九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
吾郷 浩樹(あごう ひろき) データ更新日:2024.01.25

教授 /  グローバルイノベーションセンター アドバンストプロジェクト部門 総合理工学府 先進ナノマテリアル科学研究室


主な研究テーマ
二次元ナノ空間の科学と機能創発
キーワード:二次元物質
2018.04~2024.05.
六方晶窒化ホウ素の原子膜に関する研究 
キーワード:六方晶窒化ホウ素
2016.04.
遷移金属カルコゲナイドの原子膜に関する研究 
キーワード:遷移金属カルコゲナイド
2016.04.
新規ナノカーボンマテリアルの創製
キーワード:ナノカーボン
2012.04~2018.03.
革新的二次元系物質の生成と探索
キーワード:二次元物質
2012.04.
グラフェンの電子・光物性とデバイスへの応用
キーワード:グラフェン,CVD,物性,デバイス
2011.04.
グラフェンのプロセッシング技術の開発
キーワード:グラフェン,CVD,プロセッシング
2010.04~2018.03.
グラフェンの触媒成長と成長メカニズムの解明
キーワード:グラフェン,結晶成長,CVD
2011.04.
単層カーボンナノチューブのカイラリティ/電子構造の制御のための精密合成法の探索
キーワード:ナノチューブ、カイラリティ、半導体
2007.10~2016.03.
単層カーボンナノチューブのエピタキシャル配向成長と高密度化
キーワード:単層カーボンナノチューブ、配向成長
2004.10~2016.03.
単層カーボンナノチューブのエレクトロニクス応用のための基盤研究
キーワード:カーボンナノチューブ、トランジスタ
2005.04~2012.03.
従事しているプロジェクト研究
2.5次元物質科学 社会変革に向けた物質科学のパラダイムシフト(学術変革領域研究(A))
2021.09~2026.03, 代表者:吾郷浩樹, 九州大学 グローバルイノベーションセンター.
ナノ空隙を利用した原子・分子の配列制御と物性測定法開発(JST-CREST)
2020.10~2025.03, 代表者:末永 和知, 大阪大学産業科学研究所.
二次元材料とナノ計測の融合による相変化伝熱の革新(JST-CREST)
2018.10~2023.03, 代表者:高橋 厚史, 九州大学工学部.
ウェハースケールの六方晶窒化ホウ素によるマテリアルサイエンスの革新 (挑戦的研究(萌芽))
2019.04~2021.03, 代表者:吾郷浩樹, 九州大学 グローバルイノベーションセンター.
グラフェンのテーラーメイド合成とその展開(基盤研究(A))
2018.04~2022.03, 代表者:吾郷浩樹, 九州大学 グローバルイノベーションセンター.
AB積層二層グラフェンの成長技術開発とトランジスタへの応用(基盤研究(B))
2015.04~2018.03, 代表者:吾郷浩樹, 九州大学 先導物質化学研究所.
高品質グラフェンの製造・転写・触媒再利用技術の開発(新素材情報財団)
2018.04~2019.03, 代表者:吾郷浩樹, 九州大学 グローバルイノベーションセンター.
原子薄膜デバイスに資する単結晶巨大グラフェンの創製と位置制御(新学術領域「原子層科学」公募研究)
2016.04~2017.03, 代表者:吾郷浩樹, 九州大学 グローバルイノベーションセンター.
二次元デバイスのプラットフォームとなる六方晶窒化ホウ素の高結晶多層膜の創製(挑戦的研究(萌芽))
2017.04~2019.03, 代表者:吾郷浩樹, 九州大学 グローバルイノベーションセンター.
エピタキシャルCVD法による超高品質グラフェンの研究開発(NEDO低炭素社会を実現するナノ炭素材料実用化プロジェクト )
2015.07~2016.03, 代表者:吾郷浩樹, 九州大学 先導物質化学研究所.
グラフェンの人工血管の開発(挑戦的萌芽)
2015.04~2017.03, 代表者:吾郷浩樹, 九州大学 先導物質化学研究所.
二次元原子薄膜の積層システムの創製とナノエレクトロニクスへの展開(JSTさきがけ)
2013.10~2016.03, 代表者:吾郷浩樹, 九州大学, 九州大学
JSTさきがけ「素材・デバイス・システム融合による革新的ナノエレクトロニクスの創成」領域で研究を展開する。.
九州大学先導研-シンガポール国立大学 国際共同研究
2011.11~2014.03, 代表者:吾郷浩樹, 九州大学, 九州大学.
グラフェンの成長制御と加工プロセスを通じたカーボンエレクトロニクスへの展開(最先端・次世代研究開発支援プログラム)
2011.02~2014.03, 代表者:吾郷浩樹, 九州大学, JSPS.
カーボンナノチューブデバイス創出に向けた成長・プロセス制御(NEDOナノエレクトロニクスPJ)
2007.10~2011.03, 代表者:水谷孝, 名古屋大学
経済産業省プロジェクト「ナノエレクトロニクス半導体新材料・新構造技術開発-うち新材料・新構造ナノ電子デバイス」 に参画する。
.
トランジスタ応用を目指した高品質グラフェン薄膜の成長法の開発(最先端研究開発支援プログラム)
2010.04~2011.03, 代表者:横山直樹, 富士通研.
シリコンデバイスとの融合を可能にする水平配向カーボンナノチューブの創製(基盤(B))
2009.04~2011.03, 代表者:吾郷浩樹, 九州大学 先導物質化学研究所.
結晶表面における単層カーボンナノチューブのエピタキシャル配向成長(若手(A))
2006.04~2009.03, 代表者:吾郷浩樹, 九州大学, 九州大学
結晶表面における単層カーボンナノチューブのエピタキシャル成長の実現を試みる。.
秩序化されたカーボンナノチューブの創製と次世代半導体デバイスへの展開 (NEDO産業技術研究助成)
2006.01~2008.12, 代表者:吾郷浩樹, 九州大学, 九州大学
秩序化されたカーボンナノチューブの創製と次世代半導体デバイスへの展開を推進する。.
SWNTの電子構造/カイラリティ制御に向けた精密合成法の探索(JSTさきがけ)
2007.10~2011.03, 代表者:吾郷浩樹, 九州大学, 九州大学
JSTさきがけ研究 「ナノ製造技術の探索と展開」領域で研究を展開する。.
研究業績
主要著書
1. 吾郷浩樹・齋藤理一郎, グラフェンから広がる二次元物質の新技術と応用, NTS出版, 2020.03, [URL].
2. 吾郷 浩樹, カーボンナノチューブ・グラフェンの応用研究最前線, (株)エヌ・ティー・エス , 高品質グラフェンのCVD成長, 2016.09.
3. 吾郷 浩樹, カルコゲナイド系層状物質の最新研究, CMC出版, グラフェン上でのカルコゲナイド系層状物質のCVD成長, 2016.07.
4. Hiroki Ago, Frontiers of Graphene and Carbon Nanotubes: Devices and Applications, Springer, CVD Growth of High-Quality Single-Layer Graphene, 2015.04.
5. 吾郷 浩樹, グラフェンの最先端技術と拡がる応用展望, フロンティア出版, "エレクトロニクス応用を目指したCVD成長
-ヘテロエピタキシャル触媒によるグラフェンの高品質化-", 2012.07.
6. 吾郷浩樹, 炭素学, (株)化学同人, 基礎編 第3章 4.大環状芳香族分子, 2011.10.
7. 吾郷浩樹, カーボンナノチューブ・グラフェンハンドブック, (株)コロナ社, 第1章1-1-1[5] 水平配向SWNT, 2011.08.
8. 吾郷浩樹, 次世代ナノ・マイクロパターニングプロセス技術, サイエンス&テクノロジー株式会社, 第31章 カーボンナノチューブ成長のための金属ナノ粒子の触媒パターニング, 2006.02.
9. 吾郷浩樹, カーボンナノチューブ -ナノテバイスへの挑戦-, 化学同人, 第11章 仕事関数および半導体との接合デバイス, p.155-163., 2001.01.
10. H. Ago and T. Yamabe, The Science and Technology of Carbon Nanotubes, Elsevier Science, Oxford, UK, Frontiers in Carbon Nanotubes and Beyond, Chap. 14, p.163-183, 1999.01.
主要原著論文
1. S. Fukamachi, P. Solis-Fernandez, K. Kawahara, D. Tanaka, T. Ohtake, Y.-C. Lin, K. Suenaga, H. Ago, Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays, Nature Electronics, 10.1038/s41928-022-00911-x, 6, 126-136, 2023.02, [URL], Multilayer hexagonal boron nitride (hBN) can be used to preserve the intrinsic physical properties of other two-dimensional materials in device structures. However, integrating the material into large-scale two-dimensional heterostructures remains challenging due to the difficulties in synthesizing high-quality large-area multilayer hBN and combining it with other two-dimensional material layers of the same scale. Here we show that centimetre-scale multilayer hBN can be synthesized on iron–nickel alloy foil by chemical vapour deposition, and then used as a substrate and as a surface-protecting layer in graphene field-effect transistors. We also develop an integrated electrochemical transfer and thermal treatment method that allows us to create high-performance graphene/hBN heterostacks. Arrays of graphene field-effect transistors fabricated by conventional and scalable methods show an enhancement in room-temperature carrier mobility when hBN is used as an insulating substrate, and a further increase—up to a value of 10,000 cm2 V−1 s−1—when graphene is encapsulated with another hBN sheet..
2. H.-L. Liu, B. D. Annawati, N. T. Hung, D. P. Gulo, P. Solis-Fernandez, K. Kawahara, H. Ago, R. Saito, Interference of excitons and surface plasmons in the optical absorption spectra of monolayer and bilayer graphene, Phys. Rev. B, 10.1103/PhysRevB.107.165421, 107, 165421, 2023.03.
3. C. J. Knill, H. Yamaguchi, K. Kawahara, G. Wang, E. Batista, P. Yang, H. Ago, N. Moody, S. Karkare, Near-Threshold Photoemission from Graphene-Coated Cu(110), Phys. Rev. Appl., 10.1103/PhysRevApplied.19.014015, 19, 014015 , 2023.01.
4. T. Vincent, K. Kawahara, V. Antonov, H. Ago, O. Kazakova, Data cluster analysis and machine learning for classification of twisted bilayer graphene, Carbon, 10.1016/j.carbon.2022.09.021, 201, 141-149, 2023.01.
5. Y. Hsin, P. Solís-Fernández, H. Hibino, H. Ago, Surface etching and edge control of hexagonal boron nitride assisted by triangular Sn nanoplates, Nanoscale Adv., 10.1039/D2NA00479H, 4, 3786-3792 ,
, 2022.08.
6. Y. Araki, P. Solís-Fernández, Y.-C. Lin, A. Motoyama, K. Kawahara, M. Maruyama, G. Yanlin, R. Matsumoto, K. Suenaga, S. Okada, H. Ago, Twist angle-dependent molecular intercalation and sheet resistance in bilayer graphene, ACS Nano, 10.1021/acsnano.2c03997, 16, 9, 14075-14085 , 2022.08.
7. P. Solis-Fernandez, H. Ago, Machine learning determination of the twist angle of bilayer graphene by Raman spectroscopy: Implications for van der Waals heterostructures, ACS Appl. Nano Mater., 10.1021/acsanm.1c03928, 5, 1, 356-1366, 2022.01.
8. R. Das, P. Solís-Fernández, D. Breite, A. Prager, A. Lotnyk, A. Schulze, H. Ago, High flux and adsorption based non-functionalized hexagonal boron nitride lamellar membrane for ultrafast water purification, Chem. Eng. J., 10.1016/j.cej.2020.127721, 420, 2, 127721, 2021.09.
9. Y.-C. Lin, A. Motoyama, S. Kretschmer, S. Ghaderzadeh, M. Ghorbani-Asl, Y. Araki, A. V. Krasheninnikov, H. Ago, K. Suenaga, Polymorphic Phases of Metal Chlorides in the Confined 2D Space of Bilayer Graphene, Adv. Mater., 10.1002/adma.202105898, 33, 52, 2105898, 2021.10.
10. Y.-C. Lin, A. Motoyama, R. Matsumoto, H. Ago, K. Suenaga, Coupling and Decoupling of Bilayer Graphene Monitored by Electron Energy Loss Spectroscopy, Nano Lett., 10.1021/acs.nanolett.1c03689, 21, 24, 10386-10391, 2021.12.
11. H. Ago, S. Okada, Y. Miyata, K. Matsuda, M. Koshino, K. Ueno, K. Nagashio, Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation, Sci. Tech. Adv. Mater., 10.1080/14686996.2022.2062576, 23, 1, 275-299, 2022.02.
12. H. G. Ji, U. Erkılıç, P. Solís-Fernández, H. Ago, Stacking orientation-dependent photoluminescence pathways in artificially stacked bilayer WS2 nanosheets grown by chemical vapor deposition: Implications for spintronics and valleytronics, ACS Applied Nano Materials, 10.1021/acsanm.1c00192, 3717-3724, 2021.03.
13. Y. Uchida, K. Kawahara, S. Fukamachi, H. Ago, Chemical Vapor deposition growth of uniform multilayer hexagonal boron nitride driven by structural transformation of metal thin film, ACS Applied Electronic Materials, 10.1021/acsaelm.0c00601, 3270-3278, 2020.09.
14. U. Erkılıç, H. G. Ji, E. Nishibori, H. Ago, One-step vapour phase growth of two-dimensional formamidinium-based perovskite and its hot carrier dynamics, Physical Chemistry Chemical Physics, 10.1039/D0CP02652B, 21512-21519, 2020.08.
15. P. Solís-Fernández, Y. Terao, K. Kawahara, W. Nishiyama, T. Uwanno, Y.-C. Li, K. Yamamoto, H. Nakashima, K. Nagashio, H. Hibino, K. Suenaga, H. Ago, Isothermal Growth and Stacking Evolution in Highly Uniform Bernal-Stacked Bilayer Graphene, ACS Nano, 10.1021/acsnano.0c00645, 2020.05.
16. Alexandre Budiman Taslim, Hideaki Nakajima, Yung Chang Lin, Yuki Uchida, Kenji Kawahara, Toshiya Okazaki, Kazu Suenaga, Hiroki Hibino, Hiroki Ago, Synthesis of sub-millimeter single-crystal grains of aligned hexagonal boron nitride on an epitaxial Ni film, Nanoscale, 10.1039/c9nr03525g, 11, 31, 14668-14675, 2019.08, [URL], Hexagonal boron nitride (h-BN), an insulating two-dimensional (2D) layered material, has attracted increasing interest due to its electrical screening effect, high-temperature-resistant gas barrier properties, and other unique applications. However, the presence of grain boundaries (GBs) in h-BN is a hindrance to obtain these properties. Here, we demonstrate the epitaxial growth of monolayer h-BN by chemical vapor deposition (CVD) on Ni(111) thin films deposited on c-plane sapphire. The Ni(111) films showed higher thermal stability than Cu(111) and Cu-Ni(111) alloy films, allowing us to perform CVD growth at a high temperature of 1100 °C. This resulted in an increase of the h-BN grain sizes to up to 0.5 millimeter, among the highest reported so far, and in a well-defined triangular grain shape. Low-energy electron microscopy (LEEM) revealed the epitaxial relationship between h-BN and the underlying Ni(111) lattice, leading to a preferential alignment of the h-BN grains. Both the large grain size and the alignment are expected to facilitate the synthesis of h-BN with a low density of GBs. We also found that the addition of N2 gas during the CVD improves the crystalline shape of the h-BN grains, changing from an irregular, truncated to a sharp triangle. The growth behavior of monolayer h-BN is further discussed in terms of the dependences on growth temperature and pressure, as well as on the structural evolution of the Ni metal catalyst. Our findings not only help understand the h-BN growth mechanism but also offer a new route to grow high-quality, monolayer h-BN films..
17. Hyun Goo Ji, Pablo Solís-Fernández, Daisuke Yoshimura, Mina Maruyama, Takahiko Endo, Yasumitsu Miyata, Susumu Okada, Hiroki Ago, Chemically Tuned p- and n-Type WSe2 Monolayers with High Carrier Mobility for Advanced Electronics, Advanced Materials, 10.1002/adma.201903613, 31, 42, 2019.10, [URL], Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post-silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom-thick 2D structure. With the analogy to conventional silicon electronics, establishing a method to convert TMDC to p- and n-type semiconductors is essential for various device applications, such as complementary metal-oxide-semiconductor (CMOS) circuits and photovoltaics. Here, a successful control of the electrical polarity of monolayer WSe2 is demonstrated by chemical doping. Two different molecules, 4-nitrobenzenediazonium tetrafluoroborate and diethylenetriamine, are utilized to convert ambipolar WSe2 field-effect transistors (FETs) to p- and n-type, respectively. Moreover, the chemically doped WSe2 show increased effective carrier mobilities of 82 and 25 cm2 V−1s−1 for holes and electrons, respectively, which are much higher than those of the pristine WSe2. The doping effects are studied by photoluminescence, Raman, X-ray photoelectron spectroscopy, and density functional theory. Chemically tuned WSe2 FETs are integrated into CMOS inverters, exhibiting extremely low power consumption (≈0.17 nW). Furthermore, a p-n junction within single WSe2 grain is realized via spatially controlled chemical doping. The chemical doping method for controlling the transport properties of WSe2 will contribute to the development of TMDC-based advanced electronics..
18. Yuki Uchida, Sho Nakandakari, Kenji Kawahara, Shigeto Yamasaki, Masatoshi Mitsuhara, Hiroki Ago, Controlled Growth of Large-Area Uniform Multilayer Hexagonal Boron Nitride as an Effective 2D Substrate, ACS nano, 10.1021/acsnano.8b03055, 12, 6, 6236-6244, 2018.06, [URL], Multilayer hexagonal boron nitride (h-BN) is an ideal insulator for two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, because h-BN screens out influences from surroundings, allowing one to observe intrinsic physical properties of the 2D materials. However, the synthesis of large and uniform multilayer h-BN is still very challenging because it is difficult to control the segregation process of B and N atoms from metal catalysts during chemical vapor deposition (CVD) growth. Here, we demonstrate CVD growth of multilayer h-BN with high uniformity by using the Ni-Fe alloy film and borazine (B3H6N3) as catalyst and precursor, respectively. Combining Ni and Fe metals tunes the solubilities of B and N atoms and, at the same time, allows one to engineer the metal crystallinity, which stimulates the uniform segregation of multilayer h-BN. Furthermore, we demonstrate that triangular WS2 grains grown on the h-BN show photoluminescence stronger than that grown on a bare SiO2 substrate. The PL line width of WS2/h-BN (the minimum and mean widths are 24 and 43 meV, respectively) is much narrower than those of WS2/SiO2 (44 and 67 meV), indicating the effectiveness of our CVD-grown multilayer h-BN as an insulating layer. Large-area, multilayer h-BN realized in this work will provide an excellent platform for developing practical applications of 2D materials..
19. Kenshiro Suenaga, Hyun Goo Ji, Yung Chang Lin, Tom Vincent, Mina Maruyama, Adha Sukma Aji, Yoshihiro Shiratsuchi, Dong Ding, Kenji Kawahara, Susumu Okada, Vishal Panchal, Olga Kazakova, Hiroki Hibino, Kazu Suenaga, Hiroki Ago, Surface-Mediated Aligned Growth of Monolayer MoS2 and In-Plane Heterostructures with Graphene on Sapphire, ACS nano, 10.1021/acsnano.8b04612, 2018.01, [URL], Aligned growth of transition metal dichalcogenides and related two-dimensional (2D) materials is essential for the synthesis of high-quality 2D films due to effective stitching of merging grains. Here, we demonstrate the controlled growth of highly aligned molybdenum disulfide (MoS2) on c-plane sapphire with two distinct orientations, which are highly controlled by tuning sulfur concentration. We found that the size of the aligned MoS2 grains is smaller and their photoluminescence is weaker as compared with those of the randomly oriented grains, signifying enhanced MoS2-substrate interaction in the aligned grains. This interaction induces strain in the aligned MoS2, which can be recognized from their high susceptibility to air oxidation. The surface-mediated MoS2 growth on sapphire was further developed to the rational synthesis of an in-plane MoS2-graphene heterostructure connected with the predefined orientation. The in-plane epitaxy was observed by low-energy electron microscopy. Transmission electron microscopy and scanning transmission electron microscopy suggest the alignment of a zigzag edge of MoS2 parallel to a zigzag edge of the neighboring graphene. Moreover, better electrical contact to MoS2 was obtained by the monolayer graphene compared with a conventional metal electrode. Our findings deepen the understanding of the chemical vapor deposition growth of 2D materials and also contribute to the tailored synthesis as well as applications of advanced 2D heterostructures..
20. Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, H. Maki, High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer, Nature Communications, 1279, 2018.03.
21. Hyun Goo Ji, Yung Chang Lin, Kosuke Nagashio, Mina Maruyama, Pablo Solís-Fernández, Adha Sukma Aji, Vishal Panchal, Susumu Okada, Kazu Suenaga, Hiroki Ago, Hydrogen-Assisted Epitaxial Growth of Monolayer Tungsten Disulfide and Seamless Grain Stitching, Chemistry of Materials, 10.1021/acs.chemmater.7b04149, 30, 2, 403-411, 2018.01, [URL], Recently, research on transition metal dichalcogenides (TMDCs) has been accelerated by the development of large-scale synthesis based on chemical vapor deposition (CVD). However, in most cases, CVD-grown TMDC sheets are composed of randomly oriented grains, and thus contain many distorted grain boundaries (GBs) which deteriorate the physical properties of the TMDC. Here, we demonstrate the epitaxial growth of monolayer tungsten disulfide (WS2) on sapphire by introducing a high concentration of hydrogen during the CVD process. As opposed to the randomly oriented grains obtained in conventional growth, the presence of H2 resulted in the formation of triangular WS2 grains with the well-defined orientation determined by the underlying sapphire substrate. Photoluminescence of the aligned WS2 grains was significantly suppressed compared to that of the randomly oriented grains, indicating a hydrogen-induced strong coupling between WS2 and the sapphire surface that has been confirmed by density functional theory calculations. Scanning transmission electron microscope observations revealed that the epitaxially grown WS2 has less structural defects and impurities. Furthermore, sparsely distributed unique dislocations were observed between merging aligned grains, indicating an effective stitching of the merged grains. This contrasts with the GBs that are observed between randomly oriented grains, which include a series of 8-, 7-, and alternating 7/5-membered rings along the GB. The GB structures were also found to have a strong impact on the chemical stability and carrier transport of merged WS2 grains. Our work offers a novel method to grow high-quality TMDC sheets with much less structural defects, contributing to the future development of TMDC-based electronic and photonic applications..
22. Adha Sukma Aji, Masanori Izumoto, Kenshiro Suenaga, Keisuke Yamamoto, Hiroshi Nakashima, Hiroki Ago, Two-step synthesis and characterization of vertically stacked SnS-WS2 and SnS-MoS2 p-n heterojunctions, Physical Chemistry Chemical Physics, 10.1039/c7cp06823a, 20, 2, 889-897, 2018.01, [URL], We demonstrate the synthesis of unique heterostructures consisting of SnS and WS2 (or SnS and MoS2) by two-step chemical vapor deposition (CVD). After the first CVD growth of triangular WS2 (MoS2) grains, the second CVD step was performed to grow square SnS grains on the same substrate. We found that these SnS grains can be grown at very low temperature with the substrate temperature of 200 °C. Most of the SnS grains nucleated from the side edges of WS2 (MoS2) grains, resulting in the formation of partly stacked heterostructures with a large overlapping area. The SnS grains showed doped p-type transfer character with a hole mobility of 15 cm2 V-1 s-1, while the WS2 and MoS2 grains displayed n-type character with a high on/off ratio of >106. The SnS-WS2 and SnS-MoS2 heterostructures exhibited clear rectifying behavior, signifying the formation of p-n junctions at their interfaces. This heterostructure growth combined with the low temperature SnS growth will provide a promising means to exploit two-dimensional heterostructures by avoiding possible damage to the first material..
23. Adha Sukma Aji, Pablo Solís-Fernández, Hyun Goo Ji, Kenjiro Fukuda, Hiroki Ago, High Mobility WS2 Transistors Realized by Multilayer Graphene Electrodes and Application to High Responsivity Flexible Photodetectors, Advanced Functional Materials, 10.1002/adfm.201703448, 27, 47, 2017.12, [URL], The electrical contact is one of the main issues preventing semiconducting 2D materials to fulfill their potential in electronic and optoelectronic devices. To overcome this problem, a new approach is developed here that uses chemical vapor deposition grown multilayer graphene (MLG) sheets as flexible electrodes for WS2 field-effect transistors. The gate-tunable Fermi level, van der Waals interaction with the WS2, and the high electrical conductivity of MLG significantly improve the overall performance of the devices. The carrier mobility of single-layer WS2 increases about a tenfold (50 cm2 V−1 s−1 at room temperature) by replacing conventional Ti/Au metal electrodes (5 cm2 V−1 s−1) with the MLG electrodes. Further, by replacing the conventional SiO2 substrate with a thin (1 µm) parylene-C flexible film as insulator, flexible WS2 photodetectors that are able to sustain multiple bending stress tests without significant performance degradation are realized. The flexible photodetectors exhibited extraordinarily high gate-tunable photoresponsivities, reaching values of 4500 A W−1, and with very short (2, graphene, and the very thin polymer film will find applications in various flexible electronics, such as wearable high-performance optoelectronics devices..
24. Hiroki Kinoshita, Il Jeon, Mina Maruyama, Kenji Kawahara, Yuri Terao, Dong Ding, Rika Matsumoto, Yutaka Matsuo, Susumu Okada, Hiroki Ago, Highly Conductive and Transparent Large-Area Bilayer Graphene Realized by MoCl5 Intercalation, Advanced Materials, 10.1002/adma.201702141, 29, 41, 2017.11, [URL], Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl5) into a large-area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl5 intercalation strongly depends on the stacking order of the graphene; twist-stacked graphene shows a much higher degree of intercalation than AB-stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist-stacked graphene contributes to the effective intercalation. By selectively synthesizing twist-rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ▫−1) is realized after MoCl5 intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency..
25. Pablo Solís-Fernández, Mark Bissett, Hiroki Ago, Synthesis, structure and applications of graphene-based 2D heterostructures, Chemical Society Reviews, 10.1039/c7cs00160f, 46, 15, 4572-4613, 2017.08, [URL], With the profuse amount of two-dimensional (2D) materials discovered and the improvements in their synthesis and handling, the field of 2D heterostructures has gained increased interest in recent years. Such heterostructures not only overcome the inherent limitations of each of the materials, but also allow the realization of novel properties by their proper combination. The physical and mechanical properties of graphene mean it has a prominent place in the area of 2D heterostructures. In this review, we will discuss the evolution and current state in the synthesis and applications of graphene-based 2D heterostructures. In addition to stacked and in-plane heterostructures with other 2D materials and their potential applications, we will also cover heterostructures realized with lower dimensionality materials, along with intercalation in few-layer graphene as a special case of a heterostructure. Finally, graphene heterostructures produced using liquid phase exfoliation techniques and their applications to energy storage will be reviewed..
26. Yuki Uchida, Tasuku Iwaizako, Seigi Mizuno, Masaharu Tsuji, Hiroki Ago, Epitaxial chemical vapour deposition growth of monolayer hexagonal boron nitride on a Cu(111)/sapphire substrate, Physical Chemistry Chemical Physics, 10.1039/c6cp08903h, 19, 12, 8230-8235, 2017.02, [URL], Hexagonal boron nitride (h-BN), an atomically thin insulating material, shows a large band gap, mechanical flexibility, and optical transparency. It can be stacked with other two-dimensional (2D) materials through van der Waals interactions to form layered heterostructures. These properties promise its application as an insulating layer of novel 2D electronic devices due to its atomically smooth surface with a large band gap. Herein, we demonstrated the ambient-pressure chemical vapour deposition (CVD) growth of high-quality, large-area monolayer h-BN on a Cu(111) thin film deposited on a c-plane sapphire using ammonia borane (BH3NH3) as the feedstock. Highly oriented triangular h-BN grains grow on Cu(111), which finally coalescence to cover the entire Cu surface. Low-energy electron diffraction (LEED) measurements indicated that the hexagonal lattice of the monolayer h-BN is well-oriented along the underlying Cu(111) lattice, thus implying the epitaxial growth of h-BN, which can be applied in various 2D electronic devices..
27. Dong Ding, Pablo Solís-Fernández, Hiroki Hibino, Hiroki Ago, Spatially Controlled Nucleation of Single-Crystal Graphene on Cu Assisted by Stacked Ni, ACS Nano, 10.1021/acsnano.6b06265, 10, 12, 11196-11204, 2016.12, [URL], In spite of recent progress of graphene growth using chemical vapor deposition, it is still a challenge to precisely control the nucleation site of graphene for the development of wafer-scale single-crystal graphene. In addition, the postgrowth patterning used for device fabrication deteriorates the quality of graphene. Herein we demonstrate the site-selective nucleation of single-crystal graphene on Cu foil based on spatial control of the local CH4 concentration by a perforated Ni foil. The catalytically active Ni foil acts as a CH4 modulator, resulting in millimeter-scale single-crystal grains at desired positions. The perforated Ni foil also allows to synthesize patterned graphene without any postgrowth processing. Furthermore, the uniformity of monolayer graphene is significantly improved when a plain Ni foil is placed below the Cu. Our findings offer a facile and effective way to control the nucleation of high-quality graphene, meeting the requirements of industrial processing..
28. Yuichiro Takesaki, Kenji Kawahara, Hiroki Hibino, Susumu Okada, Masaharu Tsuji, Hiroki Ago, Highly Uniform Bilayer Graphene on Epitaxial Cu-Ni(111) Alloy, Chemistry of Materials, 10.1021/acs.chemmater.6b01137, 28, 13, 4583-4592, 2016.07, [URL], Band gap opening in bilayer graphene (BLG) under a vertical electric field is important for the realization of high performance graphene-based semiconductor devices, and thus, the synthesis of uniform and large-area BLG is required. Here we demonstrate the synthesis of a highly uniform BLG film by chemical vapor deposition (CVD) over epitaxial Cu-Ni (111) binary alloy catalysts. The relative concentration of Ni and Cu as well as the growth temperature and cooling profile was found to strongly influence the uniformity of the BLG. In particular, a slow cooling process after switching off the carbon feedstock is important for obtaining a uniform second layer, covering more than 90% of the total area. Moreover, low-energy electron microscopy (LEEM) study revealed the second layer grows underneath the first layer. We also investigated the stacking order by Raman spectroscopy and LEEM and found that 70-80% of bilayer graphene has Bernal stacking. The metastable 30°-rotated orientations were also observed both in the upper and lower layers. From our experimental observations, a new growth mode is proposed; the first layer grows during the CH4 supply on Cu-Ni alloy surface, while the second layer is segregated from the bulk alloy during the cooling process. Our work highlights the growth mechanism of BLG and offers a promising route to synthesize uniform and large-area BLG for future electronic devices..
29. Hiroki Ago, Satoru Fukamachi, Hiroko Endo, Pablo Solís-Fernández, Rozan Mohamad Yunus, Yuki Uchida, Vishal Panchal, Olga Kazakova, Masaharu Tsuji, Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides, ACS Nano, 10.1021/acsnano.5b05879, 10, 3, 3233-3240, 2016.03, [URL], The presence of grain boundaries in two-dimensional (2D) materials is known to greatly affect their physical, electrical, and chemical properties. Given the difficulty in growing perfect large single-crystals of 2D materials, revealing the presence and characteristics of grain boundaries becomes an important issue for practical applications. Here, we present a method to visualize the grain structure and boundaries of 2D materials by epitaxially growing transition metal dichalcogenides (TMDCs) over them. Triangular single-crystals of molybdenum disulfide (MoS2) epitaxially grown on the surface of graphene allowed us to determine the orientation and size of the graphene grains. Grain boundaries in the polycrystalline graphene were also visualized reflecting their higher chemical reactivity than the basal plane. The method was successfully applied to graphene field-effect transistors, revealing the actual grain structures of the graphene channels. Moreover, we demonstrate that this method can be extended to determine the grain structure of other 2D materials, such as tungsten disulfide (WS2). Our visualization method based on van der Waals epitaxy can offer a facile and large-scale labeling technique to investigate the grain structures of various 2D materials, and it will also contribute to understand the relationship between their grain structure and physical properties..
30. Pablo Solís-Fernández, Susumu Okada, Tohru Sato, Masaharu Tsuji, Hiroki Ago, Gate-Tunable Dirac Point of Molecular Doped Graphene, ACS Nano, 10.1021/acsnano.6b00064, 10, 2, 2930-2939, 2016.02, [URL], Control of the type and density of charge carriers in graphene is essential for its implementation into various practical applications. Here, we demonstrate the gate-tunable doping effect of adsorbed piperidine on graphene. By gradually increasing the amount of adsorbed piperidine, the graphene doping level can be varied from p-to n-type, with the formation of p-n junctions for intermediate coverages. Moreover, the doping effect of the piperidine can be further tuned by the application of large negative back-gate voltages, which increase the doping level of graphene. In addition, the electronic properties of graphene are well preserved due to the noncovalent nature of the interaction between piperidine and graphene. This gate-tunable doping offers an easy, controllable, and nonintrusive method to alter the electronic structure of graphene..
31. Rozan M. Yunus, Hiroko Endo, Masaharu Tsuji, Hiroki Ago, Vertical heterostructure of MoS2 and graphene nanoribbons by two-step chemical vapor deposition for high-gain photodetectors, Physical Chemistry Chemical Physics, 17, 25210-25215, 2015.09.
32. Hiroki Ago, Yujiro Ohta, Hiroki Hibino, Daisuke Yoshimuara, Rina Takizawa, Yuki Uchida, Masaharu Tsuji, Toshihiro Okajima, Hisashi Mitani, Seigi Mizuno, Growth Dynamics of Single-Layer Graphene on Epitaxial Cu Surfaces, CHEMISTRY OF MATERIALS, 10.1021/acs.chemmater.5b01871, 27, 15, 5377-5385, 2015.08.
33. Hiroki Ago, Hiroko Endo, SOLIS FERNANDEZ PABLO, Rina Takizawa, Yujiro Ohta, Yusuke Fujita, Kazuhiro Yamamoto, Masaharu Tsuji, Controlled van der Waals Epitaxy of Monolayer MoS2 Triangular Domains on Graphene, ACS Applied Materials & Interfaces, 7, 9, 5265-5273, 2015.02.
34. Hiroki Ago, Rozan M. Yunus, Masahiro Miyashita, SOLIS FERNANDEZ PABLO, Masaharu Tsuji, Hiroki Hibino, Formation of Oriented Graphene Nanoribbons over Heteroepitaxial Cu Surfaces by Chemical Vapor Deposition, CHEMISTRY OF MATERIALS, 10.1021/cm501854r, 26, 18, 5215-5222 , 2014.09.
35. Yui Ogawa, Katsuyoshi Komatsu, Kenji Kawahara, Masaharu Tsuji, Kazuhito Tsukagoshi, Hiroki Ago, Structure and transport properties of the interface between CVD-grown graphene domains, Nanoscale, 6, 13, 7288-7294, 2014.07.
36. Hiroki Ago, Izumi Tanaka, Yui Ogawa, Rozan M. Yunus, Masaharu Tsuji, Hiroki Hibino, Strain Engineering the Properties of Graphene and Other Two-Dimensional Crystals, ACS Nano, 10825-10833, 2014.04.
37. Hiroki Ago, Izumi Tanaka, Yui Ogawa, Rozan M. Yunus, Masaharu Tsuji, Hiroki Hibino, Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films, ACS Nano, 7, 12, 10825-10833, 2013.12.
38. MARK ALEXANDER BISSETT, Satoru Konabe, Susumu Okada, Masaharu Tsuji, Hiroki Ago, Enhanced chemical reactivity of graphene induced by mechanical strain, ACS Nano, 7, 11, 10335-10343, 2013.11.
39. SOLIS FERNANDEZ PABLO, Kazuma Yoshida, Yui Ogawa, Masaharu Tsuji, Hiroki Ago, Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene, Advanced Materials, 25, 45, 6562-6568, 2013.12.
40. Hiroki Ago, Kenji Kawahara, Yui Ogawa, Shota Tanoue, MARK ALEXANDER BISSETT, Masaharu Tsuji, Hidetsugu Sakaguchi, Roland J. Koch, Felix Fromm, Thomas Seyller, Katsuyoshi Komatsu, Kazuhito Tsukagoshi, Epitaxial growth and electronic properties of large hexagonal graphene domains on Cu(111) thin film, Applied Physics Express, 6, 7, 75101-1-75101-4, 2013.07.
41. MARK ALEXANDER BISSETT, Wataru Izumida, Riichiro Saito, Hiroki Ago, Effect of domain boundaries on the Raman spectra of mechanically strained graphene, ACS Nano, 6, 11, 10229-10238, 2012.10.
42. Hiroki Ago, Yui Ogawa, Masaharu Tsuji, Seigi Mizuno, Hiroki Hibino, Catalytic growth of graphene: towards large-area single-crystalline graphene, J. Phys. Chem. Lett., 3, 16, 2228-2236, 2012.08.
43. Hiroki Ago, Yoshito Ito, Masaharu Tsuji, Ken-ichi Ikeda, Step-templated CVD growth of aligned graphene nanoribbons supported by single-layer graphene film, Nanoscale, 4, 16, 5178-5182, 2012.08.
44. Y. Ogawa, B. Hu, C. M. Orofeo, M. Tsuji, K. Ikeda, S. Mizuno, H. Hibino, H. Ago, Domain structure and boundary in single-layer graphene grown on Cu (111) and Cu (100) films, J. Phys. Chem. Lett., 3, 2, 219-226, 2012.01.
45. B. Hu, H. Ago,* Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K. Ikeda, S. Mizuno, Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD, Carbon, 50, 1, 57-65, 2012.01.
46. H. Ago, T. Ayagaki, Y. Ogawa, M. Tsuji, Ultra-high vacuum-assisted control of metal nanoparticles for horizontally-aligned single-walled carbon nanotubes with extraordinary uniform diameters, J. Phys. Chem. C, 115, 27, 13247-13253, 2011.07.
47. C. M. Orofeo, H. Ago, B. Hu, M. Tsuji, Synthesis of large-area, homogeneous, single layer graphene by annealing amorphous carbon on Co and Ni, Nano Res., 4, 6, 531-540, 2011.06.
48. H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C. M. Orofeo, M. Tsuji, K. Ikeda, S. Mizuno, Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire, ACS Nano, 4, 12, 7407-7414, 2010.12.
49. H. Ago, T. Nishi, K. Imamoto, N. Ishigami, M. Tsuji, T. Ikuta, K. Takahashi , Orthogonal growth of horizontally-aligned single-walled carbon nanotube arrays, J. Phys. Chem. C, 114, 30, 12925-12930, 2010.08.
50. H. Ago, I. Tanaka, M. Tsuji, K. Ikeda, Patterned growth of graphene over epitaxial catalyst, Small, 6, 11, 1226-1233, 2010.06.
51. H. Ago, K. Imamoto, T. Nishi, M. Tsuji, T. Ikuta, and K. Takahashi, Direct growth of bent carbon nanotubes on surface engineered sapphire, J. Phys. Chem. C, 113(30), 13121-13124., 2009.07.
52. N. Yoshihara, H. Ago, M. Tsuji, T. Ikuta, and K. Takahashi, Horizontally aligned growth of single-walled carbon nanotubes on surface modified silicon wafer, J. Phys. Chem. C, 113(19), 8030-8034, 2009.05.
53. C. M. Orofeo, H. Ago,* N. Yoshihara, and M. Tsuji, Top-down approach to align single-walled carbon nanotubes on silicon substrate, Appl. Phys. Lett., 94(5), 053113-1-3, 2009.02.
54. N. Ishigami, H. Ago, T. Nishi, K. Ikeda, M. Tsuji, T. Ikuta, and K. Takahashi , Unidirectional growth of single-walled carbon nanotubes, J. Am. Chem. Soc. , 130(51), 17264-17265, 2008.12.
55. N. Ishigami, H. Ago, K. Imamoto, M. Tsuji, K. Iakoubovskii, and N. Minami, Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire, J. Am. Chem. Soc., 130(30), 9918-9924 (2008). , 2008.07.
56. H. Ago, N. Ishigami, N. Yoshihara, K. Imamoto, K. Ikeda, M. Tsuji, T. Ikuta, and K. Takahashi, Visualization of horizontally-aligned single-walled carbon nanotube growth with 13C/12C isotopes, J. Phys. Chem. C, J. Phys. Chem. C (Letter), 112(6), 1735-1738 (2008.2). selected as cover, 2008.02.
57. N. Ishigami, H. Ago, Y. Motoyama, M. Takasaki, M. Shinagawa, K. Takahashi, K. Takahashi, and M. Tsuji, Microreactor utilizing a vertically-aligned carbon nanotube array grown inside the channels, Chem. Commun., 1626-1628, 2007.03.
58. H. Ago, K. Imamoto, N. Ishigami, R. Ohdo, K. Ikeda, and M. Tsuji, Competition and cooperation between lattice-oriented growth and step-templated growth on aligned carbon nanotubes on sapphire, Appl. Phys. Lett., 90(12), 123112-1-3, 2007.03.
59. H. Ago, N. Uehara, N. Yoshihara, M. Tsuji, M. Yumura, N. Tomonaga, and T. Setoguchi, Gas analysis of CVD process for high yield growth of carbon nanotubes over metal-supported catalysts, Carbon, 44(14), 2912-2918 , 2006.11.
60. H. Ago, K. Nakamua, K. Ikeda, N. Uehara, N. Ishigami, and M. Tsuji, Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface, Chem. Phys. Lett., 10.1016/j.cplett.2005.04.054, 408, 4-6, 433-438, 408(4-6), 433-438 (2005)., 2005.06.
61. H. Ago, S. Imamura, T. Okazaki, T. Saito, M. Yumura, and M. Tsuji, CVD growth of single-walled carbon nanotubes with a narrow diameter distribution and their optical properties", J. Phys. Chem. B, 10.1021/jp050307q, 109, 20, 10035-10041, 109(20), 10035-10041 (2005)., 2005.05.
62. H. Ago, S. Ohshima, K. Tsukagoshi, M. Tsuji, and M. Yumura, Formation mechanism of carbon nanotubes in the gas-phase synthesis from colloidal solutions of nanoparticles, Curr. Appl. Phys., 10.1016/j.cap.2004.06.004, 5, 2, 128-132, 5(2), 128-132 (2005)., 2005.02.
63. H. Ago, K. Nakamura, N. Uehara, and M. Tsuji, Roles of meal-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO, J. Phys. Chem. B, 108 (49), 18908-18915 (2004)., 2004.12.
64. H. Ago, K. Nakamura, S. Imamura, and M. Tsuji, Growth of double-wall carbon nanotube with diameter-controlled iron oxide nanoparticles supported on MgO, Chemical Physics Letters, 10.1016/j.cplett.2004.04.110, 391, 4-6, 308-313, 391(4-6), 308-313 (2004)., 2004.06.
65. Y. Zhang, H. Ago, J. Liu, M. Yumura, K. Uchida S. Ohshima, S. Iijima, J. Zhu, X. Zhang, The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled, Journal of Crystal Growth, 264, 363-368 (2004)., 2004.04.
66. H. Ago, J. Qi, K. Tsukagoshi, K. Murata, S. Ohshima, Y. Aoyagi, and M. Yumura, Catalytic growth of carbon nanotubes and their patterning based on ink-jet and lithographic techniques, Journal of Electroanalytical Chemistry, 559, 25-30 (2003)., 2003.11.
67. H. Ago, K. Murata, M. Yumura, J. Yotani, and S. Uemura, Ink-Jet Printing of Nanoparticle Catalyst for Site-Selective Carbon Nanotube Growth, Applied Physics Letters, 82(5), 811-813 (2003)., 2003.02.
68. T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, and M. Yumura, Polymer Composites of Carbon Nanotubes Aligned by a Magnetic Field, Advanced Materials, 14(19), 1380-1383 (2002)., 2002.10.
69. H. Ago, S. Ohshima, K. Uchida, T. Komatsu, and M. Yumura, Carbon nanotube synthesis using colloidal solution of metal nanoparticles, Physica B, 323(1-4), 306-307 (2002)., 2002.10.
70. H. Ago, S. Ohshima, K. Uchida, and M. Yumura, Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles, The Journal of Physical Chemistry B, 105(43), 10453-10456 (2001)., 2001.11.
71. H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, and M. Yumura, Dispersion of metal nanoparticles for aligned multiwall carbon nanotube arrays, Applied Physics Letters, 77(1), 79-81 (2000)., 2000.07.
72. H. Ago, M. S. P. Shaffer, D.S. Ginger, A. H. Windle, and R. H. Friend, Electronic interaction bewteen photo-excited poly(p-phenylene vinylene) and carbon nanotubes, Physical Review B, 61(3), 2286-2290 (2000)., 2000.01.
73. H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, Composites of carbon nanotubes and conjugated polymers for photovoltaic devices, Advanced Materials, 11(15), 1281-1285 (1999)., 1999.10.
74. K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature, 401, 572-574 (1999)., 1999.10.
75. H. Ago, Th. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, Work functions and surface functional groups of multiwall carbon nanotubes, The Journal of Physical Chemistry B, 103(38), 8116-8121 (1999)., 1999.09.
76. H. Ago, M. Kato, K. Yahara, K. Yoshizawa, K. Tanaka, and T. Yamabe, Ab initio study on interaction and stability of lithium-doped amorphous carbons, Journal of the Electrochemical Society, 146(4), 1262-1269 (1999)., 1999.04.
77. H. Ago, K. Tanaka, T. Yamabe, T. Miyoshi, K. Takegoshi, T. Terao, S. Yata, Y. Hato, and N. Ando, Structural analysis of polyacenic semiconductor (PAS) materials with 129Xe NMR measurements, Carbon, 35, 1781-1787 (1997)., 1997.12.
78. H. Ago, K. Tanaka, T. Yamabe, K. Takegoshi, T. Terao, S. Yata, Y. Hato, and N. Ando, 7Li NMR study of Li-doped polyacenic semiconductor (PAS) materials, Synthetic Metals, 89, 141 (1997)., 1997.08.
79. H. Ago, K. Nagata, K. Yoshizawa, K. Tanaka, and T. Yamabe, Theoretical study of Li-doped polycyclic aromatic hydrocarbons, Bulletin of the Chemical Society of Japan, 70, 1717-1726 (1997)., 1997.07.
80. H. Ago, T. Kuga, T. Yamabe, K. Tanaka, A. Kunai, and M. Ishikawa, Electronic properties of p-type doped copolymers consisting of oligothienylene and disilanylene units, Chemistry of Materials, 9, 1159-1165 (1997)., 1997.05.
81. H. Ago, T. Kuga, T. Yamabe, K. Tanaka, S. Yata, Y. Hato, and N. Ando, ESR study of alkali-doped polyacenic semiconductor (PAS) materials prepared by
thermal decomposition of azides, Carbon, 35, 651-656 (1997)., 1997.12.
主要総説, 論評, 解説, 書評, 報告書等
1. 吾郷 浩樹、平良 隆信, 高品質グラフェンのCVD成長と成長過程の可視化技術, 表面と真空(日本表面真空学会), 65(4), 177-183, 2022.04.
2. 吾郷 浩樹, 二次元物質から2.5次元物質科学へ, 応用物理(応用物理学会誌), 90(10), 617-622, 10.11470/oubutsu.90.10_617, 2021.10.
3. 吾郷 浩樹, グラフェンをはじめとする二次元材料の製膜技術と応用研究, 光技術コンタクト(日本オプトメカトロニクス協会), 56(2), 3-11 (2018), 2018.02.
4. 吾郷 浩樹, エレクトロニクス応用を目指した高結晶性グラフェンのCVD成長と将来展望, NEW DIAMOND(ニューダイヤモンドフォーラム編), 32(1), 15-20 (2016)., 2016.01.
5. 吾郷 浩樹, 河原憲治, 熱CVD法による単結晶グラフェンへの挑戦, 化学工業(化学工業社), 65(2), 128-133 (2014), 2014.02.
6. 吾郷 浩樹, グラフェンのCVD成長, 応用物理(応用物理学会誌), 82(12), 1030-1036 (2013), 2013.12.
7. 吾郷 浩樹, CVD法によるグラフェンの成長, 触媒(触媒学会誌), 54(6), 382-385(2012), 2012.10.
8. 小川友以,吾郷浩樹 , 高品質グラフェンの合成法の開発, 化学工業(化学工業社), 63(2), 130- 134 (2012), 2012.02.
9. 吾郷浩樹, カーボンナノチューブの水平配向成長 集積化への新しい可能性 シリコンLSIとの融合も期待, Semiconductor FPD World(プレスジャーナル社), 2008.12.
主要学会発表等
1. 吾郷浩樹, エレクトロニクス応用を目指した2.5次元物質の研究開発, 第28回 電子デバイス界面技術研究会, 2023.03.
2. 吾郷浩樹, グラフェンの次元性拡張へ:二層グラフェンの選択成長と二次元ナノ空間、そして積層の科学, 第49回炭素材料学会, 2022.12.
3. Hiroki Ago, From 2D materials to 2.5D materials science, RPGR2022 (Recent Progress in Graphene and Two-Dimensional Materials Research Conference), 2022.11.
4. Hiroki Ago, Twist angle-dependent molecular intercalation and carrier transport in bilayer graphene, 12th A3 Symposium on Emerging Materials, 2022.11.
5. 吾郷浩樹, グラフェンの合成・物性・応用、そして2.5次元物質への広がり, 炭素材料学会基礎講習会, 2022.10.
6. Hiroki Ago, From 2D materials to 2.5D materials science, 第41回電子材料シンポジウム(EMS41) , 2022.10.
7. 吾郷浩樹, 二次元物質の魅力とこれからの展望:2.5次元物質科学への展開, 東京大学 第7回CURIEセミナー, 2022.08.
8. Hiroki Ago, Science of 2.5-Dimensional Materials: Controlled Growth, Integration, and Applications of 2D Materials, IUMRS-ICAM2022, 2022.08.
9. 吾郷浩樹, 二次元物質から「2.5次元物質」の創出へ, 光電相互変換第125委員会 第260回研究会「2次元層状物質のデバイス創出に向けて」, 2022.07.
10. 吾郷浩樹, 六方晶窒化ホウ素のCVD成長から2.5次元物質科学へ, 化学工学会 反応工学部会 第36回CVDシンポジウム, 2022.07.
11. Hiroki Ago, Science of 2.5 Dimensional Materials, Users' Meeting of Brookhaven National Laboratory "2D Materials and Beyond (Workshop 7), 2022.05.
12. H. Ago, 2.5-Dimensional Materials Science: Controlled Growth, Integration, and Applications of Graphene and h-BN, ISPlasma2022, 2022.03.
13. 吾郷浩樹, From two-dimensional materials to 2.5-dimensional materials science(二次元物質から2.5次元物質科学へ), 第62回 フラーレン・ナノチューブ・グラフェン総合シンポジウム, 2022.03.
14. H. Ago, Bilayer graphene: CVD growth, machine learning-based analysis, and intercalation, The 9th International Workshop on 2D Materials, 2022.02.
15. H. Ago, Bilayer graphene: CVD growth, machine learning-based analysis, and intercalation, 11th Asian Nanomaterials symposium (A3), 2021.12.
16. 吾郷浩樹, 二次元物質のCVD成長と機能化, 日本学術振興会 分子系の複合電子機能第181委員会, 2021.11.
17. 吾郷浩樹, 二次元物質の高品質CVD成長とデバイス応用への展開, 第30回 ポリマー材料フォーラム, 2021.11.
18. 吾郷浩樹, 究極の表面物質、2次元物質の科学とフロンティア, 表面・界面構造セミナー, 2021.03.
19. 吾郷浩樹, グラフェンとh-BNのCVD成長から広がる二次元物質研究, 2021年第68回応用物理学会春季学術講演会, 2021.03.
20. H. Ago, Highly Controlled CVD Synthesis of Monolayer and Multilayer h-BN for 2D Materials Applications, Graphene2020, 2020.10.
21. 吾郷浩樹, グラフェンの合成・物性・応用、そして二次元物質への広がり, 炭素材料学会基礎講習会, 2020.10.
22. 吾郷浩樹, シンポジウム「二次元物質科学:二次元物質とその集積化が拓く新しい科学と応用」はじめに , 2020年第67回応用物理学会春季学術講演会, 2020.09.
23. H. Ago, Synthesis of high-quality 2D materials for electronic applications, 2020 VLSI-TSA (VLSI: Technology, Systems and Applications), 2021.08.
24. H. Ago, Syntheses and growth mechanisms of 2D materials, A3 Foresight Program, 2020.07.
25. H. Ago, Controlled synthesis and processing of 2D materials for future applications, 1 & 2DM Conference and Exhibition 2020, 2020.01.
26. H. Ago, Controlled synthesis of 2D materials and their heterostructures for device applications, The 3rd Workshop on Functional Materials Science, 2019.12.
27. H. Ago, Controlled CVD growth of high-quality 2D layered materials for electronic and photonic applications, Materials Research Meeting 2019, 2019.12.
28. 吾郷浩樹, 二次元原子膜の結晶成長とその展開, 2019年日本表面真空学会学術講演会, 2019.10.
29. H. Ago, Controlled CVD growth of high-quality 2D materials and their heterostructures for electronic applications, 10th A3 Symposium on Emerging Materials: Nanomaterials for Electronics, Energy and Environment, 2019.10.
30. H. Ago, Controlled CVD growth of high-quality 2D materials and their heterostructures for electronic applications, RPGR2019 (Recent Progress in Graphene and 2D Materials Research), 2019.10.
31. H. Ago, Controlled CVD Growth of High-Quality 2D Materials and Their Heterostructures for Device Applications, SSDM2019 (Solid State Devices and Materials 2019), 2019.09.
32. 吾郷浩樹, グラフェンをはじめとした二次元原子膜のCVD成長とその展開, 第12回 酸化グラフェン研究会, 2019.06.
33. H. Ago, Controlled synthesis of high-quality 2D materials for device applications, 2019 Symposia on VLSI Technology and Circuits, 2019.06.
34. 吾郷浩樹, 二次元材料の高品質CVD成長, 日本物理学会 第74回年次大会, 2019.03.
35. 吾郷浩樹, エピタキシャルCVD法に基づく高品質二次元材料の創製と応用開発に向けた取り組み, グラフェンコンソーシアム 第19回研究講演会, 2019.03.
36. H. Ago, Controlled CVD synthesis of high-quality 2D materials for electronic and photonic applications, 3rd EU-JP Flagship Workshop on Graphene & 2DMs, 2018.11.
37. H. Ago, Controlled CVD synthesis of high-quality 2D materials for electronic and photonic applications, First International Workshop on 2D Materials, 2018.11.
38. H. Ago, CVD Growth of large-area, uniform multilayer h-BN as a platform of 2D material applications, 9th A3 Symposium on Emerging Materials: Nanomaterials for Electronics, Energy and Environment, 2018.10.
39. 吾郷浩樹, グラフェンのCVD成長と応用開発、そして二次元材料への展開, 近畿化学協会講演会「炭素系先端材料の新展開」, 2018.10.
40. 吾郷浩樹, グラフェンをはじめとする二次元材料のCVD成長と生成機構, 化学工学会 第50 回秋季大会, 2018.09.
41. H. Ago, Controlled synthesis of high-quality 2D materials for electronic and photonic applications, IUMRS-IECM 2018 (International Conference on Electronic Materials 2018), 2018.08.
42. H. Ago, Controlled growth of high-quality graphene and various 2D materials for enhancing their applications, CIMTEC 2018 (International Conference on Modern Materials and Technologies), 2018.06.
43. 吾郷浩樹, 高結晶性2DマテリアルのCVD成長, 2018年 第65回応用物理学会春季学術講演会 , 2018.03.
44. 吾郷浩樹, グラフェンをはじめとする二次元材料の合成と応用展開, H29年度埼玉県ナノカーボン人材育成プログラム, 2017.12.
45. H. Ago, Syntheses and applications of bilayer and multilayer graphene, 8th A3 Symposium on Emerging Materials, 2017.10.
46. 吾郷浩樹, グラフェンをはじめとした二次元材料の結晶成長と機能化・応用探索, 応用物理学会・応用電子物性分科会 研究例会「二次元層状物質研究の最前線」, 2017.10.
47. H. Ago, Exploring the Growth of High-Quality Graphene, Related 2D Materials, and Their Heterostructures for Electronic Applications, 2017 NEA Symposium of Emerging Materials Innovation(第19回北東アジアシンポジウム), 2017.10.
48. H. Ago, High-quality graphene and related 2D materials for future IoT society, IUMRS-ICAM 2017 (The 15th International Conference on Advanced Materials), 2017.08.
49. H. Ago, Crystal growth and device applications of two-dimensional layered materials, AM-FPD'17 (24th Intenational Workshop on Active-Matrix Flatpanel Displays and Devices), 2017.07.
50. 吾郷浩樹, CVD法による二次元原子薄膜の結晶成長, 2017年日本結晶成長学会特別講演会 「ブレークスルーをもたらす結晶成長技術 ―ナノスケール制御による新機能発現―」, 2017.06.
51. H. Ago, Syntheses of high-quality graphene and related 2D materials for enhancing their applications, Graphene EU Flagship-Japan Second Workshop, 2017.05.
52. H. Ago, Exploring the growth of high-quality graphene and 2D heterostructures for electronic applications, The 6th International Symposium on Micro and Nano Technology, 2017.03.
53. H. Ago, Synthesis and application of graphene and 2D heterostructures, ISPlasma2017/IC-PLANTS2017, 2017.03.
54. H. Ago, Epitaxial Growth of Graphene and Related 2D Materials for Electronic Applications, The 6th NIMS-UR1-CNRS-SG Workshop, 2016.10.
55. 吾郷浩樹, 二次元原子膜のCVD成長とそのフロンティア, 第7回 分子アーキテクトニクス研究会, 2016.10.
56. H. Ago, Synthesis and processing of graphene and related 2D materials for electronic applications, 4th Malaysia 2D Materials and Carbon Nanotube Workshop (2DMC2016), 2016.10.
57. 吾郷浩樹, 二次元物質のCVD成長とそのフロンティア, 第77回 応用物理学会秋季学術講演会 シンポジウム「機能性原子薄膜材料の新展開-成膜技術-」, 2016.09.
58. 吾郷浩樹, 高度に制御されたグラフェンのCVD成長とヘテロ構造への展開, 学振167委員会(ナノプローブテクノロジー)研究会 「二次元層状物質の新展開」, 2016.07.
59. H. Ago, Vertical and In-Plane Heterostructures of Graphene and MoS2, IUMRS-IECM2016 (IUMRS International Conference on Electronic Materials), 2016.03.
60. 吾郷浩樹, 熱CVD法によるグラフェンなどの二次元原子薄膜の創製とその成長メカニズム, 資源・素材学会 平成28年度春季大会, 2016.03.
61. 吾郷浩樹, グラフェン  ― CVD成長と評価、そして応用 ―, 第50回フラーレン・ナノチューブ・グラフェン総合シンポジウム, 2016.02.
62. 吾郷浩樹, グラフェンからはじまる二次元材料の新たな世界, ナノテク展2016 ナノ学会シンポジウム, 2016.12.
63. H. Ago, ”Exploring the growth of graphene and related 2D materials for electronic applications, Pacifichem2015 (Carbon Nanotubes: Preparation, Characterization and Applications), 2015.12.
64. H. Ago, Epitaxial CVD Growth of High-Quality Graphene and Recent Development of 2D Heterostructures, IEDM 2015 (International Electron Devices Meeting 2015), 2015.12.
65. H. Ago, H. Endo, Y. Shiratsuchi, R. M. Yunus, S. Fukamachi, P. Solís Fernández, K. Kawahara, K. Yamamoto, M. Tsuji, H. Hibino, Vertical and in-plane heterostructures of graphene and MoS2, The 6th A3 Symposium on Emerging Materials, 2015.11.
66. H. Ago, Exploring the growth of graphene and related 2D materials for electronic applications, 1st EU-Japan Workshop on Graphene and Related 2D Material, 2015.10.
67. H. Ago, Exploring the Growth of Graphene and Related 2D Materials for Electronic Applications, 11th International Conference of Pacific Rim Ceramic Societies (PacRim-11), 2015.09.
68. H. Ago, Synthesis, Characterization, and Applications of Single- and Double-Layer Graphene Grown on Epitaxial Metal Films, 227th ECS Meeting, 2015.03.
69. 吾郷 浩樹, Exploring the growth of graphene and related 2D materials for electronic applications, 北海道大学電子科学研究所 シンポジウム「響」, 2014.12.
70. 吾郷 浩樹, 究極的な原子膜 グラフェンの単結晶成長に向けて, 第4回CSJ化学フェスタ2014「ナノカーボン -未来を豊かにする技術の集い!-」, 2014.10.
71. 吾郷 浩樹, Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu(111) Thin Film, 第75回応用物理学会秋季学術講演会, 2014.09.
72. 吾郷 浩樹, グラフェンのCVD成長と最近の展開, 日本物理学会2014年秋季大会 シンポジウム「原子層科学の現状と未来:物理、化学、工学への展開」, 2014.09.
73. 吾郷 浩樹, グラフェンをはじめとした二次元原子膜のCVD成長, 表面科学会研究会 「原子膜研究の最前線」, 2014.07.
74. 吾郷 浩樹, エレクトロニクス応用を目指した高品質グラフェンの触媒成長, 日本化学会春季年会 中長期テーマシンポジウム 「エレクトロニクスの新パラダイム-二次元機能性薄膜を基軸とする超低消費電力デバイスの開発-」, 2014.03.
75. 吾郷 浩樹, ナノカーボン(グラフェン、カーボンナノチューブ)の成長機構とその制御, 第42回薄膜・表面物理基礎講座 「薄膜の成長過程の解明と制御:薄膜のナノ構造を自由に制御するために」, 2013.11.
76. 吾郷 浩樹, グラフェンのエピタキシャルCVD成長とドメイン構造, 日本物理学会年次大会 領域9シンポジウム「二次元物質の成長過程」, 2013.09.
77. Yui Ogawa, Kenji Kawahara, Masahiro Miyashita, Masaharu Tsuji, Katsuyoshi Komatsu, Kazuhito Tsukagoshi, Hiroki Ago, Transport properties and defects at the intersection of CVD graphene domains, SSDM2013 (International Conference on Solid State Devices and Materials), 2013.09.
78. Hiroki Ago, Graphene and nanoribbons: epitaxial CVD growth, processing, and applications, 2013 JSAP-MRS Joint Symposia, 2013.09.
79. 吾郷 浩樹, グラフェンのエピタキシャルCVD成長とその展開, CVD反応分科会 第19回シンポジウム「薄膜成長における構造の形成と制御」, 2013.05.
80. 吾郷 浩樹, グラフェンのマテリアルサイエンスと将来展望, 第7回フォトニクスポリマー研究会講座, 2013.03.
81. Hiroki Ago, Towards single-crystalline graphene by catalytic CVD, IUMRS-ICEM 2012 , 2012.09.
82. 吾郷 浩樹, グラフェンのエピタキシャルCVD成長, 第43回 フラーレン・ナノチューブ・グラフェン総合シンポジウム, 2012.09.
83. Hiroki Ago, Epitaxial CVD growth of graphene, KJF International Conference on Organic Materials for Electronics and Photonics 2012, 2012.09.
84. Hiroki Ago, Single- and Double-Layer Graphene on Heteroepitaxial Metal Films, icsfs 16 (International Conference on Solid Films and Surfaces), 2012.07.
85. H. Ago, Growth Mechanism and Structure Control of Graphene for Future Carbon Electronics, imec・Handai International Symposium 2012, 2012.06.
86. 吾郷浩樹, エレクトロニクス応用に向けたナノカーボンの創製, 東レ㈱ ナノテクシンポジウム, 2011.12.
87. 吾郷浩樹, 高品質・大面積化を目指したグラフェンのCVD成長, 炭素材料学会 炭素材料セミナー「一日で分かるグラフェン」, 2011.10.
88. H. Ago, CVD growth for extremely high-quality graphene: epitaxial growth, domain structure, and transport property, International Workshop on Quantum Nanostructures and Nanoelectronics (QNN 2011), 2011.10.
89. H. Ago, C. M. Orofeo, Y. Ogawa, B, Hu, Y. Ito, K. Kawahara, M. Tsuji, K. Ikeda, S. Mizuno, H. Hibino, Epitaxial CVD growth of graphene and influence of domain structure on transport property, SSDM2011(International Conference on Solid State Devices and Materials), 2011.09.
90. H. Ago, Recent advances in growth and characterization of graphene and nanotubes
, SSDM2011(International Conference on Solid State Devices and Materials) Short Course "Fundamental and applications of carbon nanotube and graphene", 2011.09.
91. 吾郷浩樹, エレクトロニクス応用に向けたナノカーボンの創製, 第2回 有機分子・バイオエレクトロニクスの未来を拓く若手研究者討論会(M&BE分科会主催), 2011.09.
92. 小川友以,吾郷浩樹,胡 宝山,辻 正治,池田 賢一,水野 清義,日比野 浩樹, ヘテロエピタキシャルCu膜上に成長させたCVDグラフェンのドメイン構造, 第41回フラーレン・ナノチューブ総合シンポジウム, 2011.09.
93. 小川友以,吾郷浩樹,胡 宝山,辻 正治,池田 賢一,水野 清義,日比野 浩樹, Cuの結晶面に依存したCVDグラフェンのドメイン構造, 2011年秋季 第72回 応用物理学会学術講演会, 2011.09.
94. 吾郷浩樹, ヘテロエピタキシャル触媒上での単層グラフェンの大気圧CVD成長, 2011年秋季 第72回 応用物理学会学術講演会 シンポジウム「グラフェンエピタキシーの現状と将来展望」, 2011.08.
95. H. Ago, CVD-grown graphene: epitaxial growth, domain structure, and transport property, Carbon Materials for Energy Devices and Environmental Protections (CSE2011), 2011.11.
96. 吾郷浩樹, 単層グラフェンのエピタキシャルCVD成長, SEMI Forum Japan 2011 応用物理学会関西支部主催セミナー 「-グラフェン研究の最前線 -」, 2011.06.
97. 吾郷浩樹, グラフェンの合成と電気・電子素子への応用, 日本学術振興会 第153委員会 第101回定例研究会, 2011.05.
98. C. M. Orofeo, H.Ago, Y. Ito, M. Tsuji, Facile synthesis of large-area homogenous graphene films on cobalt and nickel, MRS 2011 Spring Meeting, 2011.04.
99. 吾郷浩樹,伊藤由人,胡宝山,C. M. Orofeo,辻正治,水田典章,池田賢一,水野清義, サファイア上で結晶化した金属触媒上での単層グラフェンのエピタキシャルCVD成長, 第40回フラーレン・ナノチューブ総合シンポジウム, 2011.03.
100. 吾郷浩樹, CVDによるグラフェンの成長制御, ナノカーボン物質の基礎と応用:現状と展望に関する若手研究会, 2010.12.
101. B. Hu, H. Ago, Y. Ito, M. Tsuji, N. Mizuta, S. Mizuno, Temperature-dependent growth of monolayer graphene on epitaxial Cu film, MRS 2010 Fall Meeting, 2010.12.
102. H. Ago, Y. Ito, B. Hu, M. Tsuji, N. Mizuta, S. Mizuno, Epitaxial Epitaxial Growth of Single-layer Graphene over Crystalline Metal Films Deposited on Sapphire, MRS 2010 Fall Meeting, 2010.11.
103. H. Ago, Y. Ito, B. Hu, M. Tsuji, N. Mizuta, K. Ikeda, S. Mizuno, Epitaxial growth of single-layer graphene over metal films crystallized on sapphire, Carbon Materials for Energy Devices and Environmental Protections (CSE2010), 2010.11.
104. 吾郷浩樹, カーボンナノチューブとグラフェンの触媒成長-単結晶基板による高次構造制御-, ニューダイヤモンドフォーラム(NDF) 平成22年度 第2回研究会「カーボン材料の生成プロセスの最前線」, 2010.11.
105. 吾郷浩樹, エレクトロニクス応用を目指したナノカーボンの創製-熱CVDによるカーボンナノチューブとグラフェンの成長と構造制御-, 日本機械学会熱工学コンファレンス2010 プレコンファレンス・セミナー(化学反応と熱利用技術), 2010.10.
106. 吾郷浩樹, グラフェンとカーボンナノチューブの触媒成長 -ナノエレクトロニクス応用を目指して-, 電子情報技術産業協会(JEITA) 「ナノカーボンエレクトロニクス技術分科会」, 2010.10.
107. 吾郷浩樹, エレクトロニクス応用を目指したカーボンナノチューブとグラフェンの触媒成長, 黒鉛化合物研究会, 2010.10.
108. H. Ago, Controlled Growth of Carbon Nanotubes and Graphene, The 1st China-Japan Young Scientist Forum, 2010.06.
109. H. Ago, I. Tanaka, M. Tsuji, K. Ikeda, Catalytic Growth of Graphene over Epitaxial Metal Film, 第37回フラーレン・ナノチューブ総合シンポジウム, 2009.09.
110. Hiroki Ago, Growth Mechanism, Characterization, and Structure Control of Aligned Carbon Nanotubes, CNTNE2009 (International Symposium on Carbon Nanotube Nanoelectronics 2009), 2009.06.
111. H. Ago, N. Ishigami, N. Yoshihara, T. Nishi, K. Imamoto, C. M Orofeo, K. Ikeda, M. Tsuji, T. Ikuta, K. Takahashi, N. Minami, and K. Iakoubovskii, Growth Mechanism, Characterization, and Structure Control of Aligned Carbon Nanotubes on Sapphire, MRS 2008 Fall Meeting, 2008.12.
112. 吾郷浩樹, 水平配向カーボンナノチューブの新展開, 2008年秋季 第69回応用物理学会学術講演会シンポジウム「カーボンナノチューブ エレクトロニクス」, 2008.09.
113. 吾郷浩樹, 成長および配向制御 -単結晶表面上での水平配向成長-, 日本物理学会第63回年次大会シンポジウム(カーボンナノチューブ研究・開発における「ブレークスルー」にいま何が必要か?), 2008.03.
114. 吾郷浩樹, サファイア上での単層ナノチューブの水平配向成長 -成長メカニズムとキャラクタリゼーション-, JST領域横断シンポジウム(カーボンナノチューブ・エレクトロニクス), 2008.01.
115. N. Ishigami, H. Ago, K. Imamoto, M. Tsuji, K. Iakoubovskii, N. Minami, Crystal Face Dependence of Chiralities of Horizontally-Aligned SWNTs on Sapphire, 2007 MRS Fall Meeting, 2007.11.
116. H. Ago, N. Ishigami, K. Imamoto, T. Suzuki, K. Ikeda, and M. Tsuji, T. Ikuta, K. Takahashi, Horizontally-Aligned Single-Walled Carbon Nanotubes on Sapphire: Growth Mechanism and Characterization, 20th International Microprocess and Nanotechnology Conference (MNC2007), 2007.11.
117. H. Ago, N. Ishigami, K. Imamoto, R. Ohdo, K. Ikeda, and M. Tsuji, Surface atomic arrangement-programmed growth of horizontally-aligned SWNTs on sapphire, SWNT Growth Mechanisms 2007, 2007.04.
118. 吾郷浩樹, 単結晶表面によってプログラムされた単層カーボンナノチューブの配向成長, 日本セラミックス協会 第19回秋季シンポジウム, 2006.09.
119. 吾郷浩樹, 単結晶表面での単層ナノチューブの配向成長とそのキャラクタリゼーション, 2006年秋季第67回応用物理学会学術講演会, 2006.08.
特許出願・取得
特許出願件数  17件
特許登録件数  4件
その他の優れた研究業績
2022.04, 学術変革領域研究(A)「2.5次元物質科学」の領域代表として、我が国の二次元物質の学術と応用研究を牽引した。.
2022.04, 九大発ベンチャーの二次元材料研究所の設立に貢献した.
2019.04, CVDグラフェンの販売を九州大学TLOを通じて開始した.
2012.01, CVDグラフェンの販売を、名城ナノカーボンから開始した。.
2010.01, 水平配向カーボンナノチューブの販売を、名城ナノカーボンから開始した。.
2007.05, 九州大学 研究・産学連携活動表彰.
学会活動
所属学会名
フラーレン・ナノチューブ・グラフェン学会
応用物理学会
日本化学会
炭素材料学会
学協会役員等への就任
2020.08~2025.03, Graphene, 運営委員.
2020.01~2025.03, RPGR, 運営委員.
2017.04~2019.03, 応用物理学会, 運営委員.
2015.04~2017.03, 応用物理学会, 運営委員.
2015.09, フラーレン・ナノチューブ・グラフェン学会, 副会長.
2012.04, フラーレン・ナノチューブ・グラフェン学会, 幹事.
2006.11~2008.03, 日本化学会, 代議員.
学会大会・会議・シンポジウム等における役割
2020.09.10~2020.09.10, 2020年 第67回応用物理学会春季学術講演会 シンポジウム「二次元物質科学:二次元物質とその集積化が拓く新しい科学と応用」, シンポジウム企画者.
2020.09.16~2020.09.18, 第59回フラーレン・ナノチューブ・グラフェン学会, 実行委員長.
2015.11.10~2015.11.12, 6th A3 Symposium on Emerging Materials, 主催者.
2015.06.29~2015.07.03, NT15, 実行委員.
2014.03.03~2014.03.05, 第46回フラーレン・ナノチューブ総合シンポジウム, 座長(Chairmanship).
2013.09.09~2013.09.13, Recent Progress on Graphene Research (RPGR2013), 座長(Chairmanship).
2013.05.19~2013.05.23, International Symposium on Compound Semiconductors 2013 (ISCS2013), 座長(Chairmanship).
2012.10.30~2012.11.02, The 6th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN 2012), 座長(Chairmanship).
2012.09.23~2012.09.28, IUMRS-ICEM 2012 , 座長(Chairmanship).
2013.03.11~2013.03.13, 第44回フラーレン・ナノチューブ・グラフェン総合シンポジウム, 座長(Chairmanship).
2011.09.05~2011.09.07, 第41回フラーレン・ナノチューブ総合シンポジウム, 審査委員.
2011.09.05~2011.09.07, 第41回フラーレン・ナノチューブ総合シンポジウム, 座長(Chairmanship).
2011.08.29~2011.09.02, 2011年秋季 第72回 応用物理学会学術講演会, 座長(Chairmanship).
2011.03.08~2011.03.10, 第40回フラーレン・ナノチューブ総合シンポジウム, 座長(Chairmanship).
2010.09.14~2010.09.17, 2010年秋季第70回応用物理学会学術講演会, 座長(Chairmanship).
2010.06.20~2010.06.21, The 1st China-Japan Young Scientist Forum, 座長(Chairmanship).
2010.03.17~2010.03.20, 2010年春季第57回 応用物理学関係連合講演会, 座長(Chairmanship).
2010.02.23~2010.02.24, 東北大学電気通信研究所共同プロジェクト研究会(プラズマナノバイオトロニクスの基礎研究 ), 座長(Chairmanship).
2009.09.08~2009.09.11, 2009年秋季 第70回応用物理学会学術講演会, 座長(Chairmanship).
2009.03.30~2009.04.02, 2009年春季 第56回応用物理学関係連合講演会, 座長(Chairmanship).
2007.09~2007.09.26, 2007年秋季第68回応用物理学会学術講演会, 座長(Chairmanship).
2007.07~2007.07.26, 第33回フラーレン・ナノチューブ総合シンポジウム, 座長(Chairmanship).
2005.09~2005.09.26, 第66回応用物理学会学術講演会, 座長(Chairmanship).
2004.07~2004.07.26, 第27回フラーレン・ナノチューブ総合シンポジウム, 座長(Chairmanship).
2003.01~2003.01.26, 第26回フラーレン・ナノチューブ総合シンポジウム, 座長(Chairmanship).
2015.06.29~2015.07.03, The 16th International Conference on the Science and Applications of Nanotubes (NT15) , 実行委員.
2014.11.04~2014.11.07, 27th International Microprocesses and Nanotechnology Conference (MNC 2014), プログラム委員.
2013.09.09~2013.09.13, Recent Progress in Graphene Research 2013 (RPGR 2013), プログラム委員.
2013.05.19~2013.05.23, International Symposium on Compound Semiconductors 2013 (ISCS2013), プログラム委員.
2012.11.09~2012.11.26, 第42回結晶成長国内会議, 実行委員.
2011.10.03~2011.10.04, International Workshop on Quantum Nanostructures and Nanoelectronics (QNN 2011), 組織実行委員.
2010.06.25~2010.06.26, The 1st China-Japan Young Chemists Forum, 日本側代表(Chiar).
2010.06~2010.06.26, The 37th International Symposium on Compound Semiconductors (ISCS2010), サブコミティー委員.
2008.10~2008.10.26, 21th International Microprocess and Nanotechnology Conference, 実行委員.
2008.05~2008.05.26, ナノ学会第6回大会, プログラム委員長.
2005.12~2005.12.26, The 7th Cross Straits Symposium on Materials, Energy, and Environmental Sciences, Organizing comitee.
学会誌・雑誌・著書の編集への参加状況
2019.04~2020.03, グラフェンから広がる二次元物質の新技術と応用 ~世界の動向、CVD合成、転写積層、量子物性、センサ・デバイス、THz応用~, 国内, 編集委員長.
2015.07~2017.06, Scientific Reports (Nature Publishing Group), 国際, 編集委員.
2015.04~2017.03, 応用物理学会誌, 国内, 編集委員.
2014.04~2016.03, 応用物理学会誌, 国内, 外部記者.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2020年度 18  18 
2021年度 20  20 
2019年度 20  20 
2018年度 16  16 
2017年度 12  12 
2016年度 21  21 
2015年度 26  26 
2014年度 31  31 
2012年度 25  25 
2011年度 38  38 
2010年度 27  27 
2009年度 15  15 
2008年度 24  24 
2007年度 18  18 
2006年度 25  25 
2005年度 15  15 
2004年度 10  10 
その他の研究活動
海外渡航状況, 海外での教育研究歴
シンガポール国立大学, Singapore, 2012.01~2012.01.
ケンブリッジ大学キャベンディッシュ研究所, UnitedKingdom, 1997.11~1999.03.
外国人研究者等の受入れ状況
2022.05~2023.01, 1ヶ月以上, グローバルイノベーションセンター, Taiwan.
2020.06~2021.03, 1ヶ月以上, グローバルイノベーションセンター, Bangladesh.
2018.06~2020.05, 1ヶ月以上, グローバルイノベーションセンター, Bangladesh, 日本学術振興会.
2018.04~2023.03, 1ヶ月以上, グローバルイノベーションセンター, Spain, 政府関係機関.
2015.10~2016.03, 1ヶ月以上, 先導物質化学研究所, Spain, 政府関係機関.
2013.10~2015.09, 1ヶ月以上, 先導物質化学研究所, Spain, 日本学術振興会.
2012.04~2012.10, 1ヶ月以上, 先導物質化学研究所, China, 日本学術振興会.
2012.02~2014.03, 1ヶ月以上, 先導物質化学研究所, Australia, 日本学術振興会.
2012.01~2013.09, 1ヶ月以上, 先導物質化学研究所, Spain, 日本学術振興会.
2009.04~2011.03, 1ヶ月以上, 先導物質化学研究所, China, 学内資金.
2008.04~2008.05, 1ヶ月以上, 先導物質化学研究所, China, 学内資金.
受賞
応用物理学会 第4回「薄膜・表面物理分科会 論文賞」, 応用物理学会, 2020.03.
平成26年度九州大学研究活動表彰, 九州大学, 2014.12.
平成24年度応用物理学会優秀論文賞 , 応用物理学会, 2014.08.
2013年応用物理学会春季学術講演会 Poster Award, 応用物理学会, 2013.09.
平成24年度九州大学研究活動表彰, 九州大学, 2012.11.
平成22年度九州大学 研究・産学連携活動表彰, 九州大学, 2010.11.
ナノ学会第6回大会 産業タイムズ社賞, ナノ学会, 2008.05.
文部科学大臣表彰 若手科学者賞, 文部科学省, 2008.04.
九州大学 研究・産学連携活動表彰, 九州大学, 2007.05.
飯島賞, フラーレン・ナノチューブ学会, 2005.10.
つくば奨励賞(実用化部門), (財)茨城県科学技術振興財団, 2001.02.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2023年度~2024年度, 挑戦的研究(萌芽), 代表, 層数制御した六方晶窒化ホウ素による革新的トンネル磁気抵抗デバイスの創製.
2021年度~2022年度, 挑戦的研究(萌芽), 代表, 積層制御した二層グラフェンによる黒鉛層間化合物科学の革新.
2021年度~2025年度, 学術変革領域研究(A), 代表, 2.5次元物質科学の総括.
2019年度~2021年度, 基盤研究(A), 分担, 2Dヘテロ界面特性の理解に基づく2DトンネルFETの構築.
2019年度~2020年度, 挑戦的研究(萌芽), 代表, ウェハースケールの六方晶窒化ホウ素によるマテリアルサイエンスの革新.
2018年度~2022年度, 基盤研究(A), 代表, グラフェンのテーラーメイド合成とその展開.
2017年度~2018年度, 挑戦的研究(萌芽), 代表, 二次元デバイスのプラットフォームとなる六方晶窒化ホウ素の高結晶多層膜の創製.
2016年度~2017年度, 新学術領域研究, 代表, 原子薄膜デバイスに資する単結晶巨大グラフェンの創製と位置制御.
2015年度~2016年度, 挑戦的萌芽研究, 代表, グラフェンの人工血管の開発.
2015年度~2017年度, 基盤研究(B), 代表, AB積層二層グラフェンの成長技術開発とトランジスタへの応用.
2009年度~2011年度, 基盤研究(B), 代表, シリコンデバイスとの融合を可能にする水平配向カーボンナノチューブの創製.
2006年度~2008年度, 若手研究(A), 代表, 結晶表面における単層カーボンナノチューブのエピタキシャル配向成長.
2004年度~2005年度, 若手研究(B), 代表, マイクロ空間におけるカーボンナノチューブのプロセッシング.
日本学術振興会への採択状況(科学研究費補助金以外)
2010年度~2013年度, 最先端・次世代研究開発支援プログラム, 代表, グラフェンの成長制御と加工プロセスを通じたカーボンエレクトロニクスへの展開.
競争的資金(受託研究を含む)の採択状況
2021年度~2022年度, NEDO先導研究プロジェクト, 代表, 高機能テープを用いた二次元材料の革新的転写法の開発.
2020年度~2025年度, 戦略的創造研究推進事業 (文部科学省), 分担, ナノ空隙を利用した原子・分子の配列制御と 物性測定法開発.
2018年度~2024年度, 戦略的創造研究推進事業 (文部科学省), 分担, 二次元材料とナノ計測の融合による相変化伝熱の革新.
2015年度~2015年度, NEDO 低炭素社会を実現するナノ炭素材料実用化プロジェクト , 代表, エピタキシャルCVD法による超高品質グラフェンの研究開発.
2013年度~2016年度, 戦略的創造研究推進事業 (文部科学省), 代表, 二次元原子薄膜の積層システムの創製とナノエレクトロニクスへの展開.
2010年度~2011年度, 最先端研究開発支援プログラム, 分担, トランジスタ応用を目指した高品質グラフェン薄膜の成長法の開発.
2008年度~2012年度, 研究拠点形成費補助金(グローバルCOE) (文部科学省), 分担, 新炭素資源学.
2007年度~2011年度, NEDO 「ナノエレクトロニクス半導体新材料・新構造技術開発プロジェクト, 分担, カーボンナノチューブデバイス創出に向けた成長・プロセス制御 .
2007年度~2010年度, 戦略的創造研究推進事業 (文部科学省), 代表, SWNTの電子構造/カイラリティ制御に向けた精密合成法の探索.
2005年度~2008年度, 産業技術研究助成事業 (経済産業省), 代表, 秩序化されたカーボンナノチューブの創製と次世代半導体デバイスへの展開.
2006年度~2006年度, 徳山科学技術振興財団 平成18年度研究助成, 代表, 単層ナノチューブの結晶表面におけるエピタキシャル成長と電子構造の制御.
2005年度~2005年度, 池谷科学技術振興財団, 代表, カーボンナノチューブを用いた微細流体センサーの開発.
2005年度~2005年度, 日産科学振興財団, 代表, マイクロチップ内に成長させた配向性カーボンナノチューブの触媒機能.
共同研究、受託研究(競争的資金を除く)の受入状況
2011.10~2012.02, 代表, 単結晶金属薄膜上のグラフェンCVD成長に関する研究.
2008.02~2008.03, 代表, カーボンナノチューブの長さ評価に関する共同研究.
2007.01~2007.03, 代表, カーボンナノチューブの測定技術に関する共同研究.
2004.11~2005.03, 代表, カーボンナノチューブの電子デバイス化技術について.
寄附金の受入状況
2018年度, 新材料情報財団, 高品質グラフェンの製造・転写・触媒再利用技術の開発.
2004年度, 和歌山県工業技術センター, カーボンナノチューブの新規な応用に関する研究.
学内資金・基金等への採択状況
2018年度~2018年度, 平成30年度九州大学ギャップファンド, 代表, 原子厚みの超極薄シート(グラフェン)の大面積・高品質成長技術.
2010年度~2010年度, 平成22年度P&P 特別枠追加採択, 代表, グラフェンの成長制御と加工プロセスを通じたカーボンエレクトロニクスへの展開.
2005年度~2006年度, 九州大学教育研究プログラム・研究拠点形成プロジェクト(B-2 タイプ), 分担, 溶媒可溶化カーボンナノチューブ−可溶化の戦略と利用・応用ならびに九大ナノカーボンリサーチコアへの展開−.
2004年度~2004年度, 総合理工学府奨励研究, 代表, カーボンナノチューブ成長における電場・磁場効果.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。