Science Research, Volume 12, Chapter 7: Paper-structured Catalyst Composites with a Ceramic Fiber-network Microstructure for Energy and Environmental Applications, Nova Science Publishers, Inc., New York, 215-237, 2012.02.
11. Koga H., Kitaoka T., Silver Nanoparticles, Chapter 14: On-paper Synthesis of Silver Nanoparticles for Antibacterial Applications, IN-TECH Education and Publishing KG, Vienna, 277-294, 2010.03, [URL].
12. Paper-Structured Catalyst for Hydrogen Production, in the Advanced Technologies of Cellulose Utilization.
13. XPS Mapping Analysis of Paper Surface/Elementary Imaging of Paper Surface by SEM-EDS/Nano-Imaging of Paper Surface by AFM, in Know-How Catalogues for Paper Analysis and Observation.
14. Photocatalyst Paper/Hydrogen-Producing Catalyst Paper, in FIBER Super-Biomimetics.
15. Development of Catalyst Paper by a Papermaking Technique, in Encyclopedia of Hydrogen Utilization II.
16. Aluminum Chemistry at the Wet-End, in the Recent Trends of Wet End Chemistry and Paper Chemicals.
Reports
1. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Nanofiber-Stabilized Pickering Emulsions Induce Pyroptosis in Kupffer Cells, 九州大学超顕微解析研究センター報告, 47, 38-39, 2023.08.
2. Functional design of bioadaptive cell culture scaffolds regulated by structural polysaccharide nanofibers.
3. Takuya Kitaoka, Emerging Functions of Nano-Organized Polysaccharides, Nanomaterials, 10.3390/nano12081277, 12(8), 1277 (2022), 2022.04.
4. Creating new values of cellulose nanofibers.
5. Biofunction of cell culture scaffolds triggered by polysaccharide nanofibers.
6. Kojiro Uetani, Naliharifetra Jessica Ranaivoarimanana, Mayumi Hatakeyama, Takuya Kitaoka, Inherently Distinctive Potentialities and Uses of Nanocellulose Based on its Nanoarchitecture, BioResources, 2021.03.
7. Kojiro Uetani, Takuya Kitaoka, Nanocellulose: Beyond the Ordinary, BioResources, 16(1), 1-4 (2021), 2020.11.
8. Lignification-inspired Biomimetic Surface Modification of Wood Nanocellulose
N. Fukuda, K. Kanomata, T. Kitaoka.
9. Interfacial Design of Glyco-nanolayers for Cell Adhesion.
10. Knoevenagel condensation by chitosan nanofibers
Y. Hirayama, K. Kanomata, T. Kitaoka.
11. Interfacial Catalysis via Cellulose Nanofibers.
12. Interfacial Acid Hydrolysis of Acetals by Surface-carboxylated Nanocellulose
Y. Tamura, K. Kanomata, T. Kitaoka.
13. New Frontier of Paper-structured Catalysts.
14. Fischer-Tropsch Synthesis over Paper-Structured Catalysts
A. Saimura, T. Kitaoka.
15. Materials Design Inspired by Paper and Cellulose Architectures.
16. Structural and functional design of cellulose nanomaterials.
17. Microflow Chemical Synthesis over Stacked Paper-Structured Catalysts
Y. Ishihara, T. Kitaoka.
18. Emergent Functions of Nanocellulose Hybrid Materials
T. Kitaoka
Nanofiber
.
19. Sequential Desulfurization and Methane Steam Reforming by Paper-Structured Catalysts
A. Saimura, Y. Shiratori, T. Kitaoka.
20. Hirotaka Koga, Takuya Kitaoka, Akira Isogai, Chemically-modified cellulose paper as a microstructured catalytic reactor, Molecules, 20, 1495-1508 , 2015.01.
21. Selective Gas Separation by Hybrid Nanofilms of Cellulose and Metal-organic Frameworks
M. Matsumoto, T. Kitaoka.
22. Emerging Issues for Paper Materials
T. Kitaoka
Sen'i Gakkaishi, 70(9), P430-P433 (2014)
The Society of Fiber Science and Technology, Japan.
23. Functional Nano-Architectonics of Glyco-Biointerfaces
T. Kitaoka
Cellulose Communications, 20(2), 63-68 (2013)
The Cellulose Society of Japan.
24. Paper-like Catalysts for Environmental, Energy, Chemical and Biological Applications
Takuya Kitaoka
Journal of Packaging Science & Technology, Japan.
25. Structural and Functional Design of Cellulosic Nanohybrid Materials
T. Kitaoka
Nanofiber
.
26. Koga H., Kitaoka T., On-paper synthesis of metal nanoparticles for catalytic applications, Sen'i Gakkaishi, 67(7), 141-152, 2011.07.
27. Kitaoka T., Yokota S., Opietnik M., Rosenau T., Synthesis and bio-applications of carbohydrate-gold nanoconjugates with nanoparticle and nanolayer forms, Materials Science and Engineering C: Materials for Biological Applications, 31(6), 1221-1229, 2011.08.
28. Development and Applications of Paper-Structured Catalysts
T. Kitaoka
THE GLOBE.
29. Advanced Material Design and Applications of Cellulose
T. Kitaoka
Kobunshi, High Polymers.
30. Architectural Design and Functional Development of Cellulosic Nanolayers
T. Kitaoka, S. Yokota
Bioscience & Industry.
31. A Novel Conception for the Wet-End Interactions Based on the Molecular Recognition on Paper Surface
T. Kitaoka
Wood Science in Kyushu, 13(1), 3-6 (2006).
32. Development of Porous Catalyst/Fiber Composites by a Papermaking Technique
A. Tomoda, R. Suzuki, T. Kitaoka
Fuel Cell, 5(4), 83-87 (2006).
33. Wet-End Interaction Based on the Molecular Recognition at the Cellulose/Water Interface
T. Kitaoka
Report of the Center of Advanced Instrumental Analysis Kyushu University, 23, 15-24 (2005).
34. Catalyst Paper
T. Kitaoka
Sen'i Gakkaishi, 60(9), P439-P442 (2004)
The Society of Fiber Science and Technology, Japan.
35. Paperlike fiber/catalyst composites for environment and energy applications
T. Kitaoka
Cellulose Communications, 10(4), 170-174 (2003)
The Cellulose Society of Japan.
36. Preparation and environmental applications of paperlike photocatalyst composites
H. Tanaka, H. Ichiura, S. Fukahori, Y. Iguchi, T. Kitaoka
Annals of the High Performance Paper Society, Japan, 41, 7-15 (2003).
37. A new conception in the design of papermaking additives based on the substrate recognition of cellulose-degrading enzymes
T. Kitaoka
Cellulose Communications, 8(4), 177-180 (2001)
The Cellulose Society of Japan.
38. Molecular design of water-soluble polymer in paper chemistry
H. Tanaka, T. Kitaoka
Sen'i Gakkaishi, 56(5), P141-P145 (2000)
The Society of Fiber Science and Technology, Japan.
Papers
1. Qimei Liu, Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Proliferation and differential regulation of osteoblasts cultured on surface-phosphorylated cellulose nanofiber scaffolds, International Journal of Biological Macromolecules, 10.1016/j.ijbiomac.2023.126842, 253, 3, 126842, 2023.09.
2. Zilin Zhang, Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Injectable cell-laden hydrogels fabricated with cellulose and chitosan nanofibers for bioprinted liver tissues, Biomedical Materials, https://doi.org/10.1088/1748-605X/acd49a, 18, 4, 045018, 2023.05.
3. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Polysaccharide nanofiber-stabilized Pickering emulsion microparticles induce pyroptotic cell death in hepatocytes and Kupffer cells, Small, https://doi.org/10.1002/smll.202207433, 19, 27, 2207433, 2023.07.
4. Yuna Tanaka, Naoya Fukuda, Naliharifetra Jessica Ranaivoarimanana, Mayumi Hatakeyama, Takuya Kitaoka, Preparation of Spherical Microparticles Composed of Cellulose Nanofiber and Cellulose Diacetate via Pickering Emulsion Templating, BioResources, 10.15376/biores.18.1.1482-1492, 18, 1, 1482-1492, 2023.02.
5. Novitri Hastuti, Hendrik Setiawan, Kyohei Kanomata, Takuya Kitaoka, Cellulose nanofibers of oil palm biomass in alginate-based membranes for water-ethanol mixture separation, Cellulose Chemistry and Technology, 56, 7-8, 737-747, 2022.10.
6. Hirofumi Ichinose, Shota Ukeba, Takuya Kitaoka, Latent potentials of the white-rot basidiomycete Phanerochaete chrysosporium responsible for sesquiterpene metabolism: CYP5158A1 and CYP5144C8 decorate (E)-α-bisabolene, Enzyme and Microbial Technology, 158, 110037, 2022.03.
7. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Bioadaptive porous 3D scaffolds comprising cellulose and chitosan nanofibers constructed by Pickering emulsion templating, Advanced Functional Materials, 32, 22, 1-11, 2200249, 2022.02, 樹木多糖類のセルロースや海産多糖類のキチンは、ともに伸び切り鎖結晶からなるナノファイバー構造を特徴としており、その界面は極めて規則的な構造をしている。このナノ構造が、生体内の細胞組織を取り囲む細胞外マトリックスの物理的・化学的特徴を備えていることに着目し、様々な細胞組織培養基材の開発に成功した。種々の界面官能基化により細胞接着・増殖性を付与できるのみならず、ナノ多糖の両親媒性を固体界面活性剤として利用することでピッカリングエマルションを形成し、これを鋳型とする多孔質3D培養基材の開発にも成功した。ヒト肝ガン細胞HepG2の解毒代謝活性が10倍以上になる現象も見出した。再生医療や創薬における薬物スクリーニングに向け、生体機能を示す細胞組織を生体外で培養する技術は極めて重要であり、天然多糖類のナノ構造が切り拓く、新規バイオアダプティブ細胞組織培養基材の実用展開に期待が持たれる。.
8. Tomoka Noda, Mayumi Hatakeyama, Takuya Kitaoka, Combination of polysaccharide nanofibers derived from cellulose and chitin promotes the adhesion, migration and proliferation of mouse fibroblast cells, Nanomaterials, Special Issue "Emerging Functions of Nano-organized Polysaccharides", 12, 3, 402, 2022.01.
9. Mayumi Hatakeyama, Takuya Kitaoka, Surface-carboxylated nanocellulose-based bioadaptive scaffolds for cell culture, Cellulose, 29, 5, 2869-2883 , Special Issue of Cellulose, "Academia‒industry collaborative society on cellulose ‒ past and future", 2022.03.
10. Naoya Fukuda, Mayumi Hatakeyama, Takuya Kitaoka, Enzymatic preparation and characterization of spherical microparticles composed of artificial lignin and TEMPO-oxidized cellulose nanofiber, Nanomaterials, 11, 4, 917, 2021.04.
11. Naliharifetra Jessica Ranaivoarimanana, Xin Habaki, Takuya Uto, Kyohei Kanomata, Toshifumi Yui, Takuya Kitaoka, Nanocellulose enriches enantiomers in asymmetric aldol reactions, RSC Advances, 10, 61, 37064-37071, 2020.10, 樹木多糖類のセルロースは、細胞壁中で伸び切り鎖結晶のナノファイバー構造を形成しており、その界面では極めて規則的に不斉炭素と官能基が配列している。この天然構造多糖に特徴的な界面を不斉触媒反応場として利用することで、プロリンおよびその誘導体を有機分子触媒とする直截的Aldol反応において、触媒活性とエナンチオ選択性の著しい向上を見出した。さらに、構造アナログのキトサンナノファイバーを塩基触媒とすることで、グリーン溶媒を用いるKnoevenagel縮合の高選択的構造制御にも成功した。持続可能な低炭素社会を支える基盤技術には、原料と物質変換の両面で環境的視点が求められる。グリーンな物質変換を司る触媒は低炭素社会のモノづくりに必須の先端技術であり、当該成果は天然多糖類に想定外の新機能を見出したもので、創薬やエレクトロニクスなどの高機能有用分子の合成手法のパラダイムシフトにつながる可能性を秘めている。.
12. Yusaku Hirayama, Kyohei Kanomata, Mayumi Hatakeyama, Takuya Kitaoka, Chitosan nanofiber-catalyzed highly selective Knoevenagel condensation in aqueous methanol, RSC Advances, 10, 45, 26771-26776, 2020.07.
13. Kyohei Kanomata, Naoya Fukuda, Takuma Miyata, Pui Ying Lam, Toshiyuki Takano, Yuki Tobimatsu, Takuya Kitaoka, Lignin-inspired surface modification of nanocellulose by enzyme-catalyzed radical coupling of coniferyl alcohol in Pickering emulsion, ACS Sustainable Chemistry & Engineering, 8, 2, 1185-1194, 2020.02.
14. Novitri Hastuti, Rizki Fitria Darmayanti, Safrina Dyah Hardiningtyas, Kyohei Kanomata, Kenji Sonomoto, Masahiro Goto, Takuya Kitaoka, Nanocellulose from oil palm biomass to enhance microbial fermentation of butanol for bioenergy application, BioResouces, 14, 3, 6936-6957, 2019.07.
15. Naliharifetra Jessica Ranaivoarimanana, Kyohei Kanomata, Takuya Kitaoka, Concerted catalysis by nanocellulose and proline in organocatalytic Michael additions, Molecules, 24, 7, 1231, 2019.03, 科学技術振興機構 戦略的創造研究推進事業 先端的低炭素化技術開発 特別重点技術領域「ホワイトバイオテクノロジーによる次世代化成品創出」特定技術型「セルロースナノファイバーに関する次世代型研究開発」の採択課題「ナノセルロースが分子キラリティを支配する界面不斉反応の創発」(代表:北岡卓也・九州大学農学研究院)の重要成果であり、樹木セルロースナノファイバーがプロリンを有機分子触媒とする直截的Michael付加反応において、触媒活性の著しい増幅効果とエナンチオ選択性の向上を示すことを報告した。持続可能な低炭素社会を支える基盤技術には、原料と物質変換の両面で環境的視点が求められる。グリーンな物質変換を司る触媒は低炭素社会のモノづくりに必須の先端技術であり、当該成果は天然多糖類にその機能を見出したもので、創薬やエレクトロニクスなどの有用機能分子の合成手法のパラダイムシフトにつながる可能性を秘めている。.
16. Shiratori Y., Sakamoto M., Nguyen T. G. H., Yamakawa T., Kitaoka T., Orishima H., Matsubara H., Watanabe Y., Nakatsuka S., Doan T. C. D., Dang C. M., Biogas power generation with SOFC to demonstrate energy circulation suitable for Mekong Delta, Vietnam, Fuel Cells, 19, 4, 346-353, 2019.04.
17. Hatakeyama M., Ryuno D., Yokota S., Ichinose H., Kitaoka T., One-step synthesis of cellooligomer-conjugated gold nanoparticles in a water-in-oil emulsion system and their application in biological sensing, Colloids and Surfaces B: Biointerfaces, 178, 74-79, 2019.06.
18. Chaniga Chuensangjun, Takuya Kitaoka, Yusuf Chisti, Sarote Sirisansaneeyakul, Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s, European Polymer Journal, 114, 308-318, 2019.02.
19. Chaniga Chuensangjun, Kyohei Kanomata, Takuya Kitaoka, Yusuf Chisti, Sarote Sirisansaneeyakul, Surface-modified cellulose nanofibers-graft-poly(lactic acid)s made by ring-opening polymerization of L-lactide, Journal of Polymers and the Environment, 27, 4, 847-861, 2019.02.
20. Hatakeyama M., Nakada F., Ichinose H., Kitaoka T., Direct stimulation of cellular immune response via TLR2 signaling triggered by contact with hybrid glyco-biointerfaces composed of chitohexaose and cellohexaose, Colloids and Surfaces B: Biointerfaces, 175, 517-522, 2019.02.
21. Novitri Hastuti, Kyohei Kanomata, Takuya Kitaoka, Hydrochloric acid hydrolysis of pulps from oil palm empty fruit bunches to produce cellulose nanocrystals, Journal of Polymers and the Environment, 26, 9, 3698-3709, 2018.09.
22. Yuya Tamura, Kyohei Kanomata, Takuya Kitaoka, Interfacial hydrolysis of acetals on protonated TEMPO-oxidized cellulose nanofibers, Scientific Reports, 8, 8:5021, 2018.03.
23. Kyohei Kanomata, Naoko Tatebayashi, Xin Habaki, Takuya Kitaoka, Cooperative catalysis of cellulose nanofiber and organocatalyst in direct aldol reactions, Scientific Reports, 8, 8:4098, 2018.02, 科学技術振興機構(JST)戦略的創造研究推進事業先端的低炭素化技術開発ALCAの特別重点技術領域「ホワイトバイオテクノロジーによる次世代化成品創出」特定技術型「セルロースナノファイバーに関する次世代型研究開発」の採択課題「ナノセルロースが分子キラリティを支配する界面不斉反応の創発」(代表:北岡卓也・九州大学大学院農学研究院)の基盤成果であり、樹木セルロースナノファイバーがプロリンを有機分子触媒とする直接的アルドール反応において、触媒活性の著しい増幅効果を示すことを世界で初めて発見・報告した。グリーンな物質変換を司る触媒は、低炭素社会のモノづくりに必須の先端技術であり、本研究成果は、創薬やエレクトロニクスなどの有用機能分子の合成手法のパラダイムシフトにつながる可能性を秘めている。.
24. Mayumi Hatakeyama, Takuya Kitaoka, Hirofumi Ichinose, Impacts of amino acid substitutions in fungal cytochrome P450 monooxygenase (CYP57B3) on the effective production of 3′-hydroxygenistein, FEMS Microbiology Letters, 364, 11, 2017.05.
25. Yusuke Shiratori, Takeo Yamakawa, Mio Sakamoto, Hinomi Yoshida, Takuya Kitaoka, Quang Tuyen Tran, Duc Chanh Tin Doan, Mau Chien Dang, Biogas production from local biomass feedstock in the Mekong Delta and its utilization for a direct internal reforming solid oxide fuel cell, Frontiers in Environmental Science, 5, 5, 25, pp. 1-8, 2017.05.
26. Yuki Ishihara, Kyohei Kanomata, Taichi Homma, Takuya Kitaoka, Multilayer-stacked paper-structured catalysts for microflow Suzuki-Miyaura cross-coupling reaction, Reaction Kinetics, Mechanisms and Catalysis, 121, 2, 523-537, 2017.08.
27. Ayami Saimura, Takuya Kitaoka, Paper-structured catalysts with porous fiber networks for Fischer-Tropsch synthesis, Journal of Korea TAPPI, 48, 6, 32-45, 2016.12.
28. Ayami Saimura, Yusuke Shiratori, Takuya Kitaoka, Dual-layered paper-structured catalysts for sequential desulfurization and methane-steam reforming of simulated biogas containing hydrogen sulfide, Journal of Materials Science, 52, 1, 314-325, 2017.01, 科学技術振興機構(JST)・国際協力機構(JICA)/政府開発援助(ODA)の地球規模課題対応国際科学技術協力プログラム(SATREPS)「高効率燃料電池と再生バイオガスを融合させた地域内エネルギー循環システムの構築」(代表:白鳥祐介・九州大学大学院工学研究院)の主たる共同研究者として、ベトナム社会主義共和国のメコンデルタ地域において、バイオマス廃棄物からのバイオガス製造と水素燃料電池による直接発電(エネルギー効率50%以上)に成功した。本論文は、紙状触媒(ペーパー触媒)の積層により、脱硫と水素製造を効率的に行う新しい提案を含む研究成果で、上記の実質的な国際貢献・社会貢献に寄与した。.
29. Pornthida Poosala, Hirofumi Ichinose, Takuya Kitaoka, Spatial geometries of self-assembled chitohexaose monolayers regulate myoblast fusion, International Journal of Molecular Sciences, 17, 5, 686, 1-16, 2016.05.
30. Mayumi Hatakeyama, Takuya Kitaoka, Hirofumi Ichinose, Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: functionalization with cytochrome b5 in Escherichia coli, Enzyme and Microbial Technology, 89, 7-14, 2016.06.
31. Pornthida Poosala, Takuya Kitaoka, Chitooligomer-immobilized biointerfaces with micropatterned geometries for unidirectional alignment of myoblast cells, Biomolecules, 6, 1, 12, 1-13, 2016.01.
32. Makoto Matsumoto, Takuya Kitaoka, Ultraselective gas separation by nanoporous metal-organic frameworks embedded in gas-barrier nanocellulose flms, Advanced Materials, 28, 9, 1765-1769, 2016.03.
33. Taichi Homma, Takuya Kitaoka, Solvent-free alcohol oxidation using paper-structured catalysts: Flow dynamics and reaction kinetics, Chemical Engineering Journal, 285, 467-476, 2016.02.
34. Taichi Homma, Takuya Kitaoka, Multiphase catalytic oxidation of alcohols over paper-structured catalysts with micrometer-size pores, Applied Catalysis A: General, 486, 201-209, 2014.09.
35. Taichi Homma, Takuya Kitaoka, Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas-liquid-solid reaction, Materials Science and Engineering B: Advanced Functional Solid-state Materials, 184, 7-13, 2014.06.
36. Boateng Onwona-Agyeman, Motoi Nakao, Takuya Kitaoka, Photovoltaic performance of spray-coated zinc oxide nanoparticles sensitized with metal-free indoline dyes, Journal of Materials Science Research, 3, 1, 87-93, 2014.03.
37. Shin Miura, Yuuka Umemura, Yusuke Shiratori, Takuya Kitaoka, In situ synthesis of Ni/MgO catalysts on inorganic paper-like matrix for methane steam reforming, Chemical Engineering Journal, 229, 515-521, 2013.08.
38. Yusuke Shiratori, Tran Quang-Tuyen, Yuuka Umemura, Takuya Kitaoka, Kazunari SASAKI, Paper-structured catalyst for the steam reforming of biodiesel fuel, International Journal of Hydrogen Energy, 38, 26, 11278-11287, 2013.08.
39. Yusuke Shiratori, Teppei Ogura, Hironori NAKAJIMA, Mio Sakamoto, Yutaro Takahashi, Yuto Wakita, Takuya Kitaoka, Kazunari SASAKI, Study on paper-structured catalyst for direct internal reforming SOFC fuelled by the mixture of CH4 and CO2, International Journal of Hydrogen Energy, 38, 25, 10542-10551, 2013.08.
40. Azetsu Akihiro, Hirotaka Koga, YUAN LUYANG, Takuya Kitaoka, Direct synthesis of gold nanocatalysts on TEMPO-oxidized pulp paper containing aldehyde groups, BioResources, 8, 3, 3706-3717, 2013.05.
41. Koga H., Saito T., Kitaoka Takuya, Nogi M., Suganuma K., Isogai A., Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube, Biomacromolecules, 14, 4, 1160-1165, 2013.02.
42. Onwona-Agyeman B., Nakao M., Kohno T., Liyanage D., Murakami K., Kitaoka T. , Preparation and characterization of sputtered aluminum and gallium co-doped ZnO films as conductive substrates in dye-sensitized solar cells, Chemical Engineering Journal, 219, 273-277, 219(-), 273-277, 2013.03.
43. Egusa S., Goto M., Kitaoka T., Facile and direct synthesis of long-chain chitin from chitobiose via proton-assisted nonaqueous biocatalysis, Journal of Molecular Catalysis B: Enzymatic, 87, 69-74, 87(-), 69-74 (2013), 2013.03.
44. Kitaoka T., Yoshiyama C., Uemura F., Hybrid immobilization of galactosyl lactose and cellobiose on a gold substrate to modulate biological responses, Carbohydrate Polymers, 92, 1, 374-379, 92(1), 374-379, 2013.01.
45. Egusa S., Goto M., Kitaoka T., One-step synthesis of cellulose from cellobiose via protic acid-assisted enzymatic dehydration in aprotic organic media, Biomacromolecules, 13, 9, 2716-2722, 13(9), 2716-2722, 2012.07.
46. Tahara Y., Kaneko T., Toita R., Yoshiyama C., Kitaoka T., Niidome T., Katayama Y., Kamiya N., Goto M., A novel double-coating carrier produced by solid-in-oil and solid-in-water nanodispersion technology for delivery of genes and proteins into cells
, Journal of Controlled Release, 161, 3, 713-721, 161(3), 713-721, 2012.05.
47. Koga H., Kitaoka T., Isogai A., Paper-immobilized enzyme as a green microstructured catalyst, Journal of Materials Chemistry, 22, 23, 11591-11597, 22(23), 11591-11597, 2012.04.
48. Helical assembly of azobenzene-conjugated carbohydrate hydrogelators with specific affinity for lectins
.
49. Miura S., Koga H., Kitaoka T., Wariishi H., On-paper synthesis of nickel nanoparticles and catalytic propane steam reforming for efficient hydrogen production, Heat Transfer Engineering, 34, 11-12, 889-895, 2013.03.
50. Koga H., Azetsu A., Tokunaga E., Saito T., Isogai A., Kitaoka T., Topological loading of Cu(I) catalysts onto crystalline cellulose nanofibrils for the Huisgen click reaction, Journal of Materials Chemistry, 22, 12, 5538-5542, 22(12), 5538-5542, 2012.03, セルロースの結晶性ナノファイバー形状を利用した新しいエアロゲル触媒を開発した。水系で温和なTEMPO酸化処理を施すことで、セルロースナノファイバーの結晶界面のみにカルボキシル基を超高密度に導入し、不安定な一価銅イオンを担持させることに成功した。カルボキシル基と化学量論的に導入された一価銅イオンは、代表的なクリック反応であるHuisgen[3+2] cycloadditionを触媒し、極めて高い触媒効率を示した。また、固定化触媒であるため回収再利用も可能で、紙との複合化など、さらなる実用展開にも期待がもたれる。.
51. Azetsu A., Koga H., Isogai A., Kitaoka T., Synthesis and catalytic features of hybrid metal nanoparticles supported on cellulose nanofibers, Catalysts, 1, 1, 83-96, 1(1), 83-96, 2011.11.
52. Koga H., Umemura Y., Kitaoka T., In situ synthesis of bimetallic hybrid nanocatalysts on a paper-structured matrix for catalytic applications, Catalysts, 1, 1, 69-82, 1(1), 69-82, 2011.11.
53. Miura S., Kitaoka T., In situ synthesis of gold nanoparticles on zinc oxides preloaded into a cellulosic paper matrix for catalytic applications, BioResources, 6, 4, 4990-5000, 6(4), 4990-5000, 2011.12.
54. Yoshiike Y., Kitaoka T., Tailoring hybrid glyco-nanolayers composed of chitohexaose and cellohexaose for cell culture applications, Journal of Materials Chemistry, 21, 30, 11150-11158, 21(30), 11150-11158, 2011.05, 生理活性糖のキトヘキサオースと樹木糖鎖のセロヘキサオースのハイブリッド膜を調製し、ヒト肝ガン細胞の機能誘導が可能な細胞培養基材を開発した。各種オリゴ糖の還元末端特異的S誘導体化により、金基板表面に分子鎖を平行に配向させた糖鎖膜を調製し、配合比で表面の機能糖鎖密度を制御することに成功した。その糖鎖基板上でヒト肝ガン細胞を培養したところ、スフェロイド様の細胞形態が観察され、既存の培養基材よりも優れたシトクロムP450活性が見られた。すなわち、肝機能を発現させた状態での細胞培養に成功した。今後、糖鎖クラスター構造の制御によるさらなる細胞操作の可能性に期待がもたれる。.
55. Koga H., Kitaoka T., Isogai A., In situ modification of cellulose paper with amino groups for catalytic applications, Journal of Materials Chemistry, 21, 25, 9356-9361, 21(25), 9356-9361, 2011.05, セルロースファイバーからなる「紙」に、シランカップリング反応による一級アミン導入を試みた。もとの紙形状を完全に維持したまま、表面に大量のアミノ基を導入することに成功した。Knoevenagel condensation触媒反応に供したところ、極めて高い触媒効率を示し、紙表面のアミノ基が塩基性触媒として機能することが示された。また、紙であることから、水系からの回収・再利用性にも優れていた。導入官能基の多様性から、さらなる機能開発・実用展開に期待がもたれる。.
56. Koga H., Umemura Y., Kitaoka T., Design of catalyst layers by using paper-like fiber/metal nanocatalyst composites for efficient NOx reduction, Composites Part B: Engineering, 42, 5, 1108-1113, 42(5), 1108-1113, 2011.07.
57. Koga H., Kitaoka T., Activated carbon water purification filter prepared by wet molding with a dual polyelectrolyte retention system, Sen'i Gakkaishi, 67, 4, 81-85, 67(4), 81-85, 2011.04.
58. Koga H., Kitaoka T., One-step synthesis of gold nanocatalysts on a microstructured paper matrix for the reduction of 4-nitrophenol, Chemical Engineering Journal, 168, 1, 420-425, 168(1), 420-425, 2011.03.
59. Koga H., Tokunaga E., Hidaka M., Umemura Y., Saito T., Isogai A., Kitaoka T., Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers, Chemical Communications, 46, 45, 8567-8569, 46(45), 8567-8569, 2010.11, セルロースの結晶性ナノファイバー形状を利用した新しいナノハイブリッド触媒を開発した。水系で温和なTEMPO酸化処理を施すことで、セルロースナノファイバーの結晶界面のみにカルボキシル基を超高密度に導入し、直径5 nm程度の金ナノ粒子をその場合成した。その結果、既存の合成高分子内包型金ナノ触媒と比べて、数百倍の触媒効率を示した。結晶表面に「露出」した金ナノ触媒の作用と考えられる。エアロゲル化や紙との複合化など、さらなる実用展開にも期待がもたれる。.
60. Egusa S., Kitaoka T., Igarashi K., Samejima M., Goto M., Wariishi H., Preparation and enzymatic behavior of surfactant-enveloped enzymes for glycosynthesis in nonaqueous aprotic media, Journal of Molecular Catalysis B: Enzymatic, 67, 3-4, 225-230, 67(3-4), 225-230, 2010.12.
61. Kitaoka T., Tanaka N., Matsuyama K., Yamamoto H., Highly sensitive sizing response induced by 2-bromination of fatty acids and their pairing with anchor sites formed on paper surfaces, Sen’i Gakkaishi, 66, 11, 284-287, 66(11), 284-287, 2010.11.
62. Tanaka N., Yoshiike Y., Yoshiyama C., Kitaoka T., Self-assembly immobilization of hyaluronan thiosemicarbazone on a gold surface for cell culture applications, Carbohydrate Polymers, 82, 1, 100-105, 82(1), 100-105, 2010.08.
63. Koga H., Ishihara H., Kitaoka T., Tomoda A., Suzuki R., Wariishi H., NOx reduction over paper-structured fiber composites impregnated with Pt/Al2O3 catalyst for exhaust gas purification, Journal of Materials Science, 45, 15, 4151-4157, 45(15), 4151-4157, 2010.08.
64. Yoshiike Y., Yokota S., Tanaka N., Kitaoka T., Wariishi H., Preparation and cell culture behavior of self-assembled monolayers composed of chitohexaose and chitosan hexamer, Carbohydrate Polymers, 82, 1, 21-27, 82(1), 21-27, 2010.08.
65. Okutani Y., Egusa S., Ogawa Y., Kitaoka T., Goto M., Wariishi H., One-step lactosylation of hydrophobic alcohols by nonaqueous biocatalysis, ChemCatChem, 2, 8, 950-952, 2(8), 950-952, 2010.08.
66. Koga H., Umemura Y., Tomoda A., Suzuki R., Kitaoka T., In situ synthesis of platinum nanocatalysts on a microstructured paperlike matrix for the catalytic purification of exhaust gases, ChemSusChem, 3, 5, 604-608, 3(5), 604-608, 2010.05, 白金ナノ粒子をペーパー状マトリックスを足場にその場合成し、自動車排気ガスNOxの効率的浄化を達成した。カーボンファイバーの酸処理により表面を酸化・活性化することで、直径10 nm程度の白金ナノ粒子を合成することに成功した。さらに、カーボンファイバーをあらかじめ抄紙法で紙(ペーパー)形状にしておくことで、取り扱いの容易な多孔質触媒材料の開発にも成功した。得られた「ペーパー触媒」をNOx浄化に供したところ、既存のハニカム状触媒を上回る性能を発揮した。本手法は、様々な金属種とファイバーに応用でき、その組み合わせの多様さから、今後のさらなる展開にも期待がもたれる。.
67. Opietnik M., Potthast A., Kitaoka T., Rosenau T., Synthesis of N-methylmorpholine N-(17O-oxide) and N-methylmorpholine 15N-(17O-oxide), Journal of Labelled Compounds and Radiopharmaceuticals, 53, 2, 78-80, 2010.02.
68. Koga H., Kitaoka T., Nakamura M., Wariishi H., Influence of a fiber-network microstructure of paper-structured catalyst on methanol reforming behavior, Journal of Materials Science, 44(21), 5836-5841, 2009.11.
69. Yokota S., Matsuyama K., Yamamoto H., Kitaoka T., Wariishi H., Specific attraction at the carboxyl terminus of fatty acid/oxidized aluminum interface for the sizing appearance of fiber-network materials, Sen’i Gakkaishi, 65, 12, 332-337, 65(12), 332-337, 2009.12.
70. Yokota S., Ohta T., Kitaoka T., Wariishi H., Adsorption of cellobiose-pendant polymers to a cellulose matrix determined by quartz crystal microbalance analysis, BioResources, 4(3), 1098-1108, 2009.08.
71. Ishihara H., Koga H., Kitaoka T., Wariishi H., Tomoda A., Suzuki R., Paper-structured catalyst for catalytic NOx removal from combustion exhaust gas, Chemical Engineering Science, 65, 1, 208-213, 65(1), 208-213, 2010.01.
72. Koga H., Kitaoka T., Wariishi H., On-paper synthesis of Au nanocatalysts from Au(III) complex ions for low-temperature CO oxidation, Journal of Materials Chemistry, 19(29), 5244-5249, 2009.08.
73. Koga H., Umemura Y., Ishihara H., Kitaoka T., Tomoda A., Suzuki R., Wariishi H., Paper-structured fiber composites impregnated with platinum nanoparticles synthesized on a carbon fiber matrix for catalytic reduction of nitrogen oxides, Applied Catalysis B: Environmental, 90(3-4), 699-704, 2009.08.
74. Yokota S., Ohta T., Kitaoka T., Ona T., Wariishi H., Preparation of cellobiose-conjugated polyacrylamide and its interaction with a cellulose matrix for papermaking application, Sen’i Gakkaishi, 65(8), 212-217, 2009.08.
75. Esaki K., Yokota S., Egusa S., Okutani Y., Ogawa Y., Kitaoka T., Goto M., Wariishi H., Preparation of lactose-modified cellulose films by a nonaqueous enzymatic reaction and their biofunctional characteristics as a scaffold for cell culture, Biomacromolecules, 10(5), 1265-1269, 2009.05.
76. Yokota S., Ohta T., Kitaoka T., Ona T., Wariishi H., Preparation and characteristics of anionic polyacrylamides containing direct dye with a high affinity for cellulose, BioResources, 4(2), 497-508, 2009.05.
77. Koga H., Kitaoka T., Wariishi H., In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications, Journal of Materials Chemistry, 19(15), 2135-2140, 2009.04.
78. Egusa S., Yokota S., Tanaka K., Esaki K., Okutani Y., Ogawa Y., Kitaoka T., Goto M., Wariishi H., Surface modification of a solid-state cellulose matrix with lactose by a surfactant-enveloped enzyme in a nonaqueous medium, Journal of Materials Chemistry, 19(13), 1836-1842, 2009.04.
79. Yokota S., Matsuo K., Kitaoka T., Wariishi H., Retention and paper-strength characteristics of anionic polyacrylamides conjugated with carbohydrate-binding modules, BioResources, 4(1), 234-244, 2009.02.
80. Yokota S., Kitaoka T., Opietnik M., Rosenau T., Wariishi H., Synthesis of gold nanoparticles for in situ conjugation with structural carbohydrates, Angewandte Chemie International Edition, 47(51), 9866-9869, 2008.12.
81. Koga H., Kitaoka T., Wariishi H., In situ synthesis of Cu nanocatalysts on ZnO whiskers embedded in a microstructured paper composite for autothermal hydrogen production, Chemical Communications, -(43), 5616-5618, 2008.11.
82. Yokota S., Kitaoka T., Wariishi H., Biofunctionality of self-assembled nanolayers composed of cellulosic polymers, Carbohydrate Polymers, 74(3), 666-672, 2008.11.
83. Yokota S., Matsuo K., Kitaoka T., Wariishi H., Specific interaction acting at a cellulose-binding domain/cellulose interface for papermaking application, BioResources, 3(4), 1030-1041, 2008.11.
84. Koga H., Fukahori S., Kitaoka T., Nakamura M., Wariishi H., Paper-structured catalyst with porous fiber-network microstructure for autothermal hydrogen production, Chemical Engineering Journal, 139(2), 408-415, 2008.06.
85. Fukahori S., Koga H., Kitaoka T., Nakamura M., Wariishi H., Steam reforming behavior of methanol using paper-structured catalysts: Experimental and computational fluid dynamic analysis, International Journal of Hydrogen Energy, 33(6), 1661-1670, 2008.03.
86. Yokota S., Ueno T., Kitaoka T., Wariishi H., Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface, Carbohydrate Research, 342(17), 2593-2598, 2007.12.
87. Yokota S., Ueno T., Kitaoka T., Tatsumi D., Wariishi H., Morphological imaging of single methylcellulose chains and their thermoresponsive assembly on a highly oriented pyrolytic graphite surface, Biomacromolecules, 8(12), 3848-3852, 2007.12.
88. Yokota S., Kitaoka T., Sugiyama J., Wariishi H., Cellulose I nanolayers designed by self-assembly of its thiosemicarbazone on a gold substrate, Advanced Materials, 19(20), 3368-3370, 2007.10.
89. Fukahori S., Ichiura H., Kitaoka T., Tanaka H., Wariishi H., Preparation of porous sheet composite impregnated with TiO2 photocatalyst by a papermaking technique, Journal of Materials Science, 42(15), 6087-6092, 2007.08.
90. Ueno T., Yokota S., Kitaoka T., Wariishi H., Conformational changes in single carboxymethylcellulose chains on a highly oriented pyrolytic graphite surface under different salt conditions, Carbohydrate Research, 342(7), 954-960, 2007.05.
91. Yokota S., Matsuyama K., Kitaoka T., Wariishi H., Thermally responsive wettability of self-assembled methylcellulose nanolayers, Applied Surface Science, 253(11), 5149-5154, 2007.03.
92. Egusa S., Kitaoka T., Goto M., Wariishi H., Synthesis of cellulose in vitro by using a cellulase/surfactant complex in a nonaqueous medium, Angewandte Chemie International Edition, 46(12), 2063-2065, 2007.03.
93. Fukahori S., Iguchi Y., Ichiura H., Kitaoka T., Tanaka H., Wariishi H., Effect of void structure of photocatalyst paper on VOC decomposition, Chemosphere, 66(11), 2136-2141, 2007.02.
94. Yokota S., Kitaoka T., Wariishi H., Surface morphology of cellulose films prepared by spin coating on silicon oxide substrates pretreated with cationic polyelectrolyte, Applied Surface Science, 253(9), 4208-4214, 2007.02.
95. Mayumi A., Kitaoka T., Wariishi H., Partial substitution of cellulose by ring-opening esterification of cyclic esters in a homogeneous system, Journal of Applied Polymer Science, 102(5), 4358-4364, 2006.12.
96. Koga H., Fukahori S., Kitaoka T., Tomoda A., Suzuki R., Wariishi H., Autothermal reforming of methanol using paper-like Cu/ZnO catalyst composites prepared by a papermaking technique, Applied Catalysis A: General, 309(2), 263-269, 2006.08.
97. Fukahori S., Koga H., Kitaoka T., Tomoda A., Suzuki R., Wariishi H., Hydrogen production from methanol using a SiC fiber-containing paper composite impregnated with Cu/ZnO catalyst, Applied Catalysis A: General, 310, 138-144, 2006.08.
98. Matsuyama K., Yokota S., Kitaoka T., Wariishi H., Surface morphology and wetting characteristics of sized cellulose imitations, Sen’i Gakkaishi, 62(4), 89-94, 2006.04.
99. Fukahori S., Kitaoka T., Tomoda A., Suzuki R., Wariishi H., Methanol steam reforming over paper-like composites of Cu/ZnO catalyst and ceramic fiber, Applied Catalysis A: General, 300(2), 155-161, 2006.01.
Presentations
1. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Construction of polysaccharide nanofiber-based microparticles via Pickering emulsion for adjuvant applications, 第74回日本木材学会大会(京都), 2024.03.
2. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Inflammatory Response and Antigen Loading Capacity of Microsized Pickering Emulsion Stabilized with Surface-modified Cellulose Nanofibers, 第45回日本バイオマテリアル学会大会, 2023.11.
3. Risa Hatase, Mayumi Hatakeyama, Takuya Kitaoka, Activation of Immune Responses by Direct Interaction of Cells with Structural Polysaccharide Nanofiber Scaffolds, 2023 Kyushu-Seibu/Pusan-Gyeongnam (KSPG2023) Joint Symposium on High Polymers (20th) and Fibers (18th), 2023.10.
4. Ritomo Kai, Mayumi Hatakeyama, Takuya Kitaoka, Xeno-free Culture of Primary Human Mesenchymal Stem Cells on Surface-Modified Polysaccharide Nanofiber Scaffolds, 2023 Kyushu-Seibu/Pusan-Gyeongnam (KSPG2023) Joint Symposium on High Polymers (20th) and Fibers (18th), 2023.10.
5. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Induction of Inflammation in Liver Cells by Microsized Pickering Emulsion Stabilized with Polysaccharide Nanofibers, The 5th International Cellulose Conference 2022+1, 2023.09.
6. Ritomo Kai, Mayumi Hatakeyama, Takuya Kitaoka, Polysaccharide Nanofiber Scaffolds for Human Mesenchymal Stem Cells Under Xeno-free Culture Conditions, The 5th International Cellulose Conference 2022+1, 2023.09.
7. Risa Hatase, Mayumi Hatakeyama, Takuya Kitaoka, Structural Polysaccharide Nanofibers Activate Cellular TLR2 Signaling by Direct Cell-Scaffold Contact, The 5th International Cellulose Conference 2022+1, 2023.09.
8. Fibers in Trees and Fibers in Human.
9. Mizuki Nishimura, Takuya Kitaoka, Hirofumi Ichinose, Application of fungal cytochrome P450 monooxygenases for production of α-santalene derivatives, 2023 International Joint Meeting of the 23rd International Conference on Cytochrome P450 and the 38th Annual Meeting of the Japanese Society for the Study of Xenobiotics (2023 ICCP450/JSSX), 2023.09.
10. Chen Chen, Takuya Kitaoka, Hirofumi Ichinose, Identification of cytochrome P450 monooxygenases involved in sesquiterpene alcohol metabolism by basidiomycete, 2023 International Joint Meeting of the 23rd International Conference on Cytochrome P450 and the 38th Annual Meeting of the Japanese Society for the Study of Xenobiotics (2023 ICCP450/JSSX), 2023.09.
11. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Inflammatory response of polysaccharide nanofiber-stabilized Pickering emulsion for liver context, 第73回日本木材学会大会, 2023.03.
12. Development of catalyst and biomedical materials from cellulose nanofibers based on their interfacial nanoarchitectures.
13. Osteoblast growth and differentiation on surface-phosphorylated cellulose nanofiber scaffolds.
14. Growth and differentiation behavior of neural model cells on biotic acidic groups introduced cellulose nanofiber scaffolds.
15. Biomimetic microenvironments for hematopoietic stem cells by controlling elastic behavior of nanocellulose gel scaffolds.
16. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Inflammatory Response of Nanofiber-stabilized Pickering Emulsion and its Application as 3D Porous Scaffolds for Liver Context, 第44回日本バイオマテリアル学会大会, 2022.11.
17. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Construction of 3D porous cell culture scaffolds based on polysaccharide nanofibers via Pickering emulsion templating, セルロース学会第29回年次大会(金沢), 2022.07.
18. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Bioadaptive porous 3D-foam scaffolds comprising cellulose and chitosan nanofibers constructed by Pickering emulsion templating, 第89回紙パルプ研究発表会, 2022.06.
19. Bioadaptive porous 3D-foam scaffolds composed of cellulose and chitosan nanofibers designed by Pickering emulsion templating.
20. Surface-modified polysaccharide nanofiber substrates for mesenchymal stem cell culture
Ruixian Yan, Mayumi Hatakeyama, Takuya Kitaoka.
21. Encouragement for Ecosystems Materialogy.
22. Fundamental study on versatile functions of cytochrome P450 of white-rot fungus Trametes versicolor.
23. Creating New Values of Cellulose Nanofibers.
24. Regulation of human mesenchymal stem cells by forest and marine structural polysaccharide nanofibers.
25. Qi Li, Mayumi Hatakeyama, Takuya Kitaoka, Fabrication and biofunctional design of porous cell culture scaffolds by polysaccharide nanofibers-stabilized Pickering emulsion templating, セルロース学会第28回年次大会, 2021.09.
26. TEMPO-Oxidized Cellulose Nanofiber-Based Hydrogels to Reconstruct Niche Microenvironments for Bone Marrow-Derived Mesenchymal Stem Cells.
27. Sulfated cellulose nanofiber scaffolds to regulate proliferation and differentiation of nerve model cells.
28. Only-one strategy of CNF.
29. Human MSC culture on surface-carboxylated nanocellulose scaffolds.
30. Porous cell culture scaffolds composed of cellulose and chitosan nanofibers designed by Pickering emulsion templating.
31. Fibroblast cell culture on the hybrid scaffolds of nanocellulose and nanochitosan.
32. Bone MSC culture on TEMPO-oxidized nanocellulose gels.
33. Proliferation and Differentiation Behavior of Neuronal Cell Line on Sulfated Cellulose Nanofiber Scaffolds.
34. 3D-Printable Bioink Prepared with Cellulose and Chitosan Bio-Nanofibers.
35. Development of Spherical Microparticles Enveloped with Nanocellulose.
36. Fibroblast adhesion and growth on forest and marine structural polysaccharides nanofibers.
37. Cytochrome P450s library of Trametes basidiomycete.
38. Wood-like microparticles prepared from TEMPO-oxidized nanocellulose and artificial lignin.
39. Functionality diversity of sesquiterpene synthases of basidiomycetes.
40. Functional pioneering of fungal cytochrome P450s to obtain efficient diterpenoids.
41. Fungal cytochrome P450s to enable synthesis of diverse sesquiterpenoids.
42. Preparation of nanocellulose-enveloped microspheres containing synthetic lignin cores.
43. Pioneering of new functions of natural structural polysaccharides in nanobio applications.
44. Future prospects of nano/bio-materials prepared from natural structural polysaccharides.
45. Takuya Kitaoka, Cellulose and Chitosan Nanofibers for Green Organocatalysis , EPNOE (European Polysaccharide Network of Excellence) Junior Online Seminar 2020, Polysaccharide Research – Fundamentals and Beyond, 2020.09.
46. Fibroblast culture on surface-carboxylated cellulose nanofiber films.
47. Surface modification of cellulose nanofibers on Pickering emulsion particles.
48. Growth behavior of fibroblast cells on the composite films of TEMPO-oxidized cellulose nanofibers and chitosan nanofibers.
49. Biomimetic tissue culture scaffolds composed of wood nanocellulose.
50. Cell attachement and growth on the composite films of forest and marine polysaccharide nanofibers.
51. Surface modification of nanocellulose at the interface of Pickering emulsion particles.
52. Fibroblast cell adhesion ang growth on suface-carboxylated nanocellulose membranes.
53. Catalytic transformation by structural polysaccharide nanofibers as a base catalyst.
54. Surface modification of nanocellulose inspired by wood lignification in Pickering emulsion system.
55. Versatile and complex molecules produced by fungal sesquiterpene synthase.
56. Pioneering of fungal cytochromes P450 to produce novel diterpenoids.
57. Synthesis of useful triterpenoids by non-natural biosynthesis machinery.
58. Cloning of cytochromes P450 in white-rot fungus Trametes versicolor.
59. Fibroblast adhesion and growth on TEMPO-oxidized nanocellulose and chitosan nanofibers.
60. New horizon of organocatalysis structurally regulated by polysaccharides.
61. Mayumi Hatakeyama, Hirofumi Ichinose, Takuya Kitaoka, Extracellular matrix-mimetic scaffolds based on surface-carboxylated nanocellulose for fibroblast cell culture, 6th International Polysaccharide Conference of EPNOE (European Polysaccharide Network of Excellence), 2019.10.
62. Yusaku Hirayama, Kyohei Kanomata, Takuya Kitaoka, Nanochitosan-catalyzed chemoselective Knoevenagel condensation under green conditions , 6th International Polysaccharide Conference of EPNOE (European Polysaccharide Network of Excellence), 2019.10.
63. Takuya Kitaoka, Biomaterials Innovation for Forest and Marine Polysaccharides, Academic Seminar at King Mongkut's University of Technology North Bangkok, 2019.09.
64. Takuya Kitaoka, Magical nanocellulose: TEMPO-oxidized cellulose nanofibers for catalytic and advanced applications, Cellulose-based Biomaterials Workshop at King Mongkut's University of Technology North Bangkok, 2019.09.
65. Cell attachment behavior of animal cells on TEMPO-oxidized cellulose nanofibers/chitosan nanofibers hybrid scaffolds.
66. Exploring of fungal cytochromes p450 for bioconversion of abietane-type diterpenoids.
67. Takuya Kitaoka, Green Catalysis by Nanocellulose, International Conference on Adopting the Renewable Bioenergy and Waste Utilization to Support Circular Economy & Sustainable Environment in the 5th International Conference of Indonesia Forestry Researchers V (INAFOR) EXPO 2019, 2019.08.
68. Novitri Hastuti, Rizki Fitria Darmayanti, Safrina Dyah Hardiningtyas, Kyohei Kanomata, Kenji Sonomoto, Masahiro Goto, Takuya Kitaoka,, Nanocellulose from Oil Palm Empty Fruit Bunches Enhanced Extractive Fermentation in Microbial Bio-butanol Production, International Conference on Adopting the Renewable Bioenergy and Waste Utilization to Support Circular Economy & Sustainable Environment in the 5th International Conference of Indonesia Forestry Researchers V (INAFOR) EXPO 2019, 2019.08.
69. Cell culture control by surface-carboxylated nanocellulose films.
70. Oxidative polymerization of conyferyl alcohol in nanocellulose-stabilized Pickering emulsion.
71. Selective molecular transformation by chitosan nanofiber catalyst.
72. Interfacial functionalization of and cell adhesion on thin glycolayers.
73. Knoevenagel condensation by chitosan nanofibers.
74. Cell culture control by ECM-mimetic nanocellulose thin layers.
75. Highly-selective Knoevenagel condensation by chitosan nanofibers.
76. High-performance acid-base solid catalysts prepared from wood nanocellulose.
77. Stereoselective organocatalysis on TEMPO-oxidized cellulose nanofibers.
78. High-selective organocatalysis by chitosan nanofibers as a solid base.
79. Biosynthesis of triterpenoids by fungal cytochromes P450
.
80. Biosynthesis mechanism of sesquiterpenoids by brown-rot basidiomycete Postia placenta.
81. Polymerization of coniferyl alcohol on nanocellulose-stabilized Pickering emulsion.
82. Stereoselective Organocatalysis by Structural Polysaccharides.
83. Kyohei Kanomata, Yusaku Hirayama, Yuya Tamura, Takuya Kitaoka, Surface-carboxylated nanocellulose as a crystalline polysaccharide catalyst for acetal hydrolysis and acid–base tandem reaction, 257th American Chemical Society National Meeting & Exposition 2019, 2019.03.
84. Takuya Kitaoka, Concept-driven trial and error to find out new functions of nanocellulose, 257th American Chemical Society National Meeting & Exposition 2019, 2019.03.
85. Tradition and Innovation of Paper.
86. Interfacial organocatalysis regulated by structural polysaccharides.
87. Heterogeneous catalysis on structural polysaccharides.
88. Habaki X., Kanomata K., Kitaoka T., Cooperative catalysis with nanocellulose and proline in stereoselective aldol reactions, 2018 Joint convention, the 61st Society of Wood Science and Technology (SWST) International Convention in cooperation with Japan Wood Research Society (JWRS), 2018.11.
89. Novitri Hastuti, Kyohei Kanomata, Takuya Kitaoka, Characteristics of TEMPO-Oxidized Cellulose Nanofibers from Oil Palm Empty Fruit Bunches Produced by Different Amounts of Oxidant, International Conference on Forest Products 2018, Efficiency and Quality Improvement of Forest Products Utiliztion Towards Industry 4.0, 2018.11.
90. Naliharifetra Jessica Ranaivoarimanana, Kyohei Kanomata, Takuya Kitaoka, Organocatalytic Michael additions under mild conditions with efficient proline-mediated catalysis owing to cellulose nanofibers, Joint Seminar at Tainan: the Development of Chemical Engineering, NCKU and the Seibu-branch, the Cellulose Society of Japan, 2018.11.
91. Yusaku Hirayama, Kyohei Kanomata, Takuya Kitaoka, Chitosan nanofiber-catalyzed chemoselective Knoevenagel condensation, Joint Seminar at Tainan: the Development of Chemical Engineering, NCKU and the Seibu-branch, the Cellulose Society of Japan, 2018.11.
92. Chaniga Chuensangjun, Takuya Kitaoka, Chisti Yusuf, Sarote Sirisansaneeyakul, Optimal ring-opening polymerization for surface-modified cellulose nanofibers-graft-poly(lactic acid)s preparation, 18th European Congress on Biotechnology (ECB2018) , 2018.07.
93. Yusuke Shiratori, Mio Sakamoto, Takeo Yamakawa, Takuya Kitaoka, Hiroshi Orishima, Hajime Matsubara, Yoshinobu Watanabe, Shuji Nakatsuka, Tin Chanh Duc Doan, Chien Mau Dang, Biogas power generation with SOFC to demonstrate energy circulation suitable for Mekong Delta, Vietnam, 13th EUROPEAN SOFC & SOE FORUM, 2018.07.
94. Molecular transformation catalyzed by surface-carboxylated nanocellulose.
95. Stereoselective organocatalysis on TEMPO-oxidized nanocellulose.
96. Hydrolysis of acetals by protonated TEMPO-oxidized cellulose nanofibers.
97. Crystalline polysaccharide catalyst: Surface-carboxylated nanocellulose as a solid acid.
98. Fibroblast culture on ECM-mimetic surface-carboxylated nanocellulose matrix.
99. Nnocellulose-inspired asymmetric organocatalysis.
100. Nanocellulose as an enhancer of proline-mediated organocatalytic Michael addition.
101. Preparation and characterization of cellulose nanocrystals from oil palm empty fruit bunch pulp.
102. Naliharifetra Jessica Ranaivoarimanana, Kyohei Kanomata, Takuya Kitaoka, Nanocellulose accelerates asymmetric Michael additions in proline-mediated organocatalysis, 4th International Cellulose Conference, 2017.10.
103. Yuya Tamura, Kyohei Kanomata, Takuya Kitaoka, Interfacial hydrolysis of acetals by carboxylated cellulose nanofibers, 4th International Cellulose Conference, 2017.10.
104. Strategic design of structural carbohydrate-based cel culture scaffolds.
105. Strategic design of carbohydrate-based cel culture scaffolds.
106. Nanocellulose-assisted organocatalytic Michael addition.
107. Acid hydrolysis of acetals on TEMPO-oxidized cellulose nanofibers.
108. Enzymatic polymerization of lignin precursor in CNF-assisted pickering emulsions.
109. Acid Hydrolysis of Acetals by Surface-Carboxylated Cellulose Nanofibers.
110. Enzymatic synthesis of lignin on cellulose nanofibers.
111. Cellulose nanofiber as an enhancer of organocatalytic reactions.
112. Acid Hydrolysis of Acetals by High-density Carboxylates on Cellulose Nanofibers.
113. Paper-structured catalyst for SOFC to realize direct conversion of biogas into electricity.
114. Materials Innovation Driven by Nanocellulose Architectures.
115. Catalytic innovation driven by nanocellulose architectures.
116. Diversity of sesquiterpene synthases of Phanerochaete chrysosporium.
117. Metabolic variation of yeasts by heterologous expression of fungal cytochrome P450s.
118. Hydrolysis of acetals at the interfaces of wood nanocellulose.
119. Fischer-Tropsch synthesis inside paper structure.
120. Biogas production from Mekong Delta biomass and its application to fuel cell system.
121. Takuya Kitaoka, Biomaterials and Catalysts, Academic Seminar at Kasetsart University, 2016.12.
122. Harmonized catalysis in combination of organocatalysts and cellulose nanofibers.
123. Chaniga Chuensangjun, Takuya Kitaoka, Preparation of cellulose nanofibers from wood/non-wood resources by TEMPO-mediated oxidation, 28th Annual Meeting of the Thai Society for Biotechnology and International Conference (TSB2016); Natural Resources and Bio-based Innovative Products, 2016.11.
124. Takuya Kitaoka, Nanocellulose architecture and heterogeneous catalysis, 28th Annual Meeting of the Thai Society for Biotechnology and International Conference (TSB2016); Natural Resources and Bio-based Innovative Products, 2016.11.
125. Shota Ukeba, Takuya Kitaoka, Hirofumi Ichinose, Diversity of sesquiterpene synthase from the white-rot basidiomycete Phanerochaete chrysosporium, The 22nd Symposium of Young Asian Biological Engineers' Community, 2016.10.
126. Ayami Saimura, Takuya Kitaoka, Paper-structured catalysts with porous fiber networks for Fischer-Tropsch synthesis, 2016 Pan Pacific Conference of the Technical Associations of the Pulp and Paper Industry, 2016.10.
127. Takuya Kitaoka, Nanocellulose composites for heterogeneous catalysis, 2016 Pan Pacific Conference of the Technical Associations of the Pulp and Paper Industry, 2016.10.
128. Enzymatic reaction via near-by layout of cytochrome P450 BM3 and coenzyme.
129. Identification and functional characterization of sesquiterpene synthases of Phanerochaete chrysosporium.
130. Identity of Nanocellulose.
131. Neural stem cell culture on ECM-mimetic scaffolds composed of surface-carboxylated polysaccharide nanofibers.
132. Mayumi Hatakeyama, Takuya Kitaoka, Hirofumi Ichinose, Heterologous expression and functionalization of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) in Escherichia coli, 13th International Symposium on Cytochrome P450 Biodiversity and Biotechnology, 2016.07.
133. Advanced Nanocatalysts Pioneered by Nanocellulose.
134. Asymmetric Organocatalysis via Proline Derivatives at Nanocellulose Interface.
135. Baeyer-Villiger oxidation over paper-structured catalysts.
136. Fischer-Tropsch synthesis by paper-structured catalysts.
137. Asymmetric Organocatalysis via Proline Derivatives at Cellulose Nanofiber Interface.
138. Asymmetric Organocatalysis via Proline Derivatives at Nanocellulose Interface.
139. Asymmetric Organocatalysis via Proline Derivatives at Cellulose Nanofiber Interface.
140. Baeyer-Villiger oxidation over paper-structured catalysts.
141. Heterologous expression of fungal versatile cytochromes P450 in Escherichia coli.
142. Future Nanomaterials Pioneered by Nanocellulose.
143. Heterologous expression of heme proteins by E. coli and ALA synthase.
144. Asymmetric Organocatalysis via Proline Derivatives on Nanocellulose.
145. Identification and characterization of sesquiterpene synthases of Phanerochaete chrysosporium.
146. Boost-up of enzymatic reactions by near-by immobilization method using cellulosomal complex.
147. Fischer-Tropsch synthesis by paper-structured catalysts.
148. Cell adhesion behavior on biomimetic extracellular matrix of surface-carboxylated nanocellulose.
149. Nanopore drilling of nanocellulose for ultraselective gas separation.
150. Nanopore drilling of nanocellulose film for ultraselective gas separation.
151. Takuya Kitaoka, Combination of nanocellulose and nanomaterials for functional applications, Anselme Payen Award Symposium, 251st American Chemical Society National Meeting & Exposition, 2016.03.
152. Emerging Functions of Nanocellulose Hybrid Materials.
153. Emerging Functions of Nanocellulose Materials.
154. Future Nanomaterials Pioneered by Nanoarchitectonics of Polysaccharides.
155. Makoto Matsumoto, Takuya Kitaoka, Nanocellulose paper with metal-organic frameworks for gas separation, 9th International Paper and Coating Chemistry Symposium 2015, 2015.11.
156. Takuya Kitaoka, Nanocellulose architectures and hybrid nanomaterials, 9th International Paper and Coating Chemistry Symposium 2015, 2015.10.
157. Ayami Saimura, Yusuke Shiratori, Takuya Kitaoka, Sequential desulfurization and methane steam reforming of simulated biogas by dual-layered paper-structured catalysts, 9th International Paper and Coating Chemistry Symposium 2015, 2015.10.
158. Yuki Ishihara, Taichi Homma, Takuya Kitaoka, Microflow catalytic reaction for organic synthesis over multilayer-stacked paper-structured catalysts, 9th International Paper and Coating Chemistry Symposium 2015, 2015.10.
159. Sequential enzymatic reaction on cellulosomal biomimetic complex
.
160. Influence of ALA synthase on heterologous expression of heme proteins by E. coli
.
161. Nanopore drilling of nanocellulose film for ultraselective gas separation.
162. Asymmetric Organocatalysis via Proline Derivatives on Cellulose Nanofibers.
163. Cell Adhesion Behavior on Biomimetic ECMs Composed of Surface-carboxylated Cellulose Nanofibers.
164. Xin Jin, Takuya Kitaoka, Cooperative asymmetric organocatalysis with proline and nanocellulose, International Symposium on Wood, Fibre and Pulping Chemistry 2015 (18th ISWFPC2015), 2015.09.
165. Makoto Matsumoto, Takuya Kitaoka, Molecular-sieving gas separation with nanoporous metal-organic frameworks synthesized on highly-dense nanocellulose matrix, International Symposium on Wood, Fibre and Pulping Chemistry 2015 (18th ISWFPC2015), 2015.09.
166. Cooperative Asymmetric Organocatalysis with TEMPO-oxidized Nanocellulose and Proline.
167. Synthesis of Molecular-Sieving Gas Separation Films by Nanodrilling of Highly-Dense Nanocellulose Layers.
168. Cooperative Enzymatic Reaction by Cellulosome-mimetic Enzyme Assembly Immobilized on Cellulose Matrix
.
169. Nanocellulose Innovation.
170. Asymmetric organocatalysis with proline and cellulose nanofibers
.
171. On-paper synthesis of metal oxide nanoparticles and desulfurization−methane steam reforming for hydrogen production in fuel cell applications.
172. Culture behavior of muscle satellite cells on sulfated glyco-biointerfaces
.
173. Cell culture behavior of cellulose nanofiber matrix
.
174. Heterologous expression of fungal versatile cytochromes P450 in Escherichia coli.
175. Cellulose Innovation.
176. Mayumi Hatakeyama, Yukiyo Yamauchi, Takuya Kitaoka, Hirofumi Ichinose, Chimerization for heterologous expression of fungal cytochromes P450 in Escherichia coli, 19th International Conference on Cytochrome P450, 2015.06.
177. Two-step Reaction of Desulfurization−Methane Steam Reforming by Dual-Layered Paper-Structured Catalysts
.
178. Microflow Catalytic Reaction over Piled-Up Paper-Structured Catalysts
.
179. Molecular-Sieving Gas Separation Paper Designed by Nanoboring Highly-Dense Nanocellulose Layers with Porous Metal-Organic Frameworks
.
180. Cooperative Asymmetric Organocatalysis with Nanocellulose and Proline
.
181. Activation of heme synthsis in E. coli .
182. Development of paper-structured microreactor.
183. Sequential desulfurization and methane reforming by paper-structured catalysts.
184. Cell culture behavior on condroitin sulfate-SAMs.
185. Mayumi Hatakeyama, Yukiyo Yamauchi, Takuya Kitaoka, Hirofumi Ichinose, Heterologous expression of cytochrome P450 from wood-rotting basidiomycetes in Escherichia coli, International Symposium on Wood Science and Technology 2015 (IAWPS2015), 2015.03.
186. Takashi Nogita, Hirofumi Ichinose, Takuya Kitaoka, Cooperative enzymatic reaction by cellulosome-mimetic complex on cellulose paper, International Symposium on Wood Science and Technology 2015 (IAWPS2015), 2015.03.
187. Xin Jin, Takuya Kitaoka, Proline-mediated organocatalysis on wood cellulose nanofibers, International Symposium on Wood Science and Technology 2015 (IAWPS2015), 2015.03.
188. Makoto Matsumoto, Takuya Kitaoka, Wood cellulose nanofiber films containing metal−organic frameworks for selective gas separation, International Symposium on Wood Science and Technology 2015 (IAWPS2015), 2015.03.
189. Materials Development Inspired by Nanocellulose itself.
190. Direct stimulation of intracellular signaling system on glyco-biointerface composed of oligosaccharides.
191. Takuya Kitaoka, Concept-driven materials design of glyco-nanocomposites, Japanese-European Workshop Cellulose and Functional Polysaccharides, 2014.10.
192. Pornthia Poosala, Takuya Kitaoka, Biomimetic alignment and responses of myoblast cells on glyco-clustered biointerfaces with micropatterned geometries, International Symposiumon Fiber Science and Technology 2014 (ISF2014), 2014.10.
193. Fumi Uemura, Takuya Kitaoka, Cellular immune responses via TLR-mediated signaling on glyco-decorated biointerfaces, International Symposiumon Fiber Science and Technology 2014 (ISF2014) , 2014.09.
194. Makoto Matsumoto, Takuya Kitaoka, Selective gas separation by metal-organic frameworks synthesized on cellulose nanofiber matrix, International Symposiumon Fiber Science and Technology 2014 (ISF2014) , 2014.09.
195. Takashi Nogita, Hirofumi Ichinose, Takuya Kitaoka, Sequential enzymatic reaction by enzyme complex immobilized on cellulose matrix via cohesin-dockerin interaction, International Symposiumon Fiber Science and Technology 2014 (ISF2014) , 2014.09.
196. Mayumi Hatakeyama, Yukiyo Yamauchi, Takuya Kitaoka, Hirofumi Ichinose, Chimerization for heterologous expression of fungal cytochromes P450 in Escherichia coli, The 12th International Symposium on Cytochrome P450 Biodiversity and Biotechnology, 2014.09.
197. New Frontiers of Natural Polysaccharide Materials.
198. Harmonized Organocatalysis via Cellulose Nanofibers and Proline.
199. Gas Separation Using MOF-conjugated Softwood Cellulose Films.
200. Immobilized Enzymes on Cellulose Matrix Inspired by Enzyme Complex of Cellulose-degrading Microorganisms.
201. Functional Enhancement of Cytochrome P450s from White-rot Fungi Using E. coli.
202. Mayumi Hatakeyama, Yukiyo Yamauchi, Takuya Kitaoka, Hirofumi Ichinose, Overexpression of fungal cytochrome P450 in Escherichia coli, The 10th International Mycological Congress, 2014.08.
203. Direct Cell Stimulation of Innate Immune System via toll-like receptor on glyco-biointerface composed of oligosaccharides.
204. Synthesis of Metal-Organic Frameworks in Cellulose Matrix and Gas Separation by Paper Composites

.
205. Sequential Enzymatic Reaction by Cellulosome-mimetic Enzyme Complex Immobilized on Cellulose Paper
.
206. Pornthia Poosala, 北岡 卓也, Bioactive carbohydrate-decorated scaffolds to promote cellular function of myoblast cells
, セルロース学会第21回年次大会, 2014.07.
207. Harmonized Enzymatic Reaction by Enzyme Complex via Cohesin-dockerin Interaction

.
208. Gas Separation by Polymer Hybrids of Cellulose Nanofibers and Metal-Organic Frameworks

.
209. Direct stimulation of intracellular signaling via hybrid glyco-biointerfaces.
210. Pornthia Poosala, 北岡 卓也, Micropatterned chitooligomer clusters enhance cellular biofunction of myoblast cells
, 第51回化学関連支部合同九州大会, 2014.06.
211. Takuya Kitaoka, Synthesis and heterogeneous catalysis of metal nanocatalysts on TEMPO-oxidized cellulose matrix
, 2014 TAPPI International Conference on Nanotechnology of Renewable Materials, 2014.06.
212. Pornthia Poosala, Takuya Kitaoka, Biofunctional micropatterning of glyco-decorated scaffolds affects myoblast cell alignment, 2014 TAPPI International Conference on Nanotechnology of Renewable Materials, 2014.06.
213. Fumi Uemura, Takuya Kitaoka, Glyco-decorated biointerface directly stimulates the intracellular signaling of cultured cells, 2014 TAPPI International Conference on Nanotechnology of Renewable Materials, 2014.06.
214. Hybrid Glyco-nanolayers to Directly Stimulate Cellular Biofunction.
215. Pornthia Poosala, 北岡 卓也, Glyco-clustered Biointerfaces with Micropatterned Geometries Guide Myoblast Differentiation, 繊維学会年次大会2014, 2014.06.
216. Catalysis and Reaction Engineering Inspired by Paper-specific Microstructures

.
217. Sequential Enzymatic Reaction by Enzyme Complex via Cohesin-dockerin Interaction

.
218. Gas Separation by Cellulose Nanofiber Film Containing Metal-Organic Frameworks

.
219. Development of selective gas-separation paper containing metal-organic frameworks synthesized in cellulose nanofiber thin film
.
220. Harmonized enzymatic reaction by cellulosomal enzyme complex immobilized on cellulose paper
.
221. Direct stimulation by hybrid glyco-nanolayers to cellular immune response.
222. Organocatalysis on TEMPO-oxidized cellulose nanofibers with proline.
223. Harmonized biocatalysis via two enzymes immobilized on cellulose nanofibers.
224. Gas separation via MOF-cellulose hybrid membranes.
225. Enzymatic reaction by enzyme complex immobilized on cellulose via cohesin-dockerin interaction.
226. Paper-structured Catalysts.
227. Taiki Yamaura, Takuya Kitaoka, Immobilization and biocatalytic applications of enzymes on cellulose paper matrix, International Symposium on Agricultural, Food, Environmental and Life Sciences in Asia, 2013 (AFELiSA2013), 10th International Joint Symposium between Japan and Korea, 2013.11.
228. Pornthida Poosala, Takuya Kitaoka, Glyco-mediated alignment and regulation of myoblast cells cultured on GlcNAc-clustered micropatterns, 3rd EPNOE (European Polysaccharide Network of Excellence) International Polysaccharide Conference 2013, 2013.10.
229. Fumi Uemura, Takuya Kitaoka, TLR-mediated cell stimulation on glyco-decorated biointerfaces composed of chitohexaose and cellohexaose, 3rd EPNOE (European Polysaccharide Network of Excellence) International Polysaccharide Conference 2013, 2013.10.
230. Hybrid glyco-nanolayers to directly stimulate cellular immune response.
231. Harmonized biocatalysis via enzymes immobilized on wood paper matrix.
232. In situ synthesis of gold nanocatalysts on TEMPO-oxidized pulp paper for catalytic applications.
233. Takuya Kitaoka, Taichi Homma, Alcohol oxidation in multiphase gas-liquid-solid reactions over porous paper composites with ruthenium hydroxide catalysts, Sixteenth International Symposium on Relations between Homogeneous and Heterogeneous Catalysis (ISHHC-16), 2013.08.
234. Immunological activation via self-assembled glyco-nanolayers.
235. Study on glycosynthesis by nonaqueous biocatalysis and functional design of glycobiointerfaces.
236. Immunological activation via cell attachment on glyco-clustered biointerfaces.
237. Paper-Structured Catalysts.
238. Harmonized biocatalysis via enzymes immobilized on cellulose paper matrix.
239. Biomimetic alignment of myoblast cells on micropatterned glyco-biointerfaces.
240. Green synthesis of gold nanocatalysts on TEMPO-oxidized pulp paper for catalytic applications.
241. Harmonized enzymatic catalysis on crystalline cellulose matrix.
242. Hybrid glyco-nanolayers to directly stimulate cellular biofunction.
243. Materials Frontier of Structural Polysaccharides for Medical Applications.
244. Activation of cellular signaling system stimulated by glyco-interface.
245. Al-doped ZnO film as a transparent conductive substrate in indoline-sensitized nanoporous ZnO solar cell.
246. Materials Frontier of Structural Polysaccharides.
247. Biodiesel fuel conversion to renewable electricity with a new SOFC concept.
248. Biofunctional glyco-interfaces of chitooligomers aligned on gold micropatterns for cell culture applications
.
249. Environmental and energy applications of paper-structured catalysts.
250. Crystalline cellulose nanofibers as catalyst supports for heterogeneous catalysis.
251. Self-assembly immobilization and biointerface design of chitohexaose/cellohexaose hybrid nanolayers.
252. Micropatterned biointerfaces of chitooligomers for cell alignment and cellular biofunction.
253. Hybrid nano-materials for catalysis on crystalline cellulose nanofibers.
254. Highly-strong, transparent and conductive nanocomposite material based on carbon nanotubes and cellulose nanofibrils.
255. Nanostructural control of carbohydrate membranes for cellular bioresponse.
256. MOF synthesis on polysaccharide nanofibers and gas-separation function.
257. Preparation of hybrid gas-separation membranes of cellulose nanofibers and metal-organic frameworks.
258. Self-assembly and bio-interface function of chitohexaose/cellohexaose hybrid nanolayers.
259. Self-assembly immobilization and biofunction of chitohexaose on a gold micropattern.
260. Immobilization and harmonized catalysis of enzymes on a cellulose matrix.
261. Novel catalysis with Lewis acid and base pairs fixed on crystalline cellulose nanofibers
.
262. Biological response of human liver cancer cells using hybrid membranes composed of bioactive oligosaccharides
.
263. Preparation and gas-separation performance of polymer hybrids composed of cellulose and metal-organic framework.
264. Cellular response control via carbohydrate-integrated substrates.
265. Catalytic effects of frustrated Lewis pairs immobilized on crystalline cellulose nanofibers.
266. Catalytic behaviors of enzymes accumulated on crystalline cellulose nanofibers.
267. Synthesis and catalytic behavior of bimetallic nanoparticles supported on TEMPO-oxidized cellulose nanofibers.
268. Structural and functional design of hybrid materials composed of nanocatalysts and cellulose nanofibers.
269. Development of cellulose-based composite materials for catalytic and electronic applications.
270. Functional nanocomposites based on TEMPO-oxidized cellulose nanofibers.
271. Preparation and functional design of carbon nanotube/cellulose nanofibril hybrids.
272. Bio-interface function of carbohydrate-integrated surfaces.
273. Integrated immobilization and catalytic behavior of enzymes on a cellulose matrix.
274. Development of nickel-supported paper for efficient hydrogen production.
275. Functional design of paper-structured catalysts for efficient hydrogen production.
276. Direct synthesis of nickel nanoparticles on paper-like inorganic supports for catalytic hydrogen production.
277. High performance papers designed by silane-coupling technique.
278. Fusion materials of cellulose nanofibers and metal nanocatalysts.
279. Preparation of paper-like fiber/metal nanocatalysts for hydrocarbon reforming.
280. One-pot synthesis of monodispersed hybrid glyco-conjugated GNPs for lectin-binding biosensing.
281. Efficient synthesis of cellulose via acid-assisted enzymatic dehydration in organic media.
282. Synthesis and catalysis of hetero metal nanoparticles supported on cellulose nanofibers.
283. Functional composite materials based on TEMPO-oxidized cellulose nanofibers.
284. Synthesis and catalysis of hybrid metal nanoparticles supported on cellulose nanofibers.
285. Nanostructure and catalytic function of Cu(I) exposed on cellulose nanofibers.
286. Regulation of bio-interface functions by integrated structural carbohydrates.
287. One-pot synthesis of monodisperse carbohydrate-conjugated GNPs in a reverse micelle and their lectin-binding assay.
288. In situ modification of cellulose paper with functional groups using a silane coupling technique.
289. In situ synthesis of gold nanoparticles on zinc oxides preloaded into paper matrix for catalytic applications.
290. In situ synthesis of bimetallic hybrid nanocatalysts on a paper-structured matrix for catalytic reduction.
291. Development of hybrid metal nanocatalysts supported on cellulose nanofibers.
292. In situ modification of cellulose paper with amino groups using a silane coupling technique for catalytic applications.
293. Preparation and click catalysis of cellulose-Cu(I) hybrid aerogels.
294. Bio-interfaces composed of integrated carbohydrates via vectorial chain immobilization.
295. Cellulose-Cu(I) hybrid aerogel catalyst.
296. On-paper synthesis of gold nanoparticles for catalytic applications.
297. In-situ synthesis of hybrid metal nanoparticles on a whisker for catalytic applications.
298. Synthesis and catalysis of bimetal nanoparticles on cellulose nanofibers.
299. Nonaqueous biocatalysis by lipase fixed on cellulose paper.
300. Structural and biointerfacial design of hybrid carbohydrate-integrated nanolayers.
301. Development of novel paper-structured catalysts for hydrogen production.
302. On-paper synthesis of nickel nanocatalysts and hydrogen production for fuel cells.
303. On-paper amination of cellulose filter and base-catalyst properties.
304. Self-assembly immobilization and cell culture behavior of hyaluronan nanolayers.
305. Carbohydrate bio-interfaces designed by vectorial chain immobilization via self-assembly.
306. Synthesis and bio-functional design of carbohydrate-gold nanoconjugates.
307. Synthesis of cellulose-GNPs composites in a reversed micelle and their lectin-binding assay.
308. Bio-interface of hybrid SAM of cellohexaose and chitohexaose.
309. Synthesis and bio-applications of structural carbohydrate-decrated GNPs.
310. Synthesis and catalysis of cellulose nanofiber-GNPs composites.
311. Hybrid sugar-decorated gold nanoparticles for bio-applications.
312. On-paper synthesis and FC application of nickel nanoparticles.
313. Nano- & bio-materials research of cellulose.
314. Development and catalytic performance of cellulose/metal nanoparticles composites.
315. On-paper synthesis of nickel nanocatalysts and hydrogen production by propane steam reforming.
316. Vectorial immobilization and cell culture behavior of chitohexaose nanolayers.
317. On-paper synthesis and functional applications of metal nanoparticles.
318. Vectorial immobilization and cell culture behavior of hyaluronan nanolayers.
319. Synthesis and catalysis of gold nanoparticles on crystalline cellulose nanofibers.
320. Synthesis and bio-applications of carbohydrate–gold nanoparticle conjugates.
321. On-paper synthesis and applications of metal nanoparticles.
322. Sugar density control and bio-interface functions of chitin-oriented membranes.
323. One-step lactosylation of hydrophobic alcohols by nonaqueous biocatalysis.
324. On-paper synthesis of metal nanoparticles and catalyst design for efficient NOx reduction.
325. On-paper synthesis of nickel nanoparticles and hydrocarbon reforming.
326. Synthesis and catalytic function of gold nanoparticles on crystalline cellulose nanofibers.
327. Synthesis and nano-design of gold nanoparticles in water-in-oil emulsions.
328. Glyco-modification and cell culture behavior of silicon rubber using azo-type molecular anchor.
329. One-step lactosylation of hydrophobic alcohols via nonaqueous enzymatic reaction.
330. Self-assembling immobilization and bio-functional design of chitin nanolayers on a gold surface.
331. Development of sugar-based hydrogelators and their application to scaffold materials.
332. Synthesis of disaccharide lactone hydrogelators and their application as a cell scaffold.
333. Glycosynthesis via nonaqueous enzymatic reactions.
334. Surface nanostructure and biofunctional characteristics of self-assembled chitin nanolayers.
335. Surface morphology and biofunctional characteristics of hyaluronan nanolayers.
336. One-pot synthesis of biomimetic alkyllactosides via nonaqueous biocatalysis.
337. Synthesis of glyco-azobenzene derivatives and their application to surface glyco-modifications.
338. Synthesis of gold nanoparticles using NMMO redox system for in situ glyco-conjugation.
339. Computational fluid dynamic analysis of NOx reduction reaction in paper-structured catalysts.
340. On-paper synthesis of Pt nanoparticles and their NOx reduction behavior.
341. Biofunctional characteristics of hyaluronan-fixed membrane.
342. On-fiber synthesis of Au nanoparticles and their CO oxidation behavior.
343. Preparation and biofunctional characteristics of self-assembled chitin nanolayers.
344. One-pot synthesis of alkylglycosides via nonaqueous enzymatic reaction.
345. Novel sugar nano-cylinder designed via self-assembly of supramolecular hydrogelator.
346. Cellulose synthesis via nonaqueous enzymatic reactions.
347. Synthesis of gold nanoparticles for in situ glyco-conjugation in NMMO system.
348. Carbohydrate-gold nanoparticles: synthesis, chemistry and applications.
349. Bioactive paper designed by surface modification with lactose via nonaqueous biocatalysis.
350. In situ synthesis of silver nanoparticles on ZnO whiskers embedded in a paper matrix for antibacterial applications.
351. Synthesis of oligolactose and alkyllactosides by nonaqueous biocatalysis.
352. Cellulose model surfaces of different crystalline characteristics and their evaluation in enzyme adsorption and hydrolysis.
353. Novel synthesis of gold nanoparticles for in situ conjugation with various carbohydrates via an NMMO-mediated redox reaction.
354. Ishihara H., Koga H., Kitaoka T., Wariishi H., Tomoda A., Suzuki R., Catalytic NOx reduction using paper-structured catalyst for the purification of automobile exhaust gas, 2008 American Institute of Chemical Engineers (AIChE) Annual Meeting, 2008.11.
355. Koga H., Kitaoka T., Wariishi H., Suzuki R., Paper-structured catalyst with layered fiber-network microstructure for efficient autothermal hydrogen production, 2008 American Institute of Chemical Engineers (AIChE) Annual Meeting, 2008.11.
356. Paper-structured catalyst for catalytic NOx removal from combustion exhaust gas.
357. Effect of fiber-network microstructure of paper-structured catalyst on methanol reforming behavior.
358. Nonaqueous enzymatic polymerization of bioactive sugars by surfactant-enveloped enzymes.
359. Biofunctional cellulosic nanomaterials designed by self-assembly.
360. Biofunctional cellulosic nanomaterials designed by self-assembly.
361. Effective hydrogen production using paper-structured catalyst with porous fiber-network microstructure.
362. Bio-functional interfaces composed of cellulosic biopolymers.
363. Enzymatic synthesis of carbohydrate polymers by surfactant-enveloped enzyme in nonaqueous media.
364. Paper-structured catalyst prepared by a papermaking technique for hydrogen production.
365. Cellulosic bio-interface designed by vectorial chain immobilization via self-assembly.
366. Enzymatic polymerization of lactose by surfactant-enveloped enzymes in nonaqueous media.
367. Nonaqueous biocatalytic glycosynthesis by surfactant-enveloped enzymes.
368. Recent advances in bioresources chemistry.
369. In vitro synthesis of cellulose using cellulase/surfactant complex in nonaqueous media.
370. Adsorption behavior of cellobiose-pendant polymers at the cellulose/water interface.
371. Architectural arrangement of cellulose by self-assembly.
372. Surface chemistry of cellulose for paper materials.
373. Preparation and environmental applications of paperlike fiber/photocatalyst composites.
Membership in Academic Society
  • The Cellulose Society of Japan, Seibu Branch
  • The Japanese Society for Biomaterials
  • American Chemical Society
  • The Japan Wood Research Society
  • The Society of Fiber Science and Technology, Japan
  • The Cellulose Society of Japan
  • High Performance Paper Society, Japan
  • Japan Technical Association of the Pulp and Paper Industry
  • The Japan Wood Research Society, Kyushu Branch
  • The Society of Fiber Science and Technology, Japan, Seibu Branch
  • The Cellulose Society of Japan, Seibu Branch
  • Research Community of Pulp and Paper Science in Kyushu
Awards
  • Cellulose nanofibers and composites with metal nanoparticles
  • Catalysis and Reaction Engineering Inspired by Paper-specific Microstructures
  • Study on glycosynthesis by nonaqueous biocatalysis and functional design of glycobiointerfaces
  • Scientific Research Award by Kyushu University
  • Functional Architectonics of Polysaccharides and Fiber Materials
  • Scientific Research Award by Kyushu University
  • Structural Analysis and Waterproofing Control of Cellulosic Materials Surface
    Pulp and Paper Research Award by The Society of Fiber Science and Technology, Japan
  • Scientific Research and R & D Collaboration Award by Kyushu University
  • Scientific, Educational and International Contribution Award by the Faculty of Agriculture, Kyushu University
  • Novel Functional Design of Layered Fiber-network Materials
    The Young Scientists' Prize in The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology, Japan
  • Functional Development of Cellulose Fiber Materials
    The Cellulose Society of Japan Progress Award for 2004
Educational
Educational Activities
Education takes the form of lectures and seminars ranging from basic to frontier research, as well as research mentoring, in which each student is assigned an individual topic. We strive to develop human resources who can independently formulate questions, solve problems, make decisions, and communicate their findings to the outside world. The program emphasizes the ability to multi-task, to establish multiple perspectives and directions, and multiple operations within oneself, rather than the traditional one-pointed focus and rush to the front, which is the image of the conventional researcher. To return research results to society, we actively apply for patents for applied research and cooperate with industry, academia and government. They also participate in supporting academic society activities and presenting topics at symposia.

For Undergraduate Students
 Biomaterial Chemistry
 Laboratory Course of Basic Organic Chemistry
 Laboratory Course of Basic Measurement
 Laboratory Course of Wood Chemistry
 Graduation Thesis Research

For Graduate Students
Master Course in Forest and Forest Products Sciences
 Advanced Biomass Conversion
 Proseminar in Biomaterial Science l, ll
 Advanced Studies of Biomaterial Science l, ll
 Advanced Topics on Forest and Forest Products Sciences II (2006)
Ph.D. Course in Forest and Forest Products Sciences
 Tutorials on Biomaterial Science
 Tutorial Exercises on Biomaterial Science

Other Lecture
 Biomass Conversion and Engineering in Tohwa University (2002-2003)
Other Educational Activities
  • 2009.10, Lecturer of Scholastic Guidance in Kochi Gakugei High School, Introduction of Agricultural Science.
  • 2008.07, Lecturer of 19th Summer School for Basic Polymer and Fiber Science, Paper-Structured Catalyst.
Social
Professional and Outreach Activities
R & D of Eco-Papers and Patent Applications for Contributing to Social Welfare.