Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
Toshiya Samejima Last modified date:2023.11.02

Professor / Science of Sound Design / Department of Acoustic Design / Faculty of Design


Papers
1. Shu Sekiguchi and Toshiya Samejima, Physical modeling and sound synthesis of the hi-hat, Acoust. Sci. & Tech., 44, 5, 352-359, 2023.09.
2. Nao Sato and Toshiya Samejima, Vibration analysis of piano strings involving dynamics of hammer shanks, Acoust. Sci. & Tech., 44, 3, 230-238, 2023.05.
3. Yuya Oguchi and Toshiya Samejima, Physical modeling of Japanese temple bells using thin cylindrical shells involving dynamics of clappers Shumoku, Acoust. Sci. & Tech., 44, 3, 292-301, 2023.05.
4. Shintaro Sakai and Toshiya Samejima, Vibro-acoustic analysis of cellos using the finite and boundary element methods and its application to studies on the effects of endpin properties, Acoust. Sci. & Tech., 44, 3, 259-268, 2023.05.
5. Toshiya Samejima, Vibration analysis of a bowed string involving dynamics of a soundbox and neck and its application to a Chinese traditional bowed string instrument “Erhu”, Acoust. Sci. & Tech., 44, 3, 281-291, 2023.05.
6. Fukiko Ishida and Toshiya Samejima, Physical modeling of wind instruments involving three-dimensional radiated sound fields, Acoust. Sci. & Tech., 44, 3, 247-258, 2023.05.
7. T. Nagakura and T. Samejima, Transaural system using directional and median-plane-arranged loudspeakers with robustness to listener's lateral misalignment, J. Acoust. Soc. Jpn..
8. Shu Sekiguchi and Toshiya Samejima, Attempt to create unconventional tones of snare drums using numerical analysis, Acoust. Sci. & Tech. (Acoustical Letters), 43, 2, 2022.03.
9. Toshiya Samejima, Nonlinear physical modeling sound synthesis of cymbals involving dynamics of washers and sticks/mallets, Acoust. Sci. & Tech., 42, 6, 2021.11.
10. Toshiya Samejima, Karen Kobayashi and Shu Sekiguchi, Transaural system using acoustic contrast as its objective function, Acoust. Sci. & Tech. (Acoustical Letters), 42, 4, 2021.07.
11. T. Samejima, Vibration analysis of a bowed string involving dynamics of a violin bow, J. Acoust. Soc. Jpn..
12. T. Samejima, S. Takahashi and Y. Araki, Numerical analysis of two-dimensional sound fields with a multidomain spectral method in generalized curvilinear coordinates, J. Acoust. Soc. Jpn..
13. K. Kita and T. Samejima, Realization of a high-order delta-sigma modulator based on sliding mode control theory, J. Acoust. Soc. Jpn..
14. Yozo Araki, Toshiya Samejima, Introduction of generalized curvilinear coordinates to spectral nodal Galerkin methods for irregular-shaped two-dimensional sound field analysis, Acoust. Sci. & Tech. (Acoustical Letters), 39, 1, 2018.01.
15. Yusuke Kadowaki, Toshiya Samejima, Nonlinear distortion reduction of an electrodynamic loudspeaker by using model-following control theory, Acoust. Sci. & Tech. (Acoustical Letters), 38, 4, 2017.07.
16. T. Samejima, S. Takahashi and Y. Araki, Numerical analysis of two-dimensional sound fields with a spectral method in generalized curvilinear coordinates, J. Acoust. Soc. Jpn..
17. Y. Araki and T. Samejima, Design of membranophones based on vibro-acoustic analysis, J. Acoust. Soc. Jpn..
18. Toshiya Samejima, Risa Fukuda, Vibration analysis of a musical drum head under nonuniform density and tension using a spectral method, Acoust. Sci. & Tech., 37, 6, 2016.11.
19. T. Samejima, Fourier-expansion hybrid-type infinite element for finite element analysis of nonaxisymmetric sound fields in axisymmetric unbounded domains, J. Acoust. Soc. Jpn..
20. Yozo Araki, Toshiya Samejima, Fourier series expansion type of spectral nodal Galerkin method for vibration analysis of cylindrical shells: Formulation and trial calculation, Acoust. Sci. & Tech. (Acoustical Letters), 37, 5, 2016.09.
21. Yozo Araki, Toshiya Samejima, Fourier series expansion type of spectral collocation method for vibration analysis of cylindrical shells, Acoust. Sci. & Tech., 37, 5, 2016.09.
22. Y. Araki and T. Samejima, Spectral method for vibration analysis of circular stretched plates, J. Acoust. Soc. Jpn..
23. Y. Noda and T. Samejima, Active control of acoustic energy in a sound field by gain scheduling control theory, J. Acoust. Soc. Jpn..
24. Y. Kida and T. Samejima, Modal method integrated with Kirchhoff-Huygens formula for calculating multiple acoustic scattering by multiple obstacles, J. Acoust. Soc. Jpn..
25. Kenji Kita, Toshiya Samejima, Delta-sigma modulator with switching loop filter based on the linear gain, Acoust. Sci. & Tech. (Acoustical Letters), 34, 5, 351-353, 2013.09.
26. K. Kita, T. Fukumoto and T. Samejima, Design approach of Delta-Sigma Modulator based on μ-synthesis, J. Acoust. Soc. Jpn..
27. Y. Kida, T. Samejima and K. Morikuni, Evaluation of a semi-analytical method for calculating multiple acoustic scattering fields, Acoust. Sci. & Tech. (Acoustical Letters), 33, 1, 64-67, 2012.01.
28. T. Samejima, Y. Kida and H. Saito, A modal method integrated with Kirchhoff-Huygens formula for acoustic scattering by an obstacle, J. Acoust. Soc. Jpn..
29. T. Samejima, Y. Sasaki, I. Taniguchi and H. Kitajima, Robust transaural sound reproduction system based on feedback control, Acoust. Sci. & Tech., 31, 4, 251-259, 2010.07.
30. Y. Sasaki and T. Samejima, Method of multiple-input multiple-output system identification of a sound field based on experimental modal analysis, J. Acoust. Soc. Jpn..
31. Y. Sasaki and T. Samejima, Active control of acoustic energy in a sound field by finite element method and sliding mode control theory, J. Acoust. Soc. Jpn..
32. T. Samejima and K. Miyazaki, Active damping control of sound fields through finite element modeling and direct rate feedback, J. Acoust. Soc. Jpn..
33. T. Samejima and T. Mitsui, H∞ active minimization of acoustic energy in a sound field through common acoustical pole and zero modeling, Acoust. Sci. & Tech., Vol.26, No.5, 423-431, 2005.09.
34. T. Samejima and S. Miyashita Menbrane/thin elastic plate matrix of modal expansion type for acoustic finite element analysis, J. Acoust. Soc. Jpn..
35. T. Samejima, A method of vibro-acoustic analysis of enclosed sound fields with membranes and thin elastic plates, J. Acoust. Soc. Jpn..
36. T. Samejima, A state feedback electro-acoustic transducer for active control of acoustic impedance, J. Acoust. Soc. Am., Vol.113, No.3, 1483-1491, 2003.03.
37. T. Samejima and D. Yamamoto, Active modal control of sound fields by finite element modeling and H∞ control theory, Acoust. Sci. & Tech., Vol.23, No.6, 313-322, 2002.12.
38. T. Samejima, Modifying modal characteristics of sound fields by state feedback control, J. Acoust. Soc. Am., Vol.110, No.3, 1408-1414, 2001.09.
39. T. Samejima and D. Yamamoto, Active control of a sound field with a state feedback electro-acoustic transducer, Acoust. Sci. & Tech., Vol.22, No.2, 135-140, 2001.04.
40. T. Samejima, K. Hirate, and M. Yasuoka, State-space expression of a sound field by theoretical or experimental identification of it, J. Archit. Plann. Eng., AIJ.
41. T. Samejima and M. Yasuoka, Active suppression of reverberation in a sound field through state feedback control, J. Acoust. Soc. Jpn..
42. T. Samejima, K. Hirate, and M. Yasuoka, Optimum design of room shape and arrangement of absorptive patches by evaluating the distribution of poles of a transfer function in an acoustic system, J. Archit. Plann. Eng., AIJ.