九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
羽田 亨(はだ とおる) データ更新日:2019.07.31

教授 /  総合理工学研究院 環境理工学部門 流体環境理工学大講座


主な研究テーマ
宇宙環境の中の地球
キーワード:宇宙天気、地球環境
2004.04~2015.03.
次世代電気推進機関の物理過程
キーワード:電気推進、ヘリコンプラズマ
2004.04~2015.03.
宇宙プラズマ中の非線形波動および乱流
キーワード:nonlinear wave, MHD wave, turbulence, chaos
1981.01~2015.03.
宇宙・天体プラズマ中の無衝突衝撃波
キーワード:collisionless shock, shock stability, relativistic shock, Fermi acceleration, intermediate shock
1981.01~2015.03.
宇宙線の加速および拡散過程
キーワード:diffusion, acceleration, cosmic rays, energetic particles, Levy process
1981.01~2015.03.
従事しているプロジェクト研究
高密度ヘリコンプラズマ制御による超高ベータプラズマ生成とその特性
2012.04~2015.03, 代表者:篠原俊二郎, 東京農工大学.
実験室宇宙物理
2013.04~2015.03, 代表者:松清修一, 九州大学.
国際宇宙天気科学・教育センターを通した宇宙天気科学の推進
2013.04~2015.03.
太陽風中の磁気流体波動の非線形発展
2013.04~2015.03.
ヘリコン源を用いた先進的無電極プラズマロケットエンジンの研究開発
2009.04~2015.03, 代表者:篠原俊二郎, 東京農工大学.
A study of shock acceleration using strong turbulence methods
2008.01~2010.09, 代表者:Karim Meziane, University of New-Brunswick Fredericton, Canada, International Space Science Institute (Switzerland).
研究業績
主要著書
主要原著論文
1. Yasuhito Narita, Tohru Hada, Origin of nonlinear density fluctuations in the foreshock region, Earth, Planets and Space, 10.1186/s40623-018-0943-0, 70, 1, id.171(1)-id.171(7), 2018.10, The foreshock plasma exhibits large-amplitude disturbance in the plasma density and the magnetic field. The question of the density response to the magnetic field fluctuation is addressed and studied observationally and statistically using the in situ Cluster spacecraft data of the foreshock plasma. Three major findings are obtained. First, the density response is unique to the magnetic field fluctuation and is of the fast magnetosonic mode type. Second, the density response to the total magnetic energy density (simply subtracting by the mean field) exhibits a clear scaling to the beta-tilde parameter defined as the squared ratio of the sound speed to the Alfvén speed. We interpret that the total fluctuations mostly represent linear-mode waves, and the scaling law has a potential application to estimate the plasma parameter beta using the fluctuation data of the density and the magnetic field only. Third, the density response to the nonlinear (or large-amplitude) magnetic field fluctuation has a weak agreement with the theoretical expectation from the quasi-static balance with a larger degree of scattering in the data. We conclude that the foreshock plasma overall exhibits the linear-mode waves (fast mode) and a moderate degree of nonlinear fluctuations. The concept of the quasi-static balance is partly justified and applicable in the foreshock plasma..
2. Shogo Isayama, Shunjiro Shinohara, Tohru Hada, Review of Helicon High-Density Plasma: Production Mechanism and Plasma/Wave Characteristics, Plasma and Fusion Research, 10.1585/pfr13.1101014, 13, 1101014(1)-1101014(25), 2018.03.
主要学会発表等
1. T. Hada, 宇宙線の非ガウス的輸送と加速, 日本天文学会, 2016.03, 非ガウス的過程による宇宙線の輸送と加速を、単一粒子運動の統計解析(非マルコフ過程)およびフラクショナル微分方程式により解析している。レビューおよび最近の結果について報告する。.
2. T. Hada, F. Otsuka, S. Shinohara, H. Nishida, T. Tanikawa, I. Funaki, Development of electrode less helicon plasma thrusters, AP-RASC13 (Asia Pacific Radio Science Conference 2013), 2013.09.
3. T. Hada, Diffusive shock acceleration of cosmic rays with non-Gaussian transport, The 11th International School for Space Simulations, 2013.07, It is widely recognized that the diffusive shock acceleration (DSA) is the most likely acceleration process responsible for producing the observed power law cosmic ray spectrum, at least up to the so-called knee energies. One of the key elements of the DSA is the scattering of the cosmic rays by MHD turbulence, which is believed to exist both shock upstream and downstream. As the cosmic rays are repeatedly scattered by the MHD turbulence, they travel back and forth across the shock and energized by effectively compressed by the convergent background plasma flow.
While majority of past studies on the DSA employ quasi-linear type model for the cosmic ray diffusion, actual transport of the cosmic rays in plasma with MHD turbulence can be qualitatively different. In the quasi-perpendicular shock geometry, the cosmic ray diffusion may be sub-diffusive when the particles are trapped by the guiding field. In contrast, parallel diffusion of the cosmic rays may be considered super-diffusive when a time scale considered is less than the mixing (reflection) time scale.
In the presentation, we first explain basics of the DSA process and the non-Gaussian transport of particles, and then discuss results of our test particle simulations of the DSA in which the scattering of particles is specified by several different diffusion models. Cosmic ray spectrum index as well as spatial profile of the cosmic ray intensity are evaluated and discussed for both sub-diffusive and super-diffusive cases. .
4. T. Hada, Y. Nariyuki, Y. Narita, Evaluation of higher order statistics of MHD turbulence using multi-spacecraft data, APPC12 (The 12th Asia Pacific Physics Conference of AAPPS), 2013.07, Magnetohydrodynamic (MHD) waves are ubiquitous in space plasma. In particular, those found in the foreshock region of the earth’s bowshock often have order of unity normalized wave amplitude of the magnetic field, and due to this large amplitude one has a possibility to directly observe nonlinear interaction among the waves. It is thus important to develop a robust and accurate method that can extract as much information as possible on the nonlinear behavior of the MHD waves, using the field and plasma data obtained from multi-point measurement. In this presentation we demonstrate that the higher-order statistics [1] of the MHD turbulence can be evaluated both in time and spatial (i.e., both in the frequency and the wave number) domains. Compared with the analysis in the time domain, that in the spatial domain is severely restricted due to a small number of data points, since the number of spacecraft in typical formation flights is less than five. However, the so-called Capon’s method has been successfully adopted in determination of the wave number spectra for Cluster experiments[2,3]. We show that the Capon’s method is also useful in evaluation of the bispectrum and the bicoherence[4]. Accuracy and robustness to the noise of the proposed method will be tested using data obtained by numerical simulations and also by the Cluster experiments.
[1] T. Dudok de Wit, in Space Plasma Simulation, eds., J. Bu ̈chner et al., Springer, Berlin (2003) [2] U. Motschmann et al., J. Geophys. Res., 101, 4961-4965, (1996)
[3] J. L. Pin ̧con and F. Lefeuvre, J. Geophys. Res., 96, 1789-1802, (1991)
[4] Y. Narita et al., Ann. Geophys., 26, 3389-3393, (2008).
5. T. Hada, F. Otsuka, S. Shinohara, H. Nishida, T. Tanikawa, I. Funaki, Research and development of electrodeless helicon plasma thrusters, IPELS013 (The 12th Int'l Workshop on the Interrelationship between Plasma Experiments in Laboratory and Space), 2013.07, Electric thruster is a form of spacecraft propulsion that uses electric energy to accelerate plasma propellant. Due to its large specific impulse, the electric thrusters are suited for long duration operations such as missions to outer planets. On the other hand, the performance of many of the conventional electric thrusters is severely limited by electrode wastage. In order to overcome this difficulty, we have been conducting the HEAT (Helicon Electrodeless Advanced Thruster) project to pursue research and development of electrodeless plasma thrusters.
In the presentation, we first briefly describe the background and the targets of the project, and then introduce the concepts of electrodeless plasma production using the so-called helicon waves (i.e., bounded whistler waves) and the electrodeless plasma acceleration via externally applied time-varying electromagnetic fields. In particular, we discuss some details on the three plasma acceleration schemes we consider: the Rotational Magnetic Field (RMF), the Rotational Electric Field (REF), and the Ponderomotive Acceleration (PA) schemes. Although the helicon plasma is collisional and dissipative, it shares many intrinsic features with space plasmas, implying that there are possibilities that people in space plasma community make substantial contributions in the field of electric thrusters. Theory and simulation results as well as recent laboratory experiments will be discussed.
.
6. Tohru Hada, Some modern analyses of space plasma waves, International Space Weather Initiative, 2012.09.
7. T. Hada, F. Otsuka, K. Yamanokuchi, S. Shinohara, H. Nishida, T. Tanikawa, I. Funaki, T. Matsuoka, Research and development of next generation electrodeless plasma thrusters, International Space Physics Symposium (ISPS), 2011.08, Electric thruster is a form of spacecraft propulsion that uses electric energy to accelerate plasma propellant. Due to its large specific impulse, the electric thrusters are suited for long duration operations such as missions to outer planets. On the other hand, the performance of many of the conventional electric thrusters is severely limited by electrode wastage. In order to overcome this difficulty, we have initiated the HEAT (Helicon Electrodeless Advanced Thruster) project to pursue research and development of completely electrodeless plasma thrusters. In the presentation, we first briefly describe the background and the targets of the project, and then introduce the concepts of electrodeless plasma production using the so-called helicon waves (i.e., bounded whistler waves) and the electrodeless plasma acceleration via externally applied time-varying electromagnetic fields. In particular, we discuss some details on the three plasma acceleration schemes we consider: the Rotational Magnetic Field (RMF), the Rotational Electric FIeld (REF), and the Ponderomotive Acceleration (PA) schemes. Although the helicon plasma is collisional and dissipative, it shares many intrinsic features with space plasmas, implying that there are possibilities that people in space plasma community make substantial contributions in the field of electric thrusters..
8. Tohru Hada, Yasuhiro Nariyuki, Marty Lee, Fluid modeling of SLAMS, AOGS (Asia Oceania Geophysics Society) annual meeting, 2011.08, The so-called Short Large Amplitude Magnetic Structures (SLAMS) are frequently observed upstream of quasi-parallel part of the earth’s bowshock (Schwartz et al., JGR, 1992). Properties of these structures have been studied extensively (e.g., recent Cluster observations by Lucek et al, Annales Geophys., 2004). On the other hand, the mechanism leading to the formation of the SLAMS remains unclear. Since the SLAMS always grow in a region with a gradient in supra-thermal particle pressure, the ion heat flux is likely to be the main energy source for these structures (Giacalone et al., GRL, 1993). In order to clarify the physical picture of the SLAMS, in this presentation we attempt to model their growth and evolution from the fluid point of view. First we propose a nonlinear MHD model including the effect of the ion heat flux after Hammett and Perkins (PRL, 1990). Numerical simulations show that, in the presence of inverse Landau interaction, a series of magnetic pulsations similar to the SLAMS grow rapidly. Details of the model and the results will be presented..
9. T. Hada, Y. Nariyuki, Y. Narita, Nonlinear interaction of foreshock MHD waves: a tutorial review, International School for Space Simulations, 2011.06.
10. T. Hada, Diffusive shock acceleration of energetic particles with non-Gaussian transport, Nonlinear Wave Workshop 8, 2010.03.
学会活動
所属学会名
プラズマ核融合学会
日本地球惑星科学連合
American Geophysical Union
地球電磁気・地球惑星圏学会
学協会役員等への就任
2018.04~2020.03, 名古屋大学宇宙地球環境研究所, 運営協議会委員.
2016.04~2018.03, 名古屋大学宇宙地球環境研究所, 太陽圏専門委員会.
2014.04~2016.03, 名古屋大学太陽地球環境研究所, 運営委員.
2013.10~2015.09, アメリカ地球物理学連合(AGU), 運営委員.
2013.04~2015.03, アジア太平洋物理学会プラズマ分科会, 運営委員.
2010.04~2012.06, 日本地球惑星科学連合, 宇宙惑星セクションサイエンスボード委員.
2011.10~2013.12, Association of Asia Pacific Physical Societies (AAPPS), 活動諮問委員会委員.
2009.07~2011.06, SGEPSS波動分科会, 代表幹事.
2007.07~2009.06, SGEPSS波動分科会, 代表幹事.
2010.10~2013.09, アメリカ地球物理学連合(AGU), 運営委員.
2007.10~2010.09, アメリカ地球物理学連合(AGU), 運営委員.
2004.10~2007.09, アメリカ地球物理学連合(AGU), 運営委員.
学会大会・会議・シンポジウム等における役割
2015.03.02~2015.03.06, UN/Japan workshop on space weather, 座長(Chairmanship).
2014.12.05~2014.12.05, SGEPSS波動分科会, 座長(Chairmanship).
2014.11.18~2014.11.21, PLASMA2014, 座長(Chairmanship).
2013.02.18~2013.02.19, The 14th Cross Straits Symposium for Energy and Environmental Science and Technology, 座長(Chairmanship).
2013.11.25~2013.11.27, The 15th Cross Straits Symposium for Energy and Environmental Science and Technology, 座長(Chairmanship).
2013.12.13~2013.12.13, 次世代無電極推進研究会, 座長(Chairmanship).
2013.09.03~2013.09.07, AP-RASC13 (Asia Pacific Radio Science Conference 2013), 座長(Chairmanship).
2013.07.14~2013.07.19, APPC12 (The 12th Asia Pacific Physics Conference of AAPPS), 座長(Chairmanship).
2013.05.15~2013.05.15, プラズマ推進プロジェクト研究会, 座長(Chairmanship).
2012.09.17~2012.09.21, International Space Weather Initiative Summer School, 座長(Chairmanship).
2012.08.12~2012.08.16, Asia Oceania Geophysics Meeting, 座長(Chairmanship).
2011.11.22~2011.11.25, Plasma Conference 2011, 座長(Chairmanship).
2011.08.15~2011.08.19, International Space Physics Symposium (ISPS) 2012, 座長(Chairmanship).
2011.08.08~2011.08.12, Asia Oceania Geophysics Society (AOGS) annual meeting, 座長(Chairmanship).
2011.03.10~2011.03.10, SGEPSS波動分科会, 主催.
2010.08.19~2010.08.21, SGEPSS波動分科会, 主催.
2010.03.01~2010.03.05, 宇宙プラズマ中非線形波動国際ワークショップ, 座長(Chairmanship).
2009.09.28~2010.09.30, 地球電磁気・地球惑星圏学会, 座長(Chairmanship).
2009.07.03~2010.07.10, 国際宇宙シミュレーション学校, レビュー講演.
2009.05.16~2010.05.21, 日本地球物理学連合総会, 座長(Chairmanship).
2009.05.16~2009.05.21, 地球磁気圏・地球惑星圏学会総会, 座長(Chairmanship).
2009.03.27~2009.03.30, 日本物理学会領域2, セッションオーガナイザ.
2009.02.14~2009.02.15, 第115回生存圏シンポジウム波動分科会, 共催者.
2008.10.13~2008.10.13, SGEPSS波動分科会, 座長(Chairmanship).
2008.06.16~2008.06.20, Asia Oceania Geophysics Society Annual Meeting, 座長(Chairmanship).
2008.06.16~2008.06.20, Asia Oceania Geophysics Society Annual Meeting, オーガナイザ.
2008.04.21~2008.04.25, International Workshop on Nonlinear Waves and Turbulence - 7, 座長(Chairmanship).
2008.04.21~2008.04.25, International Workshop on Nonlinear Waves and Turbulence - 7, オーガナイザ.
2008.03.03~2008.03.04, 第96回生存圏シンポジウム, 座長(Chairmanship).
2007.10, International CAWSES symposium, 座長(Chairmanship).
2007.09, Alfven 2007 workshop on space environment turbulence, 座長(Chairmanship).
2007.02, International symposium on shock waves in astrophysical environment, 座長(Chairmanship).
2006.10, International workshop on nonlinear waves and turbulence in space plasmas, 座長(Chairmanship).
2015.03.02~2015.03.06, UN/Japan workshop on space weather, 組織委員.
2013.11.18~2013.11.21, PLASMA2014, プログラム委員.
2013.11.25~2013.11.27, The 15th Cross Straits Symposium for Energy and Environmental Science and Technology (CSS-EEST), オーガナイザ.
2013.02.18~2013.02.19, The 14th Cross Straits Symposium for Energy and Environmental Science and Technology (CSS-EEST), 組織委員長.
2012.09.17~2012.09.21, International Space Weather Initiative (ISWI) Summer School, Organizer.
2012.08.12~2012.08.17, Asia Oceania Geophysics Society Annual Meeting, 座長.
2013.03.03~2013.03.08, International Workshop on Nonlinear Waves and Chaos in Space Plasmas, Organizer.
2011.11.22~2011.11.25, Plasma Conference 2011, シンポジウムB2 オーガナイザー.
2011.11.22~2011.11.25, Plasma Conference 2011, 組織委員.
2011.08.19~2011.08.21, 宇宙プラズマ波動研究会, 共催者.
2011.08.15~2011.08.19, ISPS2011 (International Space Plasma Symposium), プログラム委員.
2011.08.08~2011.08.12, AOGS2011 (Asia Oceania Geosciences Society), セッションコンビーナ.
2010.03.08~2010.03.08, SGEPSS波動分科会「相対論プラズマシンポジウム」, 共催者.
2010.03.01~2010.03.05, International Nonlinear Wave Workshop , プログラム委員.
2009.10.28~2009.10.30, SGEPSSシミュレーション分科会波動分科会共同シンポジウム, 共催者.
2009.02.14~2009.02.15, SGEPSS波動分科会, 共催者.
2008.10.13~2008.10.13, 波動分科会2008, オーガナイザー.
2008.06.16~2008.06.20, Asia Oceania Geophysics Society Annual Meeting, セッションオーガナイザー.
2008.04.21~2008.04.25, International Workshop on Nonlinear Waves and Turbulence -7, オーガナイザー(共催).
2005.06, 第2回アジアオセアニア地球物理学会, 非線形地球物理学セッションオーガナイザー.
学会誌・雑誌・著書の編集への参加状況
2019.01~2020.12, Reviews of Modern Plasma Physics, 国際, 編集委員.
2013.03~2015.02, Nonlinear Processes in Geophysics, 国際, 編集委員.
2012.10~2013.06, Earth, Planets and Space, 国際, 編集委員.
2002.04~2012.09, Earth, Planets and Space, 国際, 編集委員.
2008.04~2009.12, Nonlinear Processes in Geophysics, 国際, 編集委員.
2008.09~2009.08, The Japan Society of Plasma Science and Nuclear Fusion Research, 国際, guest editor.
2000.01, Physical Review Letters, 国際, 査読委員.
2000.01, Physical Review E, 国際, 査読委員.
2000.01, Progress in Theoretical Physics, 国際, 査読委員.
2000.01, Journal of the Physica Society of Japan, 国際, 査読委員.
2000.01, Geophysical Research Letters, 国際, 査読委員.
2000.01, Journal of Geophysical Research, 国際, 査読委員.
2000.01, Nonlinear Processes in Geophysics, 国際, 査読委員.
2000.01, Annales Geophysicae, 国際, 査読委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2018年度
2017年度
2016年度
2015年度
2014年度
2013年度
2012年度
2011年度
2010年度 11  13 
2009年度
2008年度 10  10 
2007年度
2006年度 12  12 
2005年度
2004年度
2003年度
2002年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
理論物理学研究所, ピサ大学, Italy, Italy, 2005.09~2005.09.
外国人研究者等の受入れ状況
2013.11~2013.11, 2週間以上1ヶ月未満, CNRS, Paris, France, 学内資金.
2014.03~2014.03, 2週間以上1ヶ月未満, 国立成功大学, Taiwan, 学内資金.
2012.11~2012.12, 2週間以上1ヶ月未満, 国立成功大学, Taiwan, 学内資金.
2012.11~2012.12, 2週間以上1ヶ月未満, 国立成功大学, Taiwan, 学内資金.
2012.03~2012.03, 2週間以上1ヶ月未満, 国立成功大学, Taiwan, 学内資金.
2011.03~2011.03, 2週間以上1ヶ月未満, 国立成功大学, Taiwan, 学内資金.
2008.08~2009.01, 1ヶ月以上, Cardinal Stefan Wyszynski University in Warsaw, Poland, 日本学術振興会.
2006.03~2007.07, 1ヶ月以上, マドリード大学, Spain, 外国政府・外国研究機関・国際機関.
2006.10~2006.10, 2週間未満, チリ大学, Chile, 外国政府・外国研究機関・国際機関.
2003.11~2004.10, 1ヶ月以上, チリ大学, Chile, 日本学術振興会.
受賞
プラズマ核融合学会論文賞, プラズマ核融合学会, 2018.12.
Nonlinear Waves in Space Medal, 宇宙プラズマ非線形波動と乱流国際研究集会組織委員会, 2010.03.
田中館賞, 地球磁気圏・地球惑星圏学会, 1999.06.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2011年度~2013年度, 挑戦的萌芽研究, 代表, 非ガウス的粒子拡散による宇宙線の衝撃波統計加速.
2008年度~2009年度, 基盤研究(B), 分担, 強磁場・超高密度ヘリコンプラズマを用いた外部電磁場制御による超音速流形成の研究.
2009年度~2013年度, 基盤研究(S), 分担, ヘリコン源を用いた先進的無電極プラズマロケットエンジンの研究開発.
2008年度~2010年度, 基盤研究(C), 代表, 多点衛星観測データを用いた宇宙プラズマ磁気流体乱流の高次統計解析.
2005年度~2007年度, 基盤研究(C), 分担, 非線形衝撃波加速過程の研究:宇宙線組成異常起源説の検証.
2005年度~2008年度, 基盤研究(A), 分担, ヘリコンプラズマ源を用いた先進的無電極プラズマロケットエンジンの研究開発.
2005年度~2006年度, 基盤研究(C), 代表, 衝撃波上流域MHD乱流における磁場ゆらぎと密度ゆらぎの相関.
2004年度~2005年度, 特別研究員奨励費, 代表, 電子・陽電子プラズマ中大振幅アルフヴェン波動の崩壊不安定性.
2003年度~2004年度, 基盤研究(C), 代表, 太陽風MHD波動の位相相関:Geotail衛星データと計算機実験による解析.
2002年度~2005年度, 基盤研究(A), 分担, 共通並列計算電磁流体・粒子コードによる太陽風磁気圏電離圏ダイナミックスの研究.
2001年度~2002年度, 基盤研究(C), 代表, 宇宙プラズマ中の粒子輸送:準線形理論を越えて.
2000年度~2000年度, 特別研究員奨励費, 代表, 強いMHD乱流による波動と粒子の相互作用.
1999年度~2000年度, 特別研究員奨励費, 代表, ダストプラズマ中のジーンズ不安定性.
1997年度~1998年度, 萌芽研究, 代表, 電子ー陽電子プラズマ中の電磁波励起と非線形発展.
1997年度~1997年度, 重点領域研究, 分担, 衝撃波統計加速過程の効率と非線形効果.
1996年度~1996年度, 基盤研究(C), 分担, 超電導モデルによるダスト粒子間引力発生機構.
1996年度~1996年度, 重点領域研究, 分担, 衝撃波統計加速の素過程.
1995年度~1996年度, 国際学術研究, 分担, 宇宙空間プラズマにおける磁力線リコネクション過程の研究.
1995年度~1995年度, 一般研究(C), 代表, 宇宙空間プラズマ中の中間衝撃波の構造と安定性.
1994年度~1994年度, 一般研究(C), 代表, 宇宙空間中の電磁流体波動・乱流現象の理論的研究.
1993年度~1993年度, 奨励研究(A), 代表, 宇宙空間における電磁流体乱流の構造.
1993年度~1993年度, 総合研究(A), 分担, 地球電磁流体力学における新しい計算手法.
1990年度~1990年度, 一般研究(C), 分担, サイクロトロン波とのサブハ-モニクス共鳴による粒子加速・加熱.
日本学術振興会への採択状況(科学研究費補助金以外)
2005年度~2006年度, 国際研究集会, 代表, 第7回宇宙プラズマ中の非線形波動と乱流国際研究集会.
学内資金・基金等への採択状況
2014年度~2014年度, ICSWSE共同研究費, 代表, 磁気圏内プラズマ分布の異方性の時間発展.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」