九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
柿本 浩一(かきもと こういち) データ更新日:2019.06.20

教授 /  応用力学研究所 新エネルギー力学部門 ナノメカニックス分野


主な研究テーマ
高効率太陽電池結晶成長グローバルシミュレータの開発
キーワード:太陽電池
2001.04.
半導体ナノ構造作成のための超高純度薄膜作成法の開発
キーワード:ナノ構造、半導体、超高純度
2001.04~2003.12.
分子動力学法による同位体半導体の熱伝導度解析
キーワード:分子動力学、熱伝導度、同位体
2001.04~2003.12.
3次元非定常数値計算によるシリコン単結晶育成時の融液流動解析
キーワード:半導体結晶育成、シミュレーション、大規模解析
1989.09~2003.12.
高輝度X線回折によるシリコン固液界面のダイナミックス
キーワード:半導体、結晶成長、X線回折
1996.10~2000.03.
従事しているプロジェクト研究
「高性能・高信頼性太陽光発電の発電コスト低減技術開発/太陽電池セル、モ ジュールの共通基盤技術開発/先端複合技術シリコン太陽電池プロセス共通基盤に関 する研究開発(高品質・低コスト結晶成長技術に関する研究)
2015.06~2018.03, 代表者:柿本 浩一, 九州大学
低コストで高効率な世界最高レベルの競争力を有する結晶シリコン太陽電池の実現.
新世代Siパワーデバイス技術開発/新世代Si-IGBTと応用基本技術の研究開発
2014.07~2016.03, 代表者:平本俊郎, 東京大学
シリコンパワーデバイス用高純度結晶の成長技術の開発.
先進Si-IGBT用の薄型大口径ウェハ技術の開発
2013.01~2014.03, 代表者:鹿島一日児, グローバルウエハー, NEDO
パワー半導体用シリコン結晶の超高純度化により、電力変換インバーターの高効率化を達成する。.
革新的太陽電池用単結晶成長法の研究開発
2010.07~2015.03, 代表者:大下祥雄, 豊田工大, NEDO
急速に拡大している太陽電池市場であるが、いわゆる結晶系シリコン太陽電池が現在の市場の90%を占めており、今後もさらなる発展が期待されている。一方で、欧米に加えてアジアの企業が太陽電池分野へ参入してきており、ドイツのQセルや中国のサンテックといった海外メーカーの成長が著しい。今後世界的な競争の中で、日本が一定の地位を維持するためには、2030年に向けた太陽光発電のロードマップを早期に実現する必要がある。すなわち、発電コストを7円/kwhにまで低減させる必要がある。しかし、例えば、原料シリコンの製造方法であるジーメンス法は、すでに完成された技術であり、今後のさらなる技術習熟や規模拡大によるコストダウンの余地は少ない。結晶シリコン太陽電池の製造技術の多くは同様な状況にあり、今後の大幅なコストダウンを達成するには新たな技術の開発が早急に望まれている。加えて、変換効率の向上もコスト低減の観点から重要である。単なる低コスト化では工事費などを含むBOSのコスト比率が上昇しトータルのコスト低減が実現されない。すなわち今後の太陽電池市場において重要なことは、製造プロセスのコスト低減に加えて、絶対値としてのセル効率の向上を実現することである。.
「ポストシリコン超高効率太陽電池の研究開発(集光型多接合)」研究課題“III-V-N系半導体成長シミュレータの研究開発”
2008.10~2014.03, 代表者:山口真史, 豊田工業大学, 豊田工業大学
超高効率太陽電池の開発.
シリコン単結晶の数値解析
2008.10~2009.03, 代表者:柿本 浩一, 九州大学.
炭化ケイ素(SiC)単結晶に関する研究
2008.09~2010.03, 代表者:柿本 浩一, 九州大学.
革新的次世代太陽光発電システムの研究開発
2004.11~2006.03, 代表者:山口真央, 豊田工大, NEDO
高効率太陽電池の結晶成長用グローバルシミュレータの開発.
宇宙環境利用推進センター”低消費電力半導体素子用高品質単結晶育成技術に関するシミュレーション
1996.10~2000.03, 代表者:今石宣之, 九州大学先導物質化学研究所, 九州大学
低消費電力用半導体のプロセス解析コード開発。分子動力学を担当.
文科省独創的革新技術開発研究
2003.09~2006.03, 代表者:金田寛, 富士通研究所, 富士通研究所
レーザを用いた低温半導体プロセスの開発.
学振未来開拓学術研究「シリコン固液界面のダイナミクス」
1996.10~2001.03, 代表者:今石宣之, 九州大学先導物質化学研究所, 九州大学
シリコン固液界面のダイナミクスに関する研究、独自に開発した高温X線回折法によりシリコンの融解凝固過程のその場観測に成功した。.
研究業績
主要著書
主要原著論文
1. Koichi Kakimoto, Melt flow in Czochralski crystal growth system From macro to micro, the Institute of Crystal Growth (IKZ) in Berlin, p24, 1999.04.
2. Masato Akamatsu, Koichi Kakimoto and Hiroyuki Ozoe, Numerical calculation of natural and mixed convection in a Czochralski crucible under transverse magnetic fields , Proceedings of 11th IHTC, 239-244, Vol.3, pp.239-244, 1998.08.
3. K. KAKIMOTO, Oxygen distributions in silicon melt under inhomogeneous transverse-magnetic fields, Journal of Crystal Growth , 10.1016/S0022-0248(01)01315-X, 230, 1-2, 100-107, pp100-107, 2001.08, [URL].
4. Tomonori Kitashima, Koichi Kakimoto and Hiroyuki Ozoe, Molecular dynamics analysis of diffusion of point defects in GaAs, Journal of The Electrochemical Society, 10.1149/1.1543569, 150, 3, G198-G202, 2003.03, [URL].
5. Hideo Ishii, Atsushi Murakawa and Koichi Kakimoto, Isotope-concentration dependence of thermal conductivity of germanium investigated by molecular dynamics, Journal of Applied Physics, 10.1063/1.1711159, 95, 11 I, 6200-6203, 2004.06, [URL].
6. Koichi Kakimoto , Crucible and crystal rotation effects on oxygen distribution at an interface between solid and liquid of silicon under transverse magnetic fields, Proceedings of the Fourth Symposium on Atomic-scale Surface and Interface Dynamics, pp.89-94, 2000.03.
7. Lijun Liu, Koichi Kakimoto, 3D global analysis of CZ-Si growth in a transverse magnetic field with various crystal growth rates, Journal of Crystal Growth, 10.1016/j.jcrysgro.2004.11.185, 275, 1-2, E1521-E1526, 2005.02, [URL], A series of computations were performed for Czochralski silicon crystal growth in a transverse magnetic field with different crystal growth rates by using a recently developed three-dimensional global model. The effects of the transverse magnetic field and crystal growth rate on the melt-crystal interface were numerically investigated. It was found that the interface shape is three-dimensional when the crystal is not rotating, while it becomes nearly two-dimensional when the crystal is rotating, even at a low rotation rate. The temperature gradient in the axial direction at the melt-crystal interface increases with increase in crystal growth rate except near the crystal edge, where it changes oppositely..
8. Koichi Kakimoto, Development of crystal growth technique of silicon by the Czochralski method, Acta Physica Polonica A, 10.12693/APhysPolA.124.227, 124, 2, 227-230, 2013.08, [URL], We report on the Czochralski method for single silicon crystal growth and discuss heat and mass transfer and defect formation in the crystal. A reflector was used for separation of the heating and cooling areas in the furnace enabling us to speed up crystal growth. The melt flow to stabilize the temperature distribution in a crucible was controlled using transverse magnetic fields in a large-scale silicon Czochralski furnace. The setup allows for changes in important parameters of point defect formation to be made, such as vacancies and interstitials, by changing temperature and flow fields in the furnace. A numerical calculation was developed to predict the tendency for growth of a vacancy rich or interstitial rich crystal by estimating the value of the ratio between the growth rate and temperature gradient in the crystals..
9. K. Kakimoto, A. Murakawa Y. Hashimoto, An investigation of thermal conductivity of isotope silicon as a function of temperature estimated by molecular dynamics, Journal of Crystal Growth, 10.1016/j.jcrysgro.2004.11.014, 275, 1-2, E427-E432, 2005.02.
10. Atsushi Murakawa, Hideo Ishii and Koichi Kakimoto, An investigation of thermal conductivity of silicon as a function of isotope concentration by molecular dynamics, Journal of Crystal Growth, 10.1016/j.jcrysgro.2004.04.040, 267, 3-4, 452-457, 2004.07.
11. Yoo Cheol Won, Koichi Kakimoto, Hiroyuki Ozoe, Transient three-dimensional flow characteristics of Si melt in a Czochralski configuration under a cusp-shaped magnetic field, Numerical Heat Transfer; Part A: Applications, 36, 6, 551-561, 1999.11, Transient three-dimensional numerical computations were carried out for the convection of silicon melt in a Czochralski configuration under a cusp-shaped magnetic field. Numerical conditions are Ha = 0 and 161 with Pr = 0.013, Ra = 3.92×105, Recr = 1329, and Recu = -1596. Computed results show elliptic velocity and temperature profiles near the top of the melt that rotate in a circumferential direction of a crucible even under an axially symmetric cusp-shaped magnetic field at Ha = 161. Elliptic velocity and temperature distributions were stable but oscillating as a function of time. Velocity and temperature oscillation became a rather regular periodic structure under a cusp-shaped magnetic field in comparison with the nonmagnetic case..
12. Hiroshi Tomonori, Mitsuo Iwamoto, Koichi Kakimoto, Hiroyuki Ozoe, Kenjiro Suzuki, Tsuguo Fukuda, Standing-oscillatory natural convection computed for molten silicon in Czochralski configuration, Chemical Engineering Journal, 10.1016/S1385-8947(98)00115-6, 71, 3, 191-200, 1998.01.
13. Shin Nakamura, Taketoshi Hibiya, Koichi Kakimoto, Nobuyuki Imaishi, Shinichi Nishizawa, Akira Hirata, Kusuhiro Mukai, Shin Ichi Yoda, Tomoji S. Morita, Temperature fluctuations of the Marangoni flow in a liquid bridge of molten silicon under microgravity on board the TR-IA-4 rocket, Journal of Crystal Growth, 10.1016/S0022-0248(97)00440-5, 186, 1-2, 85-94, 1998.03, [URL], Temperature fluctuation measurements in a liquid bridge of molten silicon, which shows the Marangoni flow in highly super-critical condition, are performed in a half-zone configuration under microgravity on board a TR-IA-4 rocket and on the ground. In the microgravity experiment, two types of temperature oscillation are observed during the melting process of silicon and in the cylindrical half-zone melt. The former oscillation, which has a frequency of about 0.1 Hz during the melting process, has an antiphase correlation of temperature oscillation measured in thermocouples separated by 90° azimuthal angles. The latter oscillation in the cylindrical liquid bridge has no remarkable frequency; however, it tends to have the antiphase correlation in between thermocouples with 180° azimuthal angles. In the ground experiment, temperature fluctuations have a characteristic frequency of 0.2 Hz and there is an antiphase correlation of temperatures in thermocouples with 180° azimuthal angles by using the slender melt zone..
14. Koichi Kakimoto, Hiroyuki Ozoe, Segregation of oxygen at a solid/liquid interface in silicon, Journal of the Electrochemical Society, 10.1149/1.1838541, 145, 5, 1692-1695, 1998.01, [URL], The incorporation of oxygen into silicon single crystals from the melt is examined in terms of an experiment and a model on a transient solidification. A transient analysis offered an effective segregation coefficient of oxygen in silicon and a diffusion constant of oxygen in the melt almost independently. The analysis estimated these values of effective segregation coefficient of oxygen in silicon and diffusion constant of oxygen in the melt..
15. Koichi Kakimoto, Lijun Liu, Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth, Crystal Research and Technology, 38, 7-8, 716-725, 2003.08, A numerical study was carried out to determine the effects of magnetic fields and thermal conductivity of a crystal on the melt flow in a crystal growth system. Comparisons of computations for the case of no magnetic field and for two types of cusp-shaped magnetic fields were made. The effect of thermal conductivity of a crystal on the shape of a melt-crystal interface was also investigated. The computation results showed that the magnetic fields have clear effects on both the pattern and strength of flow of the melt and the interface shape. Application of a magnetic field to the Czochralski system is therefore an effective tool for controlling the quality of bulk crystal during Czochralski growth process. The results also showed that the shape of the interface could be modified by changing thermal conductivity of silicon..
16. Koichi Kakimoto, Shin Kikuchi, Hiroyuki Ozoe, Molecular dynamics simulation of oxygen in silicon melt, Journal of Crystal Growth, 10.1016/S0022-0248(98)01115-4, 198-199, PART I, 114-119, 1999.01, [URL], Molecular dynamic simulation of an oxygen atom in silicon crystal and the melt was carried out to obtain the diffusion constants of oxygen in the melt. The simulation using mixed potential in the melt, in which an oxygen atom and 216 silicon atoms were taken into account has been carried out. Vibration frequencies of oxygen and vacancy-oxygen (V-O) pair in the crystal have been calculated. Calculated frequency of oxygen and V-O pair were 1000 and 820 cm-1, respectively, while the experimental results which were obtained from Fourier transform spectra of infrared absorption (FTIR) are 1100 and 830 cm-1, respectively. Oxygen diffusion constant was obtained in an elevated temperature of 1700 K. Calculated diffusion constant of oxygen in the melt was 1 × 10-4 cm2/s..
17. Koichi Kakimoto, Akimasa Tashiro, Takashige Shinozaki, Hideo Ishii, Yoshio Hashimoto, Mechanisms of heat and oxygen transfer in silicon melt in an electromagnetic Czochralski system, Journal Of CRYSTAL GROWTH 243, 10.1016/S0022-0248(02)01473-2, 243, 1, 55-65, pp55-65, 2002.08.
18. M. Watanabe, K. W. Yi, T. Hibiya and K. Kakimoto, Direct observation and numerical simulation of molten silicon flow during crystal growth under magnetic fields by X-ray radiography and large-scale computation, Progress in Crystal Growth and Characterization of Materials, 10.1016/S0960-8974(99)00013-3, 38, 1-4, 215-238, Vol.38, No. 1-4, pp.215-238, 1999, 1999.12.
19. Koichi Kakimoto and Hiroyuki Ozoe, Heat and mass transfer during crystal growth, Computational Materials Science 10, 10.1016/S0927-0256(97)00090-6, 10, 1-4, 127-133, pp.127-133(招待講演), 1998.01.
20. Lijun LIU and Koichi KAKIMOTO, Numerical Analysis of a TMCZ Silicon Growth Furnace by Using a 3D Global Model, Reports of Research Institute for Applied Mechanics,Kyushu University,, 2004.01.
21. Lijun Liu, Tomonori Kitashima and Koichi Kakimoto, The Effects of Magnetic Fields on Melt Convection in Czochralski Silicon Growth Analyzed by 3D Global Calculation, Computational mechanics, WCCM VI in conjunction with APCOM’04, 2004.01.
22. Lijun Liu, Satoshi Nakano and Koichi Kakimoto, Advancement of Numerical Investigation of a Silicon Czochralski Growth with Application of a Transverse Magnetic Field, 日本結晶成長学会誌, 2005.01.
23. Lijun Liu, Satoshi Nakano and Koichi Kakimoto, An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field, Journal of Crystal Growth, 10.1016/j.jcrysgro.2005.05.002, 282, 1-2, 49-59, 2005.01.
24. Lijun Liu, Tomonori Kitashima and Koichi Kakimoto, Global analysis of effects of magnetic field configuration on melt-crystal interface shape and melt flow in CZ-Si crystal growth, Journal of Crystal Growth, 10.1016/j.jcrysgro.2004.11.292, 275, 1-2, E2135-E2139, 2005.01.
25. Koichi Kakimoto, Takashige Shinozaki and Yoshio Hashimoto, Heat and oxygen transfer in silicon melt in an electromagnetic Czochralski system with transverse magnetic fields, Int. J. Materials and Product Technology, 22, 1-3, 84-94, 2005.01.
26. Lijun Liu and Koichi Kakimoto, Partly three-dimensional global modeling of a silicon Czochralski furnace. I. Principles, formulation and implementation of the model, International Journal of Heat and Mass Ttransfer, 10.1016/j.ijheatmasstransfer.2005.04.031, 48, 21-22, 4481-4491, 2005.01.
27. Lijun Liu and Koichi Kakimoto, Partly three-dimensional global modeling of a silicon Czochralski furnace.II. Model application: Analysis of a silicon Czochralski furnace in a transverse magnetic field, International Journal of Heat and Mass Transfer, 10.1016/j.ijheatmasstransfer.2005.04.030, 48, 21-22, 4492-4497, 2005.01.
28. K. Kakimoto, L. Liu, T. Kitashima, A. Murakawa and Y. Hashimoto, Silicon crystal growth from the melt: Analysis from atomic and macro scales, Cryst. Res. Technol, 10.1002/crat.200410343, 40, 4-5, 307-312, 2005.01.
29. 尾添紘之,福井英人,柿本浩一, Cz 結晶成長融液への Z 軸磁場印加効果, 電磁力を利用した材料プロセッシングの新展開(日本鉄鋼協会), pp.221-226, 1999.06.
30. Koichi Kakimoto, Shin Kikuchi and Hiroyuki Ozoe, Molecular dynamics simulation of oxygen in silicon melt, The Second Symposium on Atomic-scale Surface and Interface Dynamics, pp.85-90, 1998.02.
31. Yoo Cheol Won, Koichi Kakimoto and Hiroyuki Ozoe, Transient analysis of melt flow under inhomogeneous magnetic fields, The Second Symposium on Atomic-scale Surface and Interface Dynamics, pp.57-62, 1998.02.
32. Masato Akamatsu, Koichi Kakimoto and Hiroyuki Ozoe, Numerical computation for the secondary convection in a Czochralski
crystal growing system with a rotating crucible and astatic crystal rod, Journal of Materials Processing & Manufacturing Science, 5, 4, 329-348, Vol.5, No.4, pp.329-348, 1998.04.
33. 柿本浩一,末永英俊,尾添紘之, 等温等圧下におけるシリコンの物性のシミュレーション, 九州大学機能物質科学研究所報告, 第12巻第1号,pp.7-10, 1998.07.
34. Koichi Kakimoto, Heat and mass transfer in silicon melt under magnetic fields, First International School on Crystal Growth Technology, pp.172-186, 1998.10.
35. Yoo Cheol Won, Koichi Kakimoto and Hiroyuki Ozoe, Visualization of the heat and mass transfer as well as the melt convection under a cusp-shaped magnetic field, The Eleventh Symposium on Chemical Engineering, Kyushu-Taejon/Chungnam, pp.327-328, 1998.10.
36. Xiaobo Wu, Koichi Kakimoto, Hiroyuki Ozoe and Zengyue Guo, Numerical study of natural convection in Czochralski crystallization, The Chemical Engineering Journal, 10.1016/S1385-8947(98)00114-4, 71, 3, 183-189, Vol.71, pp.183-189, 1998.12.
37. Yoji Yamanaka, Koichi Kakimoto, Hiroyuki Ozoe, Stuart W. Churchill, Rayleigh-Benard oscillatory natural convection of liquid gallium heated from below, The Chemical Engineering Journal, 10.1016/S1385-8947(98)00100-4, 71, 3, 201-205, Vol.71, pp.201-205, 1998.12.
38. Masato Akamatsu, Hiroyuki Ozoe, Koichi Kakimoto and Tsuguo Fukuda, One-sided natural and mixed convection computed for liquid metal in a Czochralski configuration, 5th ASME/JSME Joint Thermal Eng. Conf, 1999.03.
39. Yoo Cheol Won, Koichi Kakimoto and Hiroyuki Ozoe, Transient three-dimensional numerical computation for silicon melt under a cusp-shaped magnetic field, 5th ASME/JSME Joint Thermal Eng. Conf, 1999.03.
40. Yuren Wang and Koichi Kakimoto, The dislocation behaviour in the vicinity of molten zone : An X-ray topography study of the melting of silicon, Eleventh American Conference on Crystal Growth & Epitaxy(ACCGE-11),, p. 106, 1999.08.
41. 柿本浩一,梅原猛,尾添紘之, 等圧下におけるシリコン中の点欠陥の輸送現象, 九州大学機能物質科学研究所報告, 第13巻,第2号,pp.87-91, 1999.11.
42. Koichi Kakimoto, Macroscopic and microscopic mass transfer in silicon Czochralski method, Korean Association of Crystal Growth, Vol.9, No. 4, pp.381-383, 1999.12.
43. Hiroyuki Ozoe, Koichi Kakimoto, Masato Akamatsu and Yoo Cheol Won, Application of various magnetic fields for the melt in a Czochralski
crystal growing system, 20th International Congress of Theoretical and Applied Mechanics, 2000.08.
44. Koichi Kakimoto, Heat and mass transfer during CZ crystal growth : From atomic scale to macro scale, Second International School on Crystal Growth Technology, pp.122-144, 2000.08.
45. Koichi Kakimoto, Heat and mass transfer in Czochralski silicon crystal growth under magnetic fields, 20th International Congress of Theoretical and Applied Mechanics, 2000.08.
46. Koichi Kakimoto, Atomic and macroscale simulation of transport phenomena during crystal growth, 2000 IAMS International Seminar on Thermal Design and Management for Electronic Equipment and Material, pp.130-137, 2000.10.
47. Yuren Wang and Koichi Kakimoto, Dislocation effect on crystal-melt interface: an in situ observation of the melting of silicon, J. of Crystal Growth, 10.1016/S0022-0248(99)00406-6, 208, 1-4, 303-312, Vol.208, pp.303-312, 2000.12.
48. Yuren Wang and Koichi Kakimoto, The shape of solid-melt interface estimated from in-situ X-ray topograph observation, Proceedings of the Fourth Symposium on Atomic-scale Surface and Interface Dynamics, pp.95-100, 2000.03.
49. Janusz S. Szmyd, M. Jaszczur, H. Ozoe and K. Kakimoto, Numerical analysis of buoyancy driven convection and radiation from the free surface of the fluid in a vertical cylinder, 3rd European Thermal Sciences Conference, Heidelberg, Germany, 2000.09.
50. Koichi Kakimoto, Oxygen distribution in silicon melt under inhomogeneous transverse magnetic fields, Third International Workshop on Modeling in Crystal Growth, 10.1016/S0022-0248(01)01315-X, 230, 1-2, 100-107, pp.181-200, 2000.11.
51. 平田学,柿本浩一,尾添紘之, 半導体溶液成長におけるゼーベック効果, 九州大学機能物質科学研究所報告, 第14巻,第2号,pp.149-155, 2000.12.
52. Yuren Wang, Koichi Kakimoto, An in-situ observation of dislocation and crystal-melt interface during the melting silicon, Solid State Phenomena, 78-79, 217-224, Vols.78-79, pp217-224, 2001.01.
53. Yuren Wang and Koichi Kakimoto, Dislocations and crystal-melt interface in the melting prosesses of silicon, Proceedings of the fifth symposium on atomic-scale surface and interface dynamics, No. 12, March 1-2, pp.133-140, 2001.03.
54. K. Sato, Y. Furukawa and K. Nakajima,Koichi KAKIMOTO, Si bulk crystal growth: What and how?, Advances in Crystal Growth Research, 10.1016/B978-044450747-1/50036-3, 155-166, pp155-166, 2001.01.
55. 柿本浩一、野口真一郎、尾添紘之, 分子動力学法による半導体中の欠陥の拡散挙動解析, 日本機械学会熱工学講演会論文集, N0.01-9, 2001.11.
56. 柿本浩一、北村健二, ACRT法における融液攪拌効果の解析, 日本結晶成長学会誌, Vol.29 No.2, 2002.01.
57. K. Kakimoto, Effects of rotating magnetic fields on temperature and oxygen distributions in silicon melt, Journal of Crystal Growth 237-239, 10.1016/S0022-0248(01)02341-7, 237, 1785-1790, pp1785-1790, 2002.01.
58. Koichi KAKIMOTO, Heat and Mass Transfer during CZ Crystal Growth: from Atomic Scale to Macro Scale, Abstract of Fourth Asian –Pacific Conference on Aerospace Technology and Science, 2002.01.
59. 柿本浩一,北嶋具教, 分子動力学法によるGaAs結晶中の空孔と格子間原子の拡散挙動, 結晶成長学会誌, Vol.29, No.2, p86, 2002.01.
60. 柿本浩一、田代昭正、石井秀夫、篠崎高茂、橋本良夫, 半導体製造プロセスにおける電磁力の応用・マクロとナノスケール融合, 第15回計算機力学講演会講演論文集, No.02-02, pp743-744, 2002.01.
61. 北嶋具教、柿本浩一、北村健二, 2重坩堝ACRT法におけるLiNbO3融液の対流解析, 第47回人工結晶討論会講演要旨集, pp97-98, 2002.01.
62. 北嶋具教、柿本浩一, 2重坩堝法を用いたニオブ酸リチウム(LiNbO3)の融液対流解析, 日本結晶成長学会誌, Vol.29 No.2, 2002.01.
63. 柿本浩一、王育人, X線回折によるシリコン融解凝固過程のその場観察, 第47回人工結晶討論会講演要旨集, pp60-70, 2002.01.
64. 北嶋 具教、 柿本 浩一, ACRT法を用いた時のLiNbO3の流動解析, 第52回理論応用力学講演会講演論文集, pp529-530, 2003.01.
65. Wang YR, Kakimoto K., Crystal-melt interface shape and dislocations during the melting of silicon, J CRYST GROWTH, 10.1016/S0022-0248(02)01833-X, 247, 1-2, 1-12, 2003.01.
66. Lijun Liu and Koichi Kakimoto, Effects of Magnetic Fields on Melt-Crystal Interface Shape and Melt Flow in Czochralski Silicon Growth, Proceedings of the 5th International Conference of Single Crystal Growth and Heat & Mass Transfer, Obninsk, Russia, 2003.01.
67. Lijun Liu Tomonori Kitashima and Koichi Kakimoto, Numerical analysis of effects of crystal and crucible rotations on melt-crystal interface shape and melt flow in CZ growth by global simulation, A Chinese Journal of Science, Technology & Applications in the Field of Rare Metals, 2003.01.
68. Koichi Kakimoto, Hiroyuki Konishi, Akimasa Tashiro, Yoshio Hashimoto, Hideo Ishii, Takashige Shinozaki and Kenji Kitamura, Stabilization of Melt Convection of Lithium Niobate Using Accelerated Crucible Rotation Technique, Journal of The Electrochemical Society, 10.1149/1.1566421, 150, 5, J17-J22, 2003.01.
69. 柿本 浩一、篠崎 高茂、田代 昭正、石井 秀夫, 電磁攪拌によるシリコン結晶育成時の融液流動解析, 第52回理論応用力学講演会講演論文集, pp523-524, 2003.01.
70. 北嶋具教, 劉 立軍, 北村健二, 橋本良夫, 柿本浩一, 2重坩堝ACRT法における供給原料の混入過程及び融液温度への影響, 九州大学応用力学研究所所報, 2004.01.
71. Koichi Kakimoto, Atsushi Murakawa and Hideo Ishii, An Investigation of Temperature Dependence of Thermal Conductivity of Isotope Silicon, Transactions of the Materials Research Society of Japan, 2004.01.
72. Lijun Liu, Koichi Kakimoto, Toshinori Taishi and Keigo Hoshikawa,, Computational study of formation mechanism of impurity distribution in a silicon crystal during solidification, Journal of Crystal Growth, 10.1016/j.jcrysgro.2004.02.077, 265, 3-4, 399-409, 2004.01.
73. Tomonori Kitashima, Lijun Liu, Kenji Kitamura and Koichi Kakimoto, Effects of shape of an inner crucible on convection of lithium niobate melt in a double-crucible Czochralski process using the accelerated crucible rotation technique, Journal of Crystal Growth, 10.1016/j.jcrysgro.2004.04.026, 267, 3-4, 574-582, 2004.01.
主要学会発表等
1. Koichi KAKIMOTO, Lijun Liu, X. J. Chen, Hitoshi Matsuo, Hiroaki Miyazawa, Sho Hisamatsu, Satoshi Nakano and Yoshihiro Kangawa , Numerical investigation of heat and mass transfer during a unidirectional solidification process in crystalline silicon for solar cells , 216th ECS Meeting, 2009.10.
2. K. Kakimoto, H. Matsuo, S. Hisamatsu, B. Ganesh, G. Bing, X.J. Chen, L. Liu, H. Miyazawa and Y. Kangawa, , Numerical analysis of mc-Si crystal growth, GADEST 2009, 2009.09.
3. 柿本浩一, 半導体結晶成長の数値解析と育成実験, 日本セラミックス協会2009年第22回秋季シンポジウム, 2009.09.
4. Koichi Kakimoto , Numerical investigation of solidification process of multi-crystalline silicon grown by directional solidification method, 3rd International Workshop on Science and Technology of Crystalline Si Solar Cells, 3rd International Workshop on Science and Technology of Crystalline Si Solar Cells, 2009.06.
特許出願・取得
特許出願件数  3件
特許登録件数  1件
学会活動
所属学会名
German Association for Crystal Growth
応用物理学会
日本結晶成長学会
日本マイクログラビテイー応用学会
化学工学会
Electrochemical Sciety
America Association of Crystal Growth
学協会役員等への就任
2017.10~2022.09, 日本学術振興会145委員会, 会長.
2016.04~2019.03, 日本結晶成長学会, 会長.
2016.08~2022.07, International Organization of Crystal Growth, 会長.
2010.01~2013.07, International Organization of Crystal Growth, Secretary.
2014.04, 日本学術振興会162委員会, 委員.
2013.08~2016.07, International Organization for Crystal Growth, 副会長.
2007.10~2008.09, 日本学術会議連携会員, 幹事.
2007.06~2010.06, International Union of Crystalography, 幹事.
2006.01~2010.07, International Organization of Crystal Growth, 理事.
2007.04, 日本学術振興会161委員会, 幹事.
2007.04, 日本学術振興会145委員会, 副会長.
2001.04~2011.03, 日本結晶成長学会バルク成長分科会, 幹事.
2001.04~2004.03, 応用物理学会, プログラム委員.
2009.04~2012.03, 日本結晶成長学会, 副会長.
学会大会・会議・シンポジウム等における役割
2018.04.08~2018.04.11, 10th International Workshop on Crystalline Silicon for Solar Cells, Chairperson.
2017.12.02~2017.12.03, ISCGSCT2017, 座長.
2016.09.19~2016.09.22, E-MRS 2016 Fall Meeting, 座長.
2010.08.01~2010.08.07, ICCG, 座長(Chairmanship).
2005.07, ACCG, 座長(Chairmanship).
2005.09, IWCGT-3, 座長(Chairmanship).
2003.11, 4th International Workshop on Modeling in Crystal Growth, chair.
学会誌・雑誌・著書の編集への参加状況
2002.04~2010.06, J. crystal growth Technology, 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2015年度 12      16 
2010年度 25    22    47 
2009年度 23    11    34 
2008年度 21    11    32 
2007年度 20    10    30 
2006年度 18      24 
2004年度 25  32 
2005年度 10  10    25 
その他の研究活動
海外渡航状況, 海外での教育研究歴
Seminaris SeeHotel Potsdam, Germany, 2017.07~2017.07.
RIN Grand Hotel, Romania, 2017.07~2017.07.
Eldorado Hotel & Spa, UnitedStatesofAmerica, 2017.07~2017.08.
Central Campus of Warsaw University of Technology, Poland, 2016.09~2016.09.
Sheraton Kona Resort & Spa at Keauhou Bay, Hawaii, UnitedStatesofAmerica, 2016.11~2016.11.
Congress Hall Bamberg, Germany, 2015.05~2015.05.
ESPCI Paris Tech, France, 2015.07~2015.07.
Big Sky Resort, UnitedStatesofAmerica, 2015.08~2015.08.
CNR Conference Centre, Italy, 2015.09~2015.09.
Hilton Daytona Beach Resort and Ocean Center, UnitedStatesofAmerica, 2015.01~2015.01.
フランクフルト、ゲーテ大学, Germany, 2015.03~2015.03.
SINTEF, Quality Spa & Resort, NTNU, Norway, 2014.05~2014.05.
Congress Center - Lille, France, 2014.05~2014.05.
Ramada Plaza, Korea, 2014.06~2014.06.
NOVOTEL Am Tiergarten, Germany, 2014.06~2014.06.
Palais des congrès, Canada, 2014.08~2014.08.
Beaver Run Resort Breckenridge, UnitedStatesofAmerica, 2013.07~2013.07.
Gdansk University of Technology, University of Warsaw, Poland, 2013.08~2013.08.
Denver Marriott West, UnitedStatesofAmerica, 2013.09~2013.09.
Karlsruhe Institute of Technology (KIT), Germany, 2013.09~2013.09.
Smyros Resor, Poulithra , Greece, 2012.05~2012.05.
International Conference Center of Transilvania University, Romania, 2012.08~2012.09.
Aix-les-bains congress center , France, 2012.10~2012.10.
Grand Hotel Taipei, Taiwan, 2012.10~2012.11.
Sheraton Keauhou Bay Resort Hotel, UnitedStatesofAmerica, 2012.11~2012.11.
Kleist Forum Frankfurt , Germany, 2011.03~2011.03.
Pentahotel Berlin-Kopenick, Germany, 2011.06~2011.07.
MEMC, Hyatt Regencey Monterey Hotel & Spa on Del Monte Golf Course , UnitedStatesofAmerica, 2011.07~2011.08.
Renaissance Cleveland Hotel Cleveland, UnitedStatesofAmerica, 2011.09~2011.09.
西安交通大学, China, 2011.10~2011.10.
Boston Park Plaza Hotel , UnitedStatesofAmerica, 2011.10~2011.11.
Gdansk-Sobieszewo, Poland, 2010.05~2010.05.
Congress Center, Strasbourg, France, 2010.06~2010.06.
大連工科大, Beijing International Convention Center , China, 2010.08~2010.08.
Central Campus of Warsaw University of Technology, Poland, 2010.09~2010.09.
Denver Marriott Tech Center, UnitedStatesofAmerica, 2010.10~2010.10.
National Taiwan University, Taiwan, 2010.10~2010.10.
Hanyang University, Korea, 2010.11~2010.11.
Sheraton Shangha, China, 2009.03~2009.03.
Quality Inn O’hare Airport, UnitedStatesofAmerica, 2009.08~2009.08.
Transilvania University Aula, Romania, 2009.08~2009.08.
Döllnsee-Schorfheide, Germany, 2009.09~2009.09.
Austria Center Vienna, Australia, 2009.09~2009.09.
Faculty of Engineering of the University of Genoa,, Italy, 2008.06~2008.06.
Vail Cascade Resort & SPA, UnitedStatesofAmerica, 2008.08~2008.05.
Keauhou Beach Resort, UnitedStatesofAmerica, 2008.11~2008.11.
Wojskowy Dom Wypoczynkowy , Poland, 2007.05~2007.05.
Park City, UnitedStatesofAmerica, 2007.08~2007.08.
Lake Tahoe Hyatt Regency, UnitedStatesofAmerica, 2007.08~2007.08.
FIERA MILANO – Exhibition & Convention Centre, Italy, 2007.09~2007.09.
Xiamen Univ., China, 2007.12~2007.12.
Universite catholique de Louvain, Belgium, 1989.10~1990.09.
外国人研究者等の受入れ状況
2012.07~2013.03, 1ヶ月以上, Xian University, China, 政府関係機関.
2013.01~2013.06, 1ヶ月以上, SINTEF, Norway, 外国政府・外国研究機関・国際機関.
2008.12, 1ヶ月以上, 韓国高等科学技術研究院, China.
2005.09, 1ヶ月以上, Xian University, China, 政府関係機関.
2002.09, 1ヶ月以上, Xian University, China, 学内資金.
1996.12~2001.06, 1ヶ月以上, Chinese Academy of Science, China, 日本学術振興会.
受賞
平成31年度科学技術分野の文部科学大臣表彰 科学技術賞 研究部門, 文部科学省, 2019.04.
ルーマニア材料科学結晶成長学会賞, ルーマニア材料科学結晶成長学会, 2017.07.
応用物理学会フェロー, 応用物理学会, 2017.09.
日本結晶成長学会貢献賞, 日本結晶成長学会, 2014.11.
JPSJ注目論文賞受賞, 日本物理学会, 2006.04.
日本結晶成長学会貢献賞受賞, 日本結晶成長学会, 2004.08.
熱物質流体工学賞, 化学工学会, 1996.09.
日本結晶成長学会論文賞, 日本結晶成長学会, 1988.08.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2016年度~2018年度, 基盤研究(B), 代表, マルチレベルフィジックスによる超高予測精度結晶成長シミュレーションの実現.
2015年度~2016年度, 挑戦的萌芽研究, 代表, ワイドバンドギャップ材料の欠陥定量解析手法の確立.
2012年度~2014年度, 基盤研究(B), 代表, 省エネ用半導体の実現に向けたマクロ・ナノ統合結晶成長法の構築.
2007年度~2009年度, 基盤研究(B), 代表, 動的電場・磁場を用いた新規結晶育成方法の創製.
科学研究費補助金の採択状況(文部科学省、日本学術振興会以外)
2004年度~2005年度, NEDO, 分担, 高効率太陽電池の開発.
日本学術振興会への採択状況(科学研究費補助金以外)
1996年度~2000年度, 未来開拓学術研究, 分担, シリコン固液界面のダイナミクス.
競争的資金(受託研究を含む)の採択状況
2015年度~2019年度, , 代表, 高性能・高信頼性太陽光発電の発電コスト低減技術開発/
太陽電池セル、モジュールの共通基盤技術開発/
先端複合技術シリコン太陽電池プロセス共通基盤に関する研究開発(高品質・低コスト結晶成長技術に関する研究).
2014年度~2019年度, , 分担, 新世代Si-IGBTと応用基本技術の研究開発.
2013年度~2014年度, NEDO, 分担, 先進Si-IGBT用の薄型大口径ウェハ技術の研究開発.
2010年度~2014年度, NEDO, 連携, 革新的太陽電池用単結晶成長法の研究開発.
2003年度~2005年度, 独創的革新技術開発(文部科学省), 分担, レーザを用いた新規拡散技術の開発.
共同研究、受託研究(競争的資金を除く)の受入状況
2016.05~2017.03, 代表, SiC結晶の応力転位解析手法の開発.
2015.07~2015.10, 代表, SiC結晶の応力転位解析手法の開発.
2015.08~2018.07, 代表, MCZ炉を対象とした熱流動解析モデルに関する技術指導.
2013.06~2014.05, 代表, 高品質ものライク結晶の数値解析.
2014.08~2016.07, 代表, MCZ炉を対象とした熱流動解析モデルに関する技術指導.
2006.04~2008.03, 分担, ロバスト太陽電池の開発.
2005.01~2007.01, 代表, 薄膜太陽電池の.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」