Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Keiko Sasaki Last modified date:2018.06.09

Professor / Resources System Engineering
Department of Earth Resources Engineering
Faculty of Engineering


Graduate School
Undergraduate School
Other Organization
Administration Post
Director of the Green Asia International Leaders Education Center


E-Mail
Homepage
http://process.mine.kyushu-u.ac.jp/index.html
Phone
092-802-3338
Fax
092-802-3338
Academic Degree
PhD. (Eng.)
Country of degree conferring institution (Overseas)
No
Field of Specialization
Environmental Materials, Geomimetics, Environmental Remediation, Biohydrometallurgy
Total Priod of education and research career in the foreign country
00years00months
Research
Research Interests
  • Synthesis and characterization of metal organic frameworks (MOFs) as adsorbents of anionic species in aqueous sphere
    keyword : MOFs
    2017.04~2020.03.
  • Biotreatment of carbonaceous refractory gold ore using cell free spent fungal medium and thermophilic iron-oxidizing microorganism
    keyword : carbonaceous refractory gold ore
    2015.10~2020.03.
  • Immobilization mechanism of anionic pollutant release from fly ash in cement by Ca additives.

    keyword : fly ash, cement, anionic pollutants, dissolution
    2017.04~2020.03.
  • Innovation of Novel Adsorbents Derived from Geomimetics for Burying of Radionuclides
    keyword : Radionuclides, adsorbent, geomimetics
    2016.04~2019.03.
  • Co-precipitation of borate, selenite and fluoride with hydroxyapatite using domestic calcium minerals
    keyword : Co-precipitation, borate, selenite, fluoride, hydroxyapatite
    2012.04~2019.03.
  • Syntheisis of layered double hydrooxides and their modification by organic pillars for adsorbents of anionic species
    keyword : layered double hydrooxides, adsorbents of anionic species,
    2011.02~2019.03.
  • Synthesis and characterization of lithium ion-sieve produced from Mn-oxidizing microorganisms
    keyword : Mn-oxidizing microorganisms, lithium ion sieve
    2010.04~2018.03.
  • Microbially mediated formation of arsenate using thermophiles
    keyword : Microbially mediated formation of arsenate, thermophiles
    2010.05~2011.03.
  • Separation of selenate from sulfate in aqueous process
    keyword : sulfate, selenate, separation
    2010.05~2011.03.
  • Bioleaching of arsenic-bearing copper ores using thermophilic iron-oxidizing microorganisms
    keyword : Bioleaching 、 arsenic-bearing copper ores 、 thermophilic iron-oxidizing microorganisms
    2008.04~2013.03.
  • Barrier materials from waste materials for radionuclides
    keyword : radionuclides, hydroxyapatite, animal bone materials, ion-exchange
    2009.04~2012.03.
  • Synthesis and regeneration of reactive matrials for removal of inorganic contaminants which are difficult to immbilize
    keyword : fluoride, borate, metal oxides, bi-metal oxides, layered double hydroxides
    2007.04~2013.03.
  • Remediation of contaminants in grondwaters by permeable reactive barries
    keyword : permeable reactive barries, groundwaters, contaminants, remediation
    2003.03A series of permeable reactive barriers (PRBs), which is a in situ ground water remediation technique, has been performed from aspects of remediation efficiency, remeditation expectation, remediation mechanisms. Until now, selenate, arsenate, heavy metals, fluoride, borate have been investigated as targets in groundwaters. Especially PRBs for fluoride and borate have been not yet officially reported in a full scale. Our PRB researches for fluoride and borate are intensely focused on development of novel reactive materials, long term column experiments in a laboratorial scale for years, and modeling. The project has been anually extended to collaborate with other institutes. .
  • Bioremediation using manganese-oxidizing microorganisms
    keyword : manganese-oxidizing microorganisms, biomineralization, nano pores, environmental remediation, bioremediation
    2001.04Several types of Mn-oxidizing microorganisms with significantly high Mn-oxidizing activity have been isolated from Mn-depositing environments, and characterized by phylogenetic methods. The biogenic Mn oxides showed morphologically, mineralogically and chemically unique properties, which are not common in synthetic Mn oxides. It was discovered that the biogenic Mn oxides can be applied as effective sorbents for selective sorption of rare metals. The properties are in progress investigated to extend to the application for separation among other rare earth elements..
Current and Past Project
  • From Waste Management to Bone Replacement: Synthesis and Functionally-Related Properties of Hydroxyapatite
Academic Activities
Books
1. Keiko Sasaki, Qianqian Yu, Manganese oxides in Environments, American Chemical Society Symposium Series, 2014.11.
2. Keiko Sasaki, Microbiology for Minerals, Metals, Materials and Environment, CRC Press/ Taylor and Francis.
Reports
1. Sasaki Keiko, Spectroscopic study on bioleaching of enargite using thermophile, in “Microbiology for Minerals, Metals, Materials and Environment”, Edited by Abhilash, B. D. Pandey, K. A. Natarajan, CRC Press/Taylor and Francis, ISBN-978-1-4822-5729-8, Cat. No.K24089, 2014.10.
2. Investigation of Groundwater Remediation by Permeable Reactive Barriers in North America.
Papers
1. Gde Pandhe Wisnu Suyantara, Tsuyoshi Hirajima, Hajime Miki, Keiko Sasaki , Effect of Fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite

, Colloids and Surfaces A: Physicochemical and Engineering Aspects, in press, 2018.06.
2. Keiko Sasaki, Yoshikazu Hayashi, Kenta Toshiyuki, Binglin Guo, Simultaneous immobilization of borate, arsenate, and silicate from geothermal water derived from mining activity by co-precipitation with hydroxyapatite, Chemosphere, 207, 139-146, 2018.06.
3. Paulmanickam Koilraj, Yuta Kamura, Keiko Sasaki, Synergetic co-immobilization of SeO42- and Sr2+ from aqueous solution onto graphene oxide and carbon-dot based layered double hydroxide nanocomposites and their mechanistic investigation, RSC J. Material Chemistry A, 10.1039/C8TA01605D, 6, 10008-10018, 2018.05.
4. Hajime Miki, Tsuyoshi Hirajima, Yukihiro Muta, Gde Pandhe Wisnu Suyantara, Keiko Sasaki, Effect of sodium sulfite on floatability of chalcopyrite and molybdenite, Minerals, in press, 2018.05.
5. Zhisheng Gao, Keiko Sasaki, Xinhong Qiu, Structural memory effect of Mg-Al and Zn-Al layered doubled hydroxides in the presence of natural humic acid, Langmuir, 10.1021/acs.langmuir.8b00059, 34, 5386-5395, 2018.05.
6. Yusei Masaki, Tsuyoshi Hirajima, Keiko Sasaki, Hajime Miki, Naoko Okibe, Microbiological Redox Potential Control to Improve the Efficiency of Chalcopyrite Bioleaching , Geomicrobiol. J., 10.1080/01490451.2018.1443170, 2018.03.
7. Subbaiah Muthu Prabhu, Chitiphon Chuaicham, Keiko Sasaki, A Mechanistic Approach for the Synthesis of Carboxylate-Rich Carbonaceous Biomass-Doped Lanthanum-Oxalate Nanocomplex for Arsenate Adsorption, ACS Sustainable Chemistry & Engineering, doi/10.1021/acssuschemeng.7b04678, 6, 6052-6063, 2018.03.
8. Masahito Tanaka, Naoko Okibe, Keiko Sasaki, Factors to Enable Crystallization of Environmentally Stable Bioscorodite from Dilute As(III)-Contaminated Waters., Minerals, 2018, 8, 23., 10.3390/min8010023, 2018.03.
9. Wuhui Luo, Keiko Sasaki, Tsuyoshi Hirajima, Influence of the pre-dispersion of montmorillonite on organic modification and the adsorption of perchlorate and methyl red anions, Applied Clay Science, https://doi.org/10.1016/j.clay.2017.12.032, 154, 1-9, 2018.03.
10. Keiko Sasaki, Kenta Toshiyuki, Binglin Guo, Keiko Ideta, Yoshikazu Hayashi, Tsuyoshi Hirajima, Jin Miyawaki, Calcination effect of borate-bearing hydroxyapatite on the mobility of borate, Journal of Hazardous Materials, 10.1016/j.jhazmat.2017.10.003, 344, 90-97, 2018.02.
11. Niko Dian Pahlevi, Binglin Guo, Keiko Sasaki, Immobilization mechanism of selenate in cancrinite by hydrothermal method, Ceramic International, 2018.01.
12. Gde Pandhe Wisnu SUYANTARA, Tsuyoshi HIRAJIMA, Hajime MIKI, Keiko SASAKI, Floatability of molybdenite and chalcopyrite in artificial seawater, Minerals Engineering, 10.1016/j.mineng.2017.10.004, 115, 117-130, 2018.01.
13. Paulmanickam Koilraj and Keiko Sasaki, Eco-Friendly Alkali-Free Arginine-Assisted Hydrothermal Synthesis of Different Layered Double Hydroxides and Their Chromate Adsorption/Reduction Efficiency, Chemistry Select, 10.1002/slct.201702134, Vol. 2, Issue 32, 10459-10469, 2017.11.
14. Binglin Guo, Keiko Sasaki, Tsuyoshi Hirajima, Solidification of ettringite after uptaking selenate as a surrogate of radionuclide in glass-ceramics by using industrial by-products, Journal of Materials Science, 10.1007/s10853-017-1422-x, 52, 22, 12999-13011, 2017.11.
15. Paulmanickam Koilraj, Yuta Kamura, Keiko Sasaki, Carbon-Dot-Decorated Layered Double Hydroxide Nanocomposites as a Multifunctional Environmental Material for Co-immobilization of SeO4 2- and Sr2+ from Aqueous Solutions, ACS Sustainable Chemistry and Engineering, 10.1021/acssuschemeng.7b01979, 5, 10, 9053-9064, 2017.10.
16. Qianqian Yu, Toshihiko Ohnuki, Naofumi Kozai, Fuminori Sakamoto, Kazuya Tanaka, Keiko Sasaki, Quantitative analysis of radiocesium retention onto birnessite and todorokite, Chemical Geology, 10.1016/j.chemgeo.2017.09.008, 470, 141-151, 2017.10.
17. Binglin Guo, Keiko Sasaki, Tsuyoshi Hirajima, Selenite and selenate uptaken in ettringite
Immobilization mechanisms, coordination chemistry, and insights from structure, Cement and Concrete Research, 10.1016/j.cemconres.2017.07.004, 100, 166-175, 2017.10.
18. Binglin Guo, Keiko Sasaki, Tsuyoshi Hirajima, Characterization of the intermediate in formation of selenate-substituted ettringite, Cement and Concrete Research, 10.1016/j.cemconres.2017.05.002, 99, 30-37, 2017.09.
19. Wuhui Luo, Takeru Fukumori, Binglin Guo, Kwadwo Osseo-Asare, Tsuyoshi Hirajima, Keiko Sasaki, Effects of grinding montmorillonite and illite on their modification by dioctadecyl dimethyl ammonium chloride and adsorption of perchlorate, Applied Clay Science, https://doi.org/10.1016/j.clay.2017.06.025, Vol.146, 15, 325-333, 2017.09.
20. Wuhui Luo, Sasaki Keiko, Tsuyoshi Hirajima, Necessity of pre-dispersion of montmorillonite for its organic modification and the influence on adsorption of perchlorate and methyl red by modified composites, Applied Clay Science, 2017.08.
21. Binglin Guo, Sasaki Keiko, Tsuyoshi Hirajima, Selenite and selenate uptaken in ettringite: Immobilization mechanisms, coordination chemistry and insights from structure, Concrete and Cement Research, 2017.07.
22. Bigling Guo, Sasaki Keiko, Tsuyoshi Hirajima, Structural transformation of selenate ettringite: a hint for exfoliation chemistry, RSCAdvances, 10.1039/c7ra08765a, 7, 42407-42415, 2017.06.
23. Paulmanickam Koilraj, Keiko Sasaki, Selective removal of phosphate using La-porous carbon composites from aqueous solutions
Batch and column studies, Chemical Engineering Journal, 10.1016/j.cej.2017.02.075, 317, 1059-1068, 2017.06.
24. Binglin Guo, Sasaki Keiko, Tsuyoshi Hirajima, Characterization of an intermediate in formation of selenate-substituted ettringite, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2017.05.002, 99, 30-37, 2017.05.
25. Binglin Guo, Sasaki Keiko, Tsuyoshi Hirajima, Solidification of ettringite after uptaking selenate as a surrogate of radionuclide in glass-ceramics by using industrial byproducts, Journal of Material Sciences, in press, 2017.05.
26. Xiangchun Liu, Tsuyoshi Hirajima, Moriyasu Nonaka, Keiko Sasaki, Experimental study on freeze drying of Loy Yang lignite and inhibiting water re-adsorption of dried lignite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 10.1016/j.colsurfa.2017.01.076, Vol.520, 146-153, 2017.05.
27. Subbaiah Muthu Prabhu, Paulmanickam Koilraj, Sasaki Keiko, Synthesis of sucrose-derived amorphous carbon-doped ZrxLa1-xOOH materials and their superior performance for the simultaneous depollution of arsenite and fluoride from binary systems, Chemical Engineering Journal, doi.org/10.1016/j.cej.2017.05.052, 325, 1-13, 2017.04.
28. Paulmanickam Koilraj, Sasaki Keiko, Biomolecule-assisted interlayer anion-controlled layered double hydroxide as an efficient sorbent for arsenate removal, Journal of Materials Chemistry A, in press, 2017.04.
29. Wuhui Luo, Tsuyoshi Hirajima, Keiko Sasaki, Selective adsorption of inorganic anions on unwashed and washed hexadecyl pyridinium-modified montmorillonite, Separation and Purification Technology, 10.1016/j.seppur.2016.12.004, 176, 120-125, 2017.04.
30. Kojo T. Konadu, Keiko Sasaki, Takashi Kaneta, Grace Ofori-Sarpong, Kwadwo Osseo-Asare, Bio-modification of carbonaceous matter in gold ores
Model experiments using powdered activated carbon and cell-free spent medium of Phanerochaete chrysosporium, Hydrometallurgy, https://doi.org/10.1016/j.hydromet.2016.08.003, 168, 76-83, 2017.03.
31. Naoko Okibe, Shiori Morishita, Masahito Tanaka, Keiko Sasaki, Tsuyoshi Hirajima, Kazuhiro Hatano, Atsuko Ohata, Bioscorodite crystallization using Acidianus brierleyi
Effects caused by Cu(II) present in As(III)-bearing copper refinery wastewaters, Hydrometallurgy, https://doi.org/10.1016/j.hydromet.2016.07.003, 168, 121-126, 2017.03.
32. Paulmanickam Koilraj, Sasaki Keiko, Selective removal of phosphate using La-porous carbon composites from aqueous solutions: Batch and column studies, Chemical Engineering Journal, doi.org/10.1016/j.cej.2017.02.075, 317, 1059-1068, 2017.02.
33. Sasaki Keiko, Kenta Toshiyuki, Binglin Guo, Tsuyoshi Hirajima, Calcination effect of borate-bearing hydroxyapatite on mobility of borate, J Hazard Mater, 2017.02.
34. Subbaiah Muthu Prabhu, Sasaki Keiko, Fabrication of chitosan-reinforced ZrxAl1-xOOH nanocomposites and their arsenite and fluoride depollution densities from single/binary systems, Chemistry Select, in press., 2017.02.
35. Wuhui Luo, Akihiro Inoue, Tsuyoshi Hirajima, Keiko Sasaki, Synergistic effect of Sr2+ and ReO4 adsorption on hexadecyl pyridinium-modified montmorillonite, Applied Surface Science, https://doi.org/10.1016/j.apsusc.2016.10.135, 394, 431-439, 2017.02.
36. Kojo Twum-Knadu, Sasaki Keiko, Takashi Kaneta, Grace Ofori-Sarpong, Kwadwo Osseo-Asare, Bio-modification of carbonaceous matters in gold ore: Model experiments using powdery activated charcoal and cell-free extracts of Phanerochaete chrysosporium, Hydrometallurgy, 168 (2017) 76–83, 2017.01.
37. Wuhui Luo, Tsuyoshi Hirajima, Sasaki Keiko, Selective adsorption of inorganic anions on unwashed and washed hexadecyl pyridinium-modified montmorillonite, Separation and Purification Technology , 176, 120-125, 2017.01.
38. Wuhui Luo, Akihiro Inoue, Tsuyoshi Hirajima, Sasaki Keiko, Synergistic effect on binary adsorption system of Sr2+ and ReO4- as radionuclide surrogates by hexadecyl pyridinium-modified montmorillonite, Applied Surface Science, http://dx.doi.org/10.1016/j.apsusc.2016.10.135, 394, 431-439, 2017.01.
39. Sasaki Keiko, Shugo Nagato, Keiko Ideta, Jin Miyawaki, Tsuyoshi Hirajima, Enhancement of fluoride removal by co-precipitation with Al-substituted hydroxyapatite, Chem. Engng. J., doi.org/10.1016/j.cej.2016.11.096, 311, 284-292, 2017.01.
40. Tsuyoshi Hirajima, Hajime Miki, Gde Pandhe Wisnu Suyantara, Sasaki Keiko, Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation, Minerals Engineering, 100, 83-92, 2017.01.
41. Dewi Agustina Iryani, Satoshi Kumagai, Moriyasu Nonaka, Keiko Sasaki, Tsuyoshi Hirajima, Characterization and Production of Solid Biofuel from Sugarcane Bagasse by Hydrothermal Carbonization, Waste and Biomass Valorization, https://doi.org/10.1007/s12649-017-9898-9, 8, 6, 1941-1951, 2017.01.
42. Subbaiah Muthu Prabhu, Keiko Sasaki, Fabrication of Chitosan-Reinforced ZrxAl1-xOOH Nanocomposites and Their Arsenite and Fluoride Depollution Densities from Single/Binary Systems, ChemistrySelect, https://doi.org/10.1002/slct.201701072, 2, 22, 6375-6387, 2017.01.
43. Paulmanickam Koilraj, Keiko Sasaki, Kannan Srinivasan, Novel biomolecule-assisted interlayer anion-controlled layered double hydroxide as an efficient sorbent for arsenate removal, Journal of Materials Chemistry A, https://doi.org/10.1039/c7ta03056h, 5, 28, 14783-14793, 2017.01.
44. Tsuyoshi Hirajima, Hajime Miki, Gde Pandhe Wisnu Suyantara, Hidekazu Matsuoka, Ahmed Mohamed Elmahdy, Keiko Sasaki, Yuji Imaizumi, Shigeto Kuroiwa, Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation, Minerals Engineering, https://doi.org/10.1016/j.mineng.2016.10.007, 100, 83-92, 2017.01.
45. Sayo Moriyama, Keiko Sasaki, Tsuyoshi Hirajima, Effect of freeze drying on characteristics of Mg–Al layered double hydroxides and bimetallic oxide synthesis and implications for fluoride sorption, Applied Clay Science, https://doi.org/10.1016/j.clay.2016.07.016, Vol.132-133, 460-467, 2016.11.
46. Qianqian YU, Sasaki Keiko, Microwave-assisted hydrothermal synthesis of nanocrystalline lithium-ion sieve from biogenic manganese oxide, its characterization and lithium sorption studies, Hydrometallurgy, 10.1016/j.hydromet.2015.10.002, Vol.165, Part1, 118-124, 165 (2016) 118–124, 2016.10.
47. Chenyang Li, Lazaro Calderin, Sasaki Keiko, Ismaila Dabo, First-principles Study of the Removal of Boron by Co-precipitation with Hydroxyapatite Using Dolomite as a Starting Material, Bulletin of the American Physical Society, 2016.10.
48. KOILRAJ PAULMANICKAM, Siwaporn Meejoo Smith, Qianqian Yu, Taichi Momoki, Sarah Ulrich, Sasaki Keiko, Encapsulation of powdery spinel type of Li+ ion sieve derived from biogenic manganese oxide in alginate beads, Powder Technology, http://dx.doi.org/10.1016/j.powtec.2016.08.009, 301 (2016) 1201–1207, 2016.08.
49. Sasaki Keiko, Kenta Toshiyuki, Keiko Ideta, Jin Miyawaki, Tsuyoshi Hirajima, Interfacial effects of MgO in hydroxylated calcined dolomite on the co-precipitation of borates with hydroxyapatite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, doi.org/10.1016/j.colsurfa.2016.05.044, 504 (2016) 1–10, 2016.07.
50. Xiangchun Liu, Tsuyoshi Hirajima, Sasaki Keiko, Effects of hydrothermal treatment coupled with mechanical expression on combustion performance of Loy Yang lignite, Journal of Thermal Analysis and Calorimetry, 2016.07.
51. Hajime Miki, Tsuyoshi Hirajima, Sasaki Keiko, Catalytic effect of silver on arsenic-containing copper sulfide dissolution in acidic solution, Hydrometallurgy, https://doi.org/10.1016/j.hydromet.2016.02.007, Vol.162, 1-8, 2016.06.
52. KOILRAJ PAULMANICKAM, Yu Takaki, Sasaki Keiko, Adsorption characteristics of arsenate on colloidal nanosheets of layered double hydroxide, Applied Clay Science, 134 (2016) 110–119, 2016.06.
53. Tsuyoshi Hirajima, Gde Pandhe Wisnu Suyantara, Hajime Miki, Sasaki Keiko, Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite, Minerals Engineering, 96–97 (2016) 83–93, 2016.06.
54. Tsuyoshi Hirajima, Takao Hagino, Sasaki Keiko, Recovery and Upgrading of Phosphorus from Digested Sewage Sludge as MAP by Physical Separation Techniques, Journal of Environmental Protection, doi.org/10.4236/jep.2016.76074, 7, 816-824, 2016.06.
55. Yu Takaki, Xinhong Qiu, Tsuyoshi Hirajima, Keiko Sasaki, Removal mechanism of arsenate by bimetallic and trimetallic hydrocalumites depending on arsenate concentration, Applied Clay Science, 134 (2016) 26–33, 2016.05.
56. Naoko Okibe, Yusei Masaki, Daisuke Nakayama, Sasaki Keiko, Microbial recovery of vanadium by the acidophilic bacterium, Acidocella aromatic, Biotechnology Letters, DOI: 10.1007/s10529-016-2131-2, 38:1475–1481, 2016.05.
57. Wuhui Luo, Tsuyoshi Hirajima, Sasaki Keiko, Optimization of Hexadecylpyridinium-modified Montmorillonite for Removal of Perchlorate Based on Adsorption Mechanisms, Applied Clay Science, https://doi.org/10.1016/j.clay.2016.01.005, Vol.123, 29-36, 2016.04.
58. Dewi Agustina Iryani, Sasaki Keiko, Tsuyoshi Hirajima, HYDROTHERMAL CARBONIZATION KINETICS OF SUGARCANE BAGASSE TREATED BY HOT COMPRESSED WATER UNDER VARIABEL TEMPERATURE CONDITIONS, ARPN Journal of Engineering and Applied Sciences, 11, 7, 4833-4839, 2016.04.
59. Gde Pandhe Wisnu Suyantara, Tsuyoshi Hirajima, Hajime Miki, Sasaki Keiko, EFFECT OF KEROSENE EMULSION IN MgCl2 SOLUTION ON THE KINETICS OF BUBBLE INTERACTION WITH MOLYBDENITE AND CHALCOPYRITE, Colloids and Surfaces A: Physicochemical and Engineering Aspects, in press., 501 (2016) 98–113, 2016.04.
60. Yusei Masaki, Masashi Maki, Daisuke Nakayama, Sasaki Keiko, Naoko Okibe, Microbial recovery of vanadium by Fe(III)-reducing, acidophilic bacterium, Acidocella aromatica PFBC, Biotechnology Letters, 2016.04.
61. Xiangchun Liu, Tsuyoshi Hirajima, Sasaki Keiko, Effect of hydrothermal treatment coupled with mechanical expression on equilibrium water content of Loy Yang lignite and mechanism, Mater. Trans., in press., 2016.04.
62. Airi Harada, Sasaki Keiko, Takashi Kaneda, Direct Determination of Lignin Peroxidase Released from Phanerocheate chrysosprium by In-Capillary Enzyme Assay Using Micellar Electrokinetic Chromatography, Journal of Chromatography A, 1440 (2016) 145–149, 2016.02.
63. Tomoyo Goto, Sasaki Keiko, Synthesis of morphologically controlled hydroxyapatite from fish bone by urea-assisted hydrothermal treatment and its Sr2+ sorption capacity, Powder Technology, 292, 314-322, 2016.02.
64. KOILRAJ PAULMANICKAM, Sasaki Keiko, Fe3O4/MgAl-NO3 layered double hydroxide as magnetically separable sorbent for the remediation of aqueous phosphate, J. Environ. Chem. Engng., http://dx.doi.org/10.1016/j.jece.2016.01.005, 4, 984-991, 2016.01.
65. Sasaki Keiko, Tsuyoshi Hirajima, Kenta Toshiyuki, Dabo Ismaila, Mistuhiro Murayama, Removal mechanism of high concentration borate by co-precipitation with hydroxyapatite, Journal of Environmental Chemical Engineering, http://dx.doi.org/10.1016/j.jece.2016.01.012, 4, 1092-1101, 2016.01.
66. Wuhui Luo, Akihiro Inoue, Tsuyoshi Hirajima, Sasaki Keiko, Sequential modification of montmorillonite with dimethyl dioctadecyl ammonium chloride and benzyl octadecyl dimethyl ammonium chloride for removal of perchlorate, Microporous Mesoporous Materials, http://dx.doi.org/10.1016/j.micromeso.2015.12.030, 233 (2016) 117-124, 2016.01.
67. Mutia Dewi YUNIATI, Keitaro KITAGAWA, Tsuyoshi HIRAJIMA, Hajime MIKI, Naoko OKIBE, Keiko SASAKI, Suppression of pyrite oxidation in acid mine drainage by carrier microencapsulation using liquid product of hydrothermal treatment of low-rank coal, and electrochemical behavior of resultant encapsulating coatings, Hydrometallurgy, https://doi.org/10.1016/j.hydromet.2015.09.028, Vol.158, 83-93, 2015.12.
68. Kojo Twum-Knadu, Sasaki Keiko, Grace OFORI-SARPONG, Kwadwo Osseo-Asare, Takashi Kaneta, Activated carbon as surrogate for carbonaceous matter in gold ores: Degradation via enzyme treatment, Journal of the African Materials Research Society, in press, 2015.12.
69. Xinhong Qiu, Sasaki Keiko, Removal mechanism of polymeric borate by calcined layered double hydroxides containing different divalent metals, Colloids and Surfaces A: Physicochemical and Engineering Aspects, https://doi.org/10.1016/j.colsurfa.2015.07.036, Vol.482, 702-709, 2015.10.
70. Kenta Toshiyuki, Shugo Nagato, Tsuyoshi Hirajima, Sasaki Keiko, Takuro Naruse, Takeshi Kawashima, Influence of Mg components in hydroxylated calcined dolomite to (co-)precipitation of fluoride with apatites, Chem. Engng. J., 10.1016/j.cej.2015.10.029, 285, 487-496, 2015.10.
71. Widi Astuti, Tsuyoshi Hirajima, Sasaki Keiko, Naoko Okibe, Comparison of effectiveness of citric acid and other acids in leaching of different Indonesian low-grade saprolitic ores, Minerals Engineering,, doi:10.1016/j.mineng.2015.10.001, 85, 1-16, 2015.10.
72. Mari YOSHIDA, Paulmanickam KOILRAJ, Xinhong QIU, Tsuyoshi HIRAJIMA, Keiko SASAKI, Sorption of arsenate on MgAl and MgFe layered double hydroxides derived from calcined dolomite, Journal of Environmental Chemical Engineering, https://doi.org/10.1016/j.jece.2015.05.016, Vol.3, Issue 3, 1614-1621, 2015.09.
73. Wuhui Luo, Keiko Sasaki, Tsuyoshi Hirajima, Surfactant-modified montmorillonite by benzyloctadecyldimethylammonium chloride for removal of perchlorate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, https://doi.org/10.1016/j.colsurfa.2015.06.025, 481, 616-625, 2015.09.
74. Liu Xiangchun, Tsuyoshi Hirajima, Sasaki Keiko, Investigation of the Changes in Hydrogen Bonds During Low-Temperature Pyrolysis of Lignite by Diffuse Reflectance FT-IR Combined with Forms of Water, Industrial & Engineering Chemistry Research, in press, 2015.09.
75. Widi ASTUTI, Tsuyoshi Hirajima, Sasaki Keiko, Naoko Okibe, Kinetics of Nickel Extraction from Indonesian Saprolitic Ores by Citric Acid Leaching under Atmospheric Pressure, Minerals & Metallurgical Processing Journal, Vol.32, No.3, in press, 2015.08.
76. Mutia Dewi YUNIATI, Tsuyoshi Hiraji, Hajime Miki, Sasaki Keiko, Silicate Covering Layer on Pyrite Surface in the Presence of Silicon-Catechol Complex for Acid Mine Drainage Prevention, Materials Transactions, https://doi.org/10.2320/matertrans.M-M2015821, Vol.56, Issue 10, 1733-1741, 2015.08.
77. Sayo Moriyama, Sasaki Keiko, Tsuyoshi Hirajima, Sorption properties of boron on Mg–Al bimetallic oxides calcined at different temperatures, Separation and Purification Technology, 152, 192-199, 2015.08.
78. Wuhui Luo, Sasaki Keiko, Tsuyoshi Hirajima, Effect of surfactant molecular structure on perchlorate removal by various surfactant-modified montmorillonites, Applied Clay Science, 114, 212-220, 2015.06.
79. Moriyasu NONAKA, Tsuyoshi HIRAJIMA, Satoshi KUMAGAI,Keiko SASAKI, Hydrothermal Treatment of Lignite for CO2 Gasification, Journal of MMIJ, Vol.131, No.5, 219-225, 2015.05.
80. Naoko Okibe, Kiyomasa Sueishi, Mikoto Koga, Yusei Masaki, Tsuyoshi Hirajima, Sasaki Keiko, Selenium (Se) Removal from Copper Refinery Wastewater Using a Combination of Zero-Valent Iron (ZVI) and Se(VI)-Reducing Bacterium,Thauera selenatis, Materials Transactions, 2015.04.
81. Xinhong Qiu, Sasaki Keiko, Yu Takaki, Tsuyoshi Hirajima, Keiko IDETA, Jin Miyawaki, Mechanism of boron uptake by hydrocalumite calcined at different temperatures, Journal of Hazardous Materials, 10.1016/j.jhazmat.2015.01.066, Vol.287, 268-277, 2015.04.
82. Xiangchun Liu, Tsuyoshi Hirajima, Moriyasu Nonaka, Anggoro T Mursito, Sasaki Keiko, Use of FT-IR combined with forms of water to study of the changes in hydrogen bonds during low-temperature heating of lignite, Drying Technology, in press, 2015.03.
83. Yusei Masaki, Tsuyoshi Hirajima, Keiko Sasaki, Naoko Okibe, Bioreduction and Immobilization of Hexavalent Chromium by the Extremely Acidophilic Fe(III)‑reducing Bacterium Acidocella aromatica Strain PFBC, Extremophiles, doi: 10.1007/s00792-015-0733-6, Vol.19, Issue 2, pp.495-503, 2015.03.
84. Wuhui LUO, Keiko SASAKI, Tsuyoshi HIRAJIMA, Evaluation of BDTAC, DDAC and BDOAC-modified Montmorillonites for Perchlorate Removal, Fourth International Conference on Multifunctional, Hybrid and Nanomaterials, P1.247, 2015.03.
85. Xinhong Qiu, Sasaki Keiko, Kwadwo Osseo-Asare, Tsuyoshi Hirajima, Keiko IDETA, Jin Miyawaki, Sorption of H3BO3/B(OH)4- on calcined LDHs including different divalent metals , Journal of Colloid and Interface Science, 445, 183-194, 2015.01.
86. Xinhong Qiu, Mari Yoshida, Tsuyoshi Hirajima, Sasaki Keiko, Rapid synthesis of LDHs by using dolomite as a magnesium source and its application in borate removal , Materials Transactions, 2015.01.
87. Tsuyoshi Hirajima, Masanori Mori, Sasaki Keiko, Osamu Ichikawa, Hajime Miki, Mohsen Farahat, Mitsuru Sawada, Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment, Minerals Engineering, doi.org/10.1016/j.mineng.2014.07.011, Vol.66-68, 102-111, 2014.11.
88. Masahito Tanaka, Yuta Yamaji, Yuken Fukano, Kazuhiko Shimada, Junichiro Ishibashi, Tsuyoshi Hirajima, Sasaki Keiko, Mitsuru Sawada, Naoko Okibe, Biooxidation of gold-, silver, and antimony-bearing highly refractory polymetallic sulfide concentrates, and its comparison with abiotic pre-treatment techniques, Geomicrobiology Journal, DOI:10.1080/01490451.2014.981645, 2014.11.
89. Sasaki Keiko, Qianqian Yu, Taichi Momoki, Takuya Kaseyama, Adsorption characteristics of Cs+ ions onto biogenic birnessite, Applied Clay Science, 10.1016/j.clay.2014.06.028, Vol.101, 2014.11.
90. Takeshi Tsuruta, Daishi UMENAI, Tomonobu HATANO, Tsuyoshi Hirajima, Sasaki Keiko, Screening Micro-organisms for Cadmium Absorption from Aqueous Solution and Cadmium Absorption Properties of Arthrobacter nicotianae., Bioscience, Biotechnology, and Biochemistry, doi.org/10.1080/09168451.2014.930321, Vol.78, Issue 10, 1791-1796, 2014.10.
91. Qianqian Yu, Sasaki Keiko, In situ X-ray diffraction investigation of the evolution of a nanocrystalline lithium-ion sieve from biogenic manganese oxide, Hydrometallurgy, 10.1016/j.hydromet.2014.07.002, Vol.150, 253-258, 2014.10.
92. Takehiko TSURUTA, Daishi UMENAI, Tomonobu HATANO, Tsuyoshi HIRAJIMA, Keiko SASAKI, Screening Micro-organisms for Cadmium Absorption from Aqueous Solution and Cadmium Absorption Properties of Arthrobacter nicotianae, Bioscience, Biotechnology, and Biochemistry, http://dx.doi.org/10.1080/09168451.2014.930321, Vol. 78, Issue 10, pp.1791-1796, 2014.10.
93. Tomoyo Goto, Sasaki Keiko, Effect of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination, Ceramics International, 10.1016/j.ceramint.2014.03.067, Vol.40, Issue 7, PartB, 10777-10785, 2014.08.
94. M.A. Halim, Ratan K. Majumder, G.Rasul, Yoshinari HIROSHIRO, Sasaki Keiko, J. Shimada, Kenji Jinno, Geochemical Evaluation of Arsenic and Manganese in Shallow Groundwater and Core Sediment in Singair Upazila, Central Bangladesh, Arabian Journal for Science and Engineering, Vol.39, Issue 7, 5585-5601, in press, 2014.07.
95. Hisaya TSUJI, Pilasinee LIMSUWAN, Tsuyoshi HIRAJIMA, Keiko SASAKI, Hajime MIKI, Satoshi KUMAGAI, Recovery of Furfural Produced by Hydrothermal Treatment with Biomass Charcoal, International Journal of Environment, Vol.4, No.1, pp.11-17, 2014.06.
96. Naoki Higashidani, Takashi Kaneta, Nobuyuki Takeyasu, Shoji Motomizu, Naoko Okibe, Sasaki Keiko, Speciation of arsenic in a thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi, and its culture medium by inductively coupled plasma-optical emission spectroscopy combined with flow injection pretreatment using an anion-exchange mini-column, Talanta, 122, 240-245, 2014.05.
97. Sasaki Keiko, Tomoyo Goto, Immobilization of Sr2+ on Naturally Derived Hydroxyapatite by Calcination of Different Species of Fish Bones and Influence of Calcination on Ion-exchange Efficiency, Ceramics International, 10.1016/j.ceramint.2014.03.169, Vol.40, Issue 8, Part A, 11649-11656, 2014.04.
98. Takehiko Tsuruta, Keiko Sasaki, Screening Microorganisms for Cadmium Absorption from Aqueous Solution and the Cadmium Absorption Properties of Arthrobacter nicotianae, Bioscience, Biotechnology, and Biochemistry, in press, 2014.04.
99. Naoko Okibe, Masaharu Koga, Shiori Morishita, Masahito Tanaka, Shinichi HEGURI, Satoshi ASANO, Sasaki Keiko, Tsuyoshi Hirajima, Microbial formation of crystalline scorodite for treatment of As(III)-bearing copper refinery process solution using Acidianus brierleyi, Hydrometallurgy, 143, 34-41, 2014.03.
100. Keiko Sasaki, Xinhong Qiu, Jin Miyawaki, Keiko Ideta, Hitoshi Takamori, Sayo Moriyama, Tsuyoshi hirajima, Contribution of boron-specific resins containing N-methylglucamine groups to immobilization of borate/boric acid in a permeable reactive barrier comprising agglomerated MgO, Desalination, 10.1016/j.desal.2013.11.018, Vol.337, 17, 109-116, 2014.03.
101. Xinhong QIU, Keiko SASAKI, Tsuyoshi HIRAJIMA, Keiko IDETA, Jin MIYAWAKI, One-step Synthesis of Layered Double Hydroxide-intercalated Gluconate for Removal of Borate, Separation and Purification Technology, DOI: 10.1016/j.seppur.2013.12.031. ISSN: 1383-5866., Vol.123, pp.114–123, 2014.02.
102. Xinhong Qiu, Sasaki Keiko, Tsuyoshi Hirajima, Keiko IDETA, Jin Miyawaki, Sorption of borate onto layered double hydroxides assembled in filter papers through in situ hydrothermal crystallization, Applied Clay Science, Vol.88-89, 134-143, 2014.02.
103. Sayo MORIYAMA, Keiko SASAKI, Tsuyoshi HIRAJIMA, Effect of Calcination Temperature on Mg-Al Bimetallic Oxides as Sorbents for the Removal of F- in Aqueous Solutions, Chemosphere, 10.1016/j.chemosphere.2013.10.018, Vol.95, pp.597-603, 2014.01.
104. Sasaki Keiko, Sayo Moriyama, Effect of calcination temperature for magnesite on interaction of MgO-rich phases with boric acid, Ceramics International, 10.1016/j.ceramint.2013.07.056., Vol.40, Issue 1, PartB, 1651-1660, 2014.01.
105. M. A. Halim, R. K. Majumder, M. N. Zaman, S. Hossain, M. G. Rasul, Sasaki Keiko, Mobility and impact of trace metals in Barapukuria coal mining area, Northwest Bangladesh, Arabian Journal of Geoscience, DOI 10.1007/s12517-012-0769-1, Vol.6, Issue 12, 4593-4605, 2013.12.
106. Qianqian Yu, Keiko Sasaki, Tsuyoshi Hirajima, Bio-templated synthesis of lithium manganese oxide microtubes and their application in Li+ recovery, Journal of Hazardous Materials, doi:10.1016/j.jhazmat.2013.08.027, Vol.262, 15, PP.38-47, 2013.11.
107. Sasaki Keiko, Mari Yoshida, Bashir Ahmmad Arima, Naoyuki Fukumoto, Tsuyoshi Hirajima, Sorption of fluoride on partially calcined dolomite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, doi.org/10.1016/j.colsurfa.2012.11.039, Vol.435, 56-62, 2013.10.
108. Qianqian YU, Emiko MORIOKA, Keiko SASAKI, Characterization of Lithium Ion Sieve Derived from Biogenic Mn Oxides, Microporous and Mesoporous Materials, http://dx.doi.org/10.1016/j.micromeso.2013.05.026, Vol.179, pp.122–127, 2013.09.
109. Naoko OKIBE, Masashi MAKI, Keiko SASAKI, Tsuyoshi HIRAJIMA, Mn(Ⅱ)-Oxidizing Activity of Pseudomonas sp. Strain MM1 is Involved in the Formation of Massive Mn Sediments around Sambe Hot Springs in Japan, Materials Transactions, Vol.54, No.10, pp.2027-2031, 2013.09.
110. Naoko Okibe, Masashi Maki, Keiko Sasaki, Tsuyoshi Hirajima, Mn(II)-oxidizing activity of Pseudomonas sp. strain MM1 is involved in the formation of massive Mn sediments around Sambe hot springs in Japan, Materials Transactions, in press, 2013.08.
111. Kazuya Tanaka, Qianqian Yu, Keiko Sasaki, Toshihiko Ohnuki, Cobalt(II) oxidation by biogenic Mn oxide produced by Pseudomonas sp. strain NGY-1, Geomicrobiology Journal, 10.1080/01490451.2013.791352, Vol.30, Issue 10, 874-885, 2013.08.
112. Sasaki Keiko, Qiu Xinhong, Sayo Mortiyama, Chiharu Tokoro, Keiko Ideta, Jin Miyawaki, Characteristic sorption of H3BO3/B(OH)4– on magnesium oxide, Materials Transactions, DOI: 10.2320/matertrans.M-M2013814, Vol.54, No.9, 1809-1817, 2013.08.
113. YU QIANQIAN, Keiko Sasaki, Kazuya TANAKA, Toshihiko OHNUKI, Tsuyoshi Hirajima, Zinc Sorption During Bio-oxidation and Precipitation of Manganese Modifies the Layer Stacking of Biogenic Birnessite, Geomicrobiology Journal, Vol.30, Issue 9, 829-839, 2013.07.
114. Naoko Okibe, Masaharu KOGA, Shinichi HEGURI, Satoshi ASANO, Keiko Sasaki, Tsuyoshi Hirajima, Simultaneous Oxidation and Immobilization of Arsenite from Refinery Waste Water by Thermoacidophilic Iron-oxidizing Archaeon, Acidianus brierleyi, Minerals Engineering, http://dx.doi.org/10.1016/j.mineng.2012.08.009, 48, 126-134, 2013.07.
115. Xinhong Qiu, Sasaki Keiko, Tsuyoshi Hirajima, Keiko IDETA, Jin Miyawaki, Temperature effect on the sorption of borate by a layered double hydroxide prepared using dolomite as a magnesium source, Chemical Engineering Journal, doi.org/10.1016/j.cej.2013.03.099, Vol.225, 664-672, 2013.06.
116. Keiko Sasaki, Xinhong Qiu, Yukiho Hosomomi, Sayo Moriyama, Tsuyoshi Hirajima, Effect of natural dolomite calcination temperature on sorption of borate onto calcined products, Microporous and Mesoporous Materials, 10.1016/j.micromeso.2012.12.029, Vol.171, 1-8, 2013.05.
117. Qianqain YU, Emiko Morioka, Sasaki Keiko, Synthesis of lithium ion sieve derived from biogenic Mn oxides, Microporous Mesoporous Materials, 10.1016/j.micromeso.2013.05.026, 179, 122-127, 2013.05.
118. Keiko Sasaki, Yoshitaka UEJIMA, Atsushi SAKAMOTO, Qianqian Yu, Junichiro Ishibashi, Naoko Okibe, Tsuyoshi Hirajima, Geochemical and Microbiological Analysis of Sambe hot springs, Shimane Prefecture, Japan, Resource Geology, DOI: 10.1111/rge.12002, Vol.63, Issue 2, 155-165, 2013.04.
119. Sayo Moriyama, Sasaki Keiko, Tsuyoshi Hirajima, Effect of calcination temperatures on Mg–Al bimetallic oxides as sorbents for the removal of F− in aqueous solutions, Chemosphere, doi.org/10.1016/j.chemosphere.2013.10.018, in press, 2013.03.
120. Xinhong Qiu, Sasaki Keiko, Tsuyoshi Hirajima, 宮脇 仁, 出田圭子, One-Step Synthesis of layer double hydroxide-intercalated gluconate for borate removal, Separation and Purification Technology, in press, 2013.03.
121. Moriyasu Nonaka, Tsuyoshi Hirajima, Keiko Sasaki, Gravity separation and its effect on CO2 gasification, Fuel, org/10.1016/j.fuel2011.10.074, Vol.103, 37-41, 2013.01.
122. Dewi Agustina IRYANI, 熊谷 聡, Moriyasu Nonaka, Yoshinobu NAGASHIMA, Keiko Sasaki, Tsuyoshi Hirajima, Hot Compressed Water Treatment of Solid Waste Material from the Sugar Industry for Valuable Chemical Production, International Journal of Green Energy , DOI:10.1080/15435075.2013.777909, in press, 2012.12.
123. Sayo Moriyama, Keiko Sasaki, Tsuyoshi Hirajima, Effect of calcination temperatures in producing Mg–Al bimetallic oxides as sorbents for the removal of F− in aqueous solutions, Separation and Purification Technology, 2012.09.
124. Keiko Sasaki, Naoyuki FUKUMOTO, Sayo MORIYAMA, YU QIANQIAN, Tsuyoshi Hirajima, Chemical Regeneration of Magnesium Oxide Used as a Sorbent for Fluoride, Separation and Purification Technology, Vol.98, p.24-p.30, Vol.98. pp.24-30
, 2012.09.
125. Qianqian YU, Keiko Sasaki, Kazuya Tanaka, Toshihiko Ohnuki, Tsuyoshi Hirajima, Structural influences of zinc on the biogenic manganese oxides and concomitant formation of MnO2 nanosheets, Geomicrobiology Journal, 2012.08.
126. Keiko Sasaki, Shoichi Tsuruyama, Sayo Moriyama, Stephanie Handley-Sidhu, Joanna C. Renshaw, Lynne E. Macaskie, Ion Exchange Capacity of Sr2+ onto Calcined Biological Hydroxyapatite
and Implications for Use in Permeable Reactive Barriers, Materials Transactions,, 53, 7, 1267-1272, 2012.07.
127. Qianqian Yu, Keiko Sasaki, Kazuya Tanaka, Toshihiko Ohnuki, Tsuyoshi Hirajima, Structural factors of biogenic birnessite produced by fungus Paraconiothyrium sp.
WL-2 strain affecting sorption of Co2+, Chemical Geology, doi:10.1016/j.chemgeo.2012.03.029, 310-311, 106-113, 2012.07.
128. Keiko SASAKI, Naoyuki FUKUMOTO, Sayo MORIYAMA, Qianqian YU, Tsuyoshi HIRAJIMA, Chemical regeneration of magnesium oxide as a sorbent of fluoride, Separation and Purification Technology, 98, 24-30, 2012.07.
129. Keiko Sasaki, Koichiro Takatsugi, Olli H. Tuovinen, Spectroscopic analysis of the bioleaching of chalcopyrite by Acidithiobacillus caldus, Hydrometallurgy, 127-128, 116-120, 2012.07.
130. YU QIANQIAN, Keiko Sasaki, Kazuya TANAKA, Toshihiko OHNUKI, Tsuyoshi Hirajima, Structural Factors of Biogenic Birnessite Produced by Fungus Paraconiothyrium sp. WL-2 Strain Affecting Sorption of Co2+, Chemical Geology, doi: 10.1016/j.chemgeo.2012.03.029 Vol.310-311, 5, 106-113, 5, pp.106–113, 2012.06.
131. Tsuyoshi Hirajima, Yuki AIBA, Mohsen Farahat, Naoko Okibe, Keiko Sasaki, Takehiko Tsuruta, Katsumi DOI, Effect of Microorganisms on Flocculation of Quartz, International Journal of Mineral Processing, doi:10.1016/j.minpro.2011.10.001, Vol.102-103, 107-111, 2012.01.
132. Himawan Tri Bayu Murti PETRUS, Tsuyoshi Hirajima, Keiko Sasaki, Hideyuki OKAMOTO, Effects of Sodium Thiosulphate on Chalcopyrite and Tennantite; An Insight for Alternative Separation Technique, International Journal of Mineral Processing, dx.doi.org/10.1016/j.minpro.2011.11.002, Vol.102–103, 116-123, 2012.01.
133. Characterization of passivation layers in bioleaching of sulfides.
134. Naoyuki Fukumoto, Keiko Sasaki, Sayo Moriyama, Tsuyoshi Hirajima, Synthesis of Magnesia as a Reusable Sorbent for Fluoride, Journal of Novel Carbon Resource Sciences, 4, 32-35, 2011.09.
135. Handley-Sidhu S, Renshaw J.C, Sayo MORIYAMA, Stolpe B, Yong P, Mennan C, Bagheriasl S, Stamboulis A, Paterson-Beedle M, Keiko SASAKI, Pattrick R.A.D, Lead J.R, Macaskie L.E., Removal of Sr2+ and Co2+ into Biogenic Hydroxyapatite: Implications for Biomineral Ion Exchange Synthesis, Environmental Science and Technology, 45, 6985-6990, 2011.07.
136. Koichiro Takatsugi, Keiko Sasaki, Tsuyoshi Hirajima, Mechanism of the enhancement of bioleaching of copper from enargite by thermophilic iron-oxidizing archaea with the concomitant precipitation of arsenic, Hydrometallurgy, 10.1016/j.hydromet.2011.05.013, 109, 90-96, 2011.05.
137. Keiko Sasaki, Koichiro Takatsugi, Tsuyoshi Hirajima, Effects of initial Fe2+ concentration and pulp density on the bioleaching of Cu from enargite by Acidianus brierleyi, Hydrometallurgy, 10.1016/j.hydromet.2011.06.008, 109, 153-160, 2011.05.
138. Keiko Sasaki, Naoyuki Fukumoto, Sayo Moriyama, Tsuyoshi Hirajima, Sorption characteristics of fluoride on to magnesium oxide-rich phases calcined at different temperatures, Journal of Hazardous Materials, 191, 240-248, 2011.04.
139. Moriyasu NONAKA, Tsuyoshi HIRAJIMA and Keiko SASAKI, Upgrading of Low Rank Coal and Woody Biomass Mixture by Hydrothermal Treatment, Fuel, in press, 2011.04.
140. Keiko SASAKI, Hitoshi TAKAMORI, Sayo MORIMAYA, Hitoshi YOSHIZAKA, Tsuyoshi HIRAJIMA, Effect of Saw Dusts on Borate Removal from Groundwater in Bench-scale Simulation of Permeable Reactive Barriers Including Magnesium Oxide, Journal of Hazardous Materials, https://doi.org/10.1016/j.jhazmat.2010.10.067, Vol.185, Issues 2-3, 1440-1447, 2011.01.
141. H.T.B.M. Petrus, Tsuyoshi Hirajima, Yuji Oosako, Moriyasu Nonaka, Keiko Sasaki, Takashi Ando, Performance of dry-separation processes in the recovery of cenospheres from fly ash
and their implementation in a recovery unit, International Journal of Mineral Processing, 98 (2011) 15–23, 2011.01.
142. Anggoro Tri Mursito, Tsuyoshi Hirajima, Keiko Sasaki, Alkaline hydrothermal de-ashing and desulfurization of low quality coal
and its application to hydrogen-rich gas generation, Energy Conversion and Management, 52, 762-769, 2011.01.
143. Himawan Tri Bayu Murti PETRUS, 平島 剛, 笹木 圭子, Effect of pH and Diethyl Dithiophosphate (DTP) Treatment on Chalcopyrite and
Tennantite Surface Observed Using Atomic Force Microscopy (AFM), Colloids and Surface A: Physicochemical and Engineering Aspects, 2011, 9, Vol.389, Issues 1-3, pp.266-273, 2011.01.
144. H. T. B. M. Petrus, T. Hirajima, K. Sasaki, H. Okamoto, Study of Diethyl Dithiophosphate Adsorption on Chalcopyrite and Tennantite at Varied pHs, Journal of Mining Science, 47, 5, 695-702, 2011.01.
145. OSAMA ELJAMAL , KEIKO SASAKI, Shoichi Tsuruyama, TSUYOSHI HIRAJIMA, Kinetic Model of Arsenic Sorption onto Zero-Valent Iron, Water Quality, Exposure and Health, DOI 10.1007/s12403-010-0030-7, in press, 2010.12.
146. Ahmad T. YULIANSYAH, Tsuyoshi HIRAJIMA, Satoshi KUMAGAI, Keiko SASAKI, Production of Solid Biofuel from Agricultural Wastes of the Palm Oil Industry by Hydrothermal Treatment, Waste and Biomass Valorization, in press, 2010.12.
147. Abdul M. HALIM, R. K. MAJUMDER, S. A. NESSA, Y. HIROSHIRO, Keiko SASAKI, B. B. SAHA, A. SAEPULOH, Kenji JINNO, Trace metals in water and sediment from coal mine discharge canal in the Boropukuria, Bangladesh: mobility and environmental significance assessment, J. Hazardous Mater., in press, 2010.07.
148. Keiko SASAKI, Koichiro TAKATSUGI, Tsuyoshi HIRAJIMA, Kenji KANEKO, Toshihiko OHNUKI, , Olli H. TUOVINEN, Characterization of secondary formed As-bearing precipitates in bioleaching of enargite by As-adapted Acidithiobacillus ferrooxidans, Hydrometallurgy, 104, 424-431, 2010., 2010.07.
149. M. A. Halim, R. K. Majumder, S. A. Nessa, K. Oda, Y. Hiroshiro, B. B. Saha, K. Sasaki, K. Jinno, Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment
, Journal of Hazardous Materials, 180, 50-62, 2010.06.
150. Mohsen FARAHAT, Tsuyoshi HIRAJIMA, Keiko SASAKI, Adhesion of Ferroplasma acidiphilum onto Pyrite Calculated from the Extended DLVO Theory using the Van Oss-Good-Chaudhury Approach, Journal of Colloid & Interface Science, 349, 594-601, 2010.06.
151. Tsuyoshi Hirajima, H.T.B.M. Petrus, Yuji Oosako, Moriyasu Nonaka, Keiko Sasaki, Takashi Ando, Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application, International Journal of Mineral Processing, 95, 18-24, 2010.06.
152. Anggoro Tri MURSTO, Tsuyoshi HIRAJIAM, Keiko SASAKI, Satoshi KUMAGAI, The effect of hydrothermal dewatering of Pontianak tropical peat on organics in wastewater and gaseous products, Fuel, in press, 2010.06.
153. Keiko SASAKI, Koichiro TAKATSUGI, Kazuhiro ISHIKURA, Tsuyoshi HIRAJIMA, Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pHs, Hydrometallurgy, 100, 144-151, Vol. 100, pp.144-151, 2010, 2010.01.
154. Pauliina NURMI, Bestamin ÖZKAYA, Keiko SASAKI, Anna H. KAKSONEN, M.-R. Riekkola-VANHANEN, Olli H. TUOVINEN, Jaakko A. PUHAKKA, Biooxidation and Precipitation for Iron and Sulfate Control in Heap Bioleaching Waste Streams, Hydrometallurgy, 101, 7-14, 2010.01.
155. Anggoro T MURSITO, Tsuyoshi HIRAJIMA, Keiko SASAKI, Upgrading and Dewatering of Raw Tropical Peat by Hydrothermal Treatment, Fuel, 89, 635-641, 2010.01.
156. Keiko SASAKI, Takuya KASEYAMA, Tsuyoshi HIRAJIMA, Selective sorption of cobalt over nickel using biogenic manganese oxides, Materials Transactions, Vol. 50, pp.2643-2648, 2009, 2009.11.
157. K. SASAKI, K. TAKATSUGI, T. HIRAJIMA, N. KOZAI, T. OHNUKI, O. H. TUOVINEN, Bioleaching of Enargite by Arsenic-torelant Acidithiobacillus ferrooxidans, Advanced Materials Research, 71-73, 485-488, 2009.10.
158. K. SASAKI, T. KASEYAMA, T. HIRAJIMA, Selective Sorption of Ce3+ over La3+ ion on Biogenic Manganese Oxides, Advanced Materials Research, 71-73, 633-636, 2009.10.
159. Treatment of Heavy Metals in a Constructed Wetland, Kaminokuni, Hokkaido
-Role of Microorganisms in Immobilization of Heavy Metals in Wetland Soils-.
160. Treatment of Heavy Metals in a Constructed Wetland, Kaminokuni, Hokkaido
-Accumulation of Heavy Metals in Emergent Vegetations-.
161. Mohsen Farahat, Tsuyoshi Hirajima, Keiko Sasaki , Katsumi Doi, Adhesion of Escherichia coli onto Quartz, Hematite and Corundum: Extended DLVO Theory and Flotation Behavior, Colloids and Surfaces B: Biointerfaces, Vol. 74, pp.140-149, 2009, 2009.07.
162. Keiko Sasaki, Yousuke Nakamuta, Tsuyoshi Hirajima, Olli H. Tuovinen, Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans, Hydrometallurgy, Vol. 95, (2009) pp.153-158., 2009.01.
163. K. Sasaki, H. Nakano, W. Wilopo, Y. Miura, T. Hirajima, Sorption and speciation of arsenic by zero-valent iron, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, 8-17, 2009, 2008.12.
164. Wahyu Wilopo, Keiko Sasaki, Tsuyoshi Hirajima, Toshiro Yamanaka, Immobilization of Arsenic and Manganese in Contaminated Groundwater by Permeable Reactive Barrier Using Zero Valence Iron and Sheep Manure, Materials Transactions, Vo. 49, No. 10, pp. 2265-2274, 2008.10.
165. W. WILOPO, K. SASAKI, T. HIRAJIMA, Identification of Sulfate- and Arsenate-Reducing Bacteria in Sheep Manure As Permeable Reactive Materials after Arsenic Immobilization in Groundwater., Materials Transactions, Vol. 49, No. 10, pp.2275-2282, 2008.10.
166. Olia V. Karnachuk, Keiko Sasaki, Anna L. Gerasimchuk, Olga Sukhanova, Denis A. Ivasenko, Anna H. Kaksonen, Jaakko A. Puhakka, Olli H.Tuovinen, Precipitation of Cu-sulfides by Copper-tolerant Desulfovibrio Isolates, Geomicrobiology Journal, Vol. 25, pp. 1-8, 2008.07.
167. KEIKO SASAKI, DAVID W. BLOWES, CAROL J. PTACEK, Spectroscopic study of precipitates formed during removal of selenium from mine drainage spiked with selenate using permeable reactive materials, Geochemical Journal, Vol. 42, pp. 283-294, 2008.06.
168. Keiko Sasaki,Shunsuke Nukina,Wahyu Wilopo, Tsuyoshi Hirajima, Removal of arsenate in acid mine drainage by a permeable reactive barrier bearing granulated blast furnace slag: column study, Materials Transactions, Vol. 49(4), pp. 835-844, 2008.04.
169. K. Sasaki, H. Tachibana, Y. Ogawa, H. Konno, Oxidation of Mn(II) Ions in Model and Actual Manganese Drainages by a Fungus Closely Related to Phoma sp. like strain KY-1, Materials Transaction, Vol. 49(4), pp. 845-849, 2008.04.
170. K. Sasaki, D. W. Blowes, C. J. Ptacek, Immobilization of selenate in mine drainage by permeable reactive barriers: column performance., Applied Geochemistry, Vol. 23, No. 5, pp. 1012-1022, 2008.02.
171. K. Sasaki, M. Matsuda, T. Urata, T. Hirajima, H. Konno, Sorption of Co2+ ions on the biogenic Mn deposits by a Mn-oxidizing fungus,Paraconiothyrium sp.-like strain WL-2, Materials Transaction, Vol. 49(3), pp. 605-611, 2008.01.
172. Mohsen Frahat, Tsuyoshi Hirajima, Keiko Sasaki, Yuuki Aiba, Katsumi Doi, Adsorption of SIP E. coli onto quartz and its applications in froth flotation, Minerals Engineering, Vol.21(5), pp.389-395, 2007.12.
173. Jonathan P. Gramp, Jerry M. Bigham, Keiko Sasaki, and Olli H. Tuovinen, Formation of Ni- and Zn-sulfides in cultures of sulfate-reducing bacteria., J. Geomicrobiology, Vol, 24, pp. 2-7, 2007.11.
174. K. Sasaki, M. Matsuda, T. Urata, T. Hirajima, H. Konno, Sorption of Co ions on biogenic Mn oxides produced by a Mn-oxidizing fungus, Paraconiothyrium sp.-like strain., Advanced Materials Research)., 20-21, 607-610, 2007.07.
175. Hidetaka KONNO, Keiko SASAKI, Yuuki OGAWA, Hideki TACHIBANA, Singular effect of carbon fibers on the oxidation of dissolved Mn(II) ions by a fungus closely related to Phoma sp., Materials Transactions, 48(1), 64-67, 2007.01.
176. Jonathan P. Gramp, Keiko SASAKI, Jerry M. Bigham, Olia V. Karnachuk, Olli H. Tuovinen, Formation of covellite (CuS) under biological sulphate-reducing conditions., Geomicrobiology Journal, 23, 613-619, 2006.11.
177. Production of Bio-Coal Fuel from Low Rank Coal and Woody Biomass Mixture by Using a Bench-Scale Continuous Hydrothermal Equipment.
178. Keiko SASAKI, Minoru Matsuda, Tsuyoshi Hirajima, Keishi Takano, Hidetaka Konno, Immobilization of Mn(II) by a Mn-oxidizing fungus Paraconiothryum sp. like strain at neutral pHs., Mater. Trans., 47, 10, 2457-2461, 2006.10.
179. K. Sasaki, T. Sakimoto, M. Endo and H. Konno, FE-SEM study of microbiologically formed jarosites by Acidithiobacillus ferrooxidans., Mater. Trans., 47(4), 1155-1162, 2006.05.
180. Keishi TAKANO, Yasoo ITOH, Tagiru OGINO, Kunihiko KUROSAWA, Keiko SASAKI, Phylogenetic analysis of manganese-oxidizing fungi isolated from manganese-rich aquatic environment in Hokkaido, Japan., Limnology, 2006.01.
181. , [URL].
182. T. Hirajima, A. Bissombolo, K. Sasaki, K. Nakayama, H. Hirai, and M. Tsunekawa, Floatability of rare earth phosphors from waste fluorescent lamps, Intl. J. Miner. Proc., 10.1016/j.minpro.2005.05.002, 77, 4, 187-198, 77, 187-198, 2005.11.
183. T. Hirajima, K. Sasaki, A. Bissombolo, M. Hamada, M. Tsunekawa, Feasibility of an efficient recovery of rare earth-activated phosphors from waste fluorescent lamps through dense-medium centrifugation., Separation and Purification Technology, 10.1016/j.seppur.2004.12.014, 44, 3, 197-204, 44, 197-204, 2005.07.
184. Keiko Sasaki, David Blowes, Carol Ptacek, Spectroscopic study of removal of Se(VI) from mine drainage by areactive permeable barrier column, Groundwater Quality, 2004.07.
185. K. Sasaki, H. Konno, M. Endo, K. Takano, Removal of Mn(II) ions by manganese-oxidizing fungus at neutral pHs in the presence of carbon fiber., Biotechnol. Bioengng., 85(5), 491-496, 2004.06.
186. Activation of manganese-oxidizing fungus with carbon fiber
- Fibrous shape is essential -.
187. K. K. Yoo, K. Sasaki, N. Hiroyoshi, M. Tsunekawa, T. Hirajima, The Effect of Mn2+ concentration on Mn removal by a sulfate-reducing bacteria bioreactor., Mater. Trans., 10.2320/matertrans.45.2429, 45, 7, 2429-2434, 2004.01.
188. K. K. Yoo, K. Sasaki, N. Hiroyoshi, M. Tsunekawa, Fundamental study on the removal of Mn2+ in acid mine drainage using sulfate-reducing bacteria., Mater. Trans., 10.2320/matertrans.45.2422, 45, 7, 2422-+, 2004.01.
189. K. Sasaki, T. Ogino, Y. Endo, K. Kurosawa, Field study on heavy metal accumulation in the natural wetland receiving acid mine drainage, Mater. Trans., 44(9), 1877-1884, 2003.01.
190. K. Sasaki, T. Ogino, O. Hori, Y. Endo, K. Kurosawa, M. Tsunekawa, Chemical transportation of heavy metals in the constructed wetland impacted by acid drainage., Mater. Trans., 44(2), 305-312, 2003.01.
191. K. Sasaki, T. Yamashita, M. Tsunekawa, Synthesis of aragonite from calcined scallop shells - Morpholigical characterization by FE-SEM., Shigen-to-Sozai, 118, 553-558, 2002.01.
192. K. Sasaki, M. Endo, K. Kurosawa, and H. Konno, Removal of manganese ions from water by Leptothrix discophora with carbon fiber., Mater. Trans., 43(11), 2773-2777, 2002.01.
193. K. Sasaki, N. Haga, T. Hirajima, K. Kurosawa, M. Tsunekawa, Distribution and transition of heavy metals in mine tailing dumps., Mater. Trans., 43(11), 2778-2783, 2002.01.
194. K. K. Yoo, K. Sasaki, T. Hirajima, M. Tsunekawa, Analysis of heavy metals in a tailing impoundment of abandoned Mn mine by using two sequential extractions., Mater. Trans., 43(12), 3189-3194, 2002.01.
195. K. Sasaki, H. Konno, Morphological change of jarosite groups formed from biologically and chemically oxidized Fe(III) ions., Can. Mineral., 38, 45-56, 2000.01.
196. K. Sasaki, M. Tsunekawa, S. Tanaka, M. Fukushima and H. Konno, Inhibiting effect of natural organic acids on microbially mediated dissolution of pyrite in acidic environments., Shigen-to-Sozai, 115, 233-239, 1999.01.
197. K. Nakayasu, M. Fukushima, K. Sasaki, S. Tanaka, and H. Nakamura, Comparative studies of the reduction behavior of chromium (VI) by humic substances and their precursors., Environ. Toxicol. Chem., 18, 1085-1090, 1999.01.
198. M. Fukushima, S. Tanaka, K. Nakayasu, K. Sasaki, and K. Tatsumi, Evaluation of copper(II) binding abilities of humic substances by a continuous site-distribution model considering proton competition., Anal. Sci., 15, 185-188, 1999.01.
199. K. Sasaki, M. Tsunekawa, T. Ohtsuka and H. Konno, The role of sulfur-oxidizing bacteria, Thiobacillus thiooxidans, in pyrite weathering., Colloids and Surfaces A: Phisicochemical and Engineering Aspects, 133(3), 269-278, 1998.01.
200. K. Sasaki, O. Tanaike and H. Konno, Distinction of jarosite compounds by Raman spectroscopy., Can. Mineral., 36, 1225-1235, 1998.01.
201. K. Sasaki, Raman study of the microbially mediated dissolution of pyrite by Thiobacillus ferrooxidans., Can. Mineral., 35(4), 999-1008, 1997.01.
202. M. Fukushima, S. Tanaka, K. Nakayasu, K. Sasaki, H. Nakamura and K. Tatsumi, Investigation of copper(II)-binding behavior of fulvic acids by three-dimensional fluorescence spectrometry., Anal. Sci., 13, 1007-1011, 1997.01.
203. K. Sasaki and M. Tsunekawa, Evaluation of tannic and fulvic acids as inhibitors of cell growth, and iron and sulfur oxidation in Thiobacillus ferrooxidans and Thiobacillus thiooxidans., Shigen-to-Sozai (J. Min. Mat. Proc. Inst. Japan), 112, 929-933, 1996.01.
204. K. Sasaki, M. Tsunekawa and H. Konno, Effect of cations on pyrite oxidation with Fe(III) ions near pH 2., Shigen-to-Sozai (J. Min. Mat. Proc. Inst. Japan), 112, 231-237, 1996.01.
205. K. Sasaki, M. Tsunekawa and H. Konno, Effect of Fe(II) ions on pyrite oxidation with Fe(III) ions near pH 2., Shigen-to-Sozai (J. Min. Mat. Proc. Inst. Japan), 112, 49-53, 1996.01.
206. K. Sasaki, M. Tsunekawa, S. Tanaka and H. Konno, Suppression of microbially mediated dissolution of pyrite by originally isolated fulvic acids and related compounds., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 119, 241-253, 1996.01.
207. K. Sasaki, M. Tsunekawa, T. Ohtsuka and H. Konno, Confirmation of sulfur-rich layer formed on pyrite after dissolution by Fe(III) ions around pH 2., Geochim. Cosmochim. Acta, 59, 3155-3158, 1995.01.
208. K. Sasaki, M. Tsunekawa, K. Hasebe and H. Konno, Effect of anionic ligands on the reactivity of pyrite with Fe(III) ions in acid solutions., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 101, 39-49, 1995.01.
209. K. Sasaki, M. Tsunekawa and H. Konno, Characterization of argentojarosite formed from biologically oxidized Fe(III) ions., Can. Mineral., 33(6), 1311-1319, 1995.01.
210. K. Sasaki, H. Konno and M. Inagaki, Structural strain in pyrite evaluated by X-ray powder diffraction., J. Mater. Sci., 29, 1666-1669, 1994.01.
211. K. Sasaki, Effect of grinding on the rate of oxidation of pyrite by oxygen., Geochim. Cosmochim. Acta, 58, 4649-4655, 1994.01.
212. M. Sugawara, K. Sasaki, T. Kambara, Surface-tention titration of calcium(II)and Manganese (II) by using triethanolamine as masking reagent, Fresenius Z. Anal. Chem., 313,237, 1982.12.
Presentations
1. Shingo Nakama, Quanzhi Tian, Binglin Guo, Niko Dian Pahlevi, Zhaochu Hu, Keiko Sasaki, Suppression mechanism of anionic pollutants released from fly ash by Ca additives, 米国化学会, 2018.03.
2. Chitiphon Chuaicham, Keiko Sasaki, Effects of precursors on the photocatalytic activities of graphitic carbon nitride in hexavalent chromium reduction and rhodamine B degradation under visible light irradiation, 米国化学会, 2018.03.
3. Kojo Twum Konadu, Keiko Sasaki, Kwadwo Osseo-Asare, Takashi Kaneta, Effect of lignin degrading enzymes on the decomposition of large aromatic hydrocarbons using coronene as a surrogate for powdered activated carbon, International Biohydrometallurgy Symposium, 2017.09.
4. Keiko Sasaki, Yoshikazu Hayashi, Binglin Guo, Immobilization of borate and arsenate from geothermal waters by co-precipitation with hydroxyapatite, Goldschmidt 2017, 2017.08.
5. Wuhui Luo, Sasaki Keiko, Synergistic adsorption of Sr2+ and ClO4− on alginate-encapsulated organo-montmorillonite, Hybrid Materials 2017, 2017.03.
6. Paulmanickam Koilraj, Keiko Sasaki, Multifunctional bio-molecules: A precipitant and anion controlling agent on the synthesis of layered double hydroxides and their arsenate adsorption, Hybrid Materials 2017, 2017.03, Arginine is an important biomolecule, which are widely used as ingredients in food and pharmaceuticals industries [1]. Recently, amino acids are utilized for the synthesis of simple metal oxides and/or metal hydroxides, which showed remarkable electronic and adsorption properties. However, the challenges are the preparation of mixed metal hydroxides or layered double hydroxide (LDHs) using these biomolecules [2]. At present, we have synthesised LDHs using multifunctional amino acids as precipitant and labile anion controlling agent and used for the remediation of aqueous arsenate.
Synthesis of MgAl-LDHs (Mg/Al atomic ratio of 3.0) with controlled labile anion was synthesised by hydrothermal method at 100-150 oC using arginine. Thus prepared materials were utilized for the remediation of aqueous arsenate.
PXRD showed that pure nitrate containing LDHs was obtained at lower temperature due to water hydrolysis. Conversely, at higher temperature LDHs showed carbonate as interlayer anion due to the decomposition amino acid into NH4+ and CO2 which act as precipitant and interlayer anion respectively. Arsenate adsorption studies indicated that the adsorption density is directly related to the amount of labile nitrate present in the interlayer and showed maximum of 1.657 mmol/g for LDH synthesised at 100oC. The mechanism of LDH formation and arsenate adsorption was elucidated by different physicochemical analyses.
In conclusion, for the first time MgAl LDHs with different composition of interlayer anion were synthesised by hydrothermal method using amino acid as precipitant and anion controlling agent without any external base. The products obtained at the end of synthesis are LDH and arginine cation. The LDHs obtained here are used as adsorbent and the arginine cation could be used as chemical intermediates with zero waste disposal promising its superiority..
7. Yuta Kamura, Paulmanickam Koilraj, Keiko Sasaki, Carbon-dot/layered double hydroxide nanocomposite for the co-immobilization of strontium and selenate , CINEST 2016, 2016.12, sStrontium (Sr2+) and anionic sselenate (SeO42-) are the by-products of nuclear reaction. Co-immobilization of these ions are highly desired for total remediation of radioactive waste water. Carbonaceous nanomaterials are received great attention in the field of water remediation and pollution control in recent years. However, the handling of these nanomaterials are very challenging due to increase in the bio-availability and toxicity. At present, Mg2Al-NO3 layered double hydroxides (LDHs) was synthesized and modified using carbon nano-dots. Thus prepared materials were characterized through different physicochemical analyses such as PXRD, FT-IR, Zeta potential and TEM. Strontium and selenate adsorption on Mg2Al-NO3-LDH/C-dot composites showed that the strontium immobilization capacities were increased with increase in the amount of carbon-dot. The mechanism of Sr2+ adsorption on these composites occurs via co-ordination with –COO- group of carbon-dot, while SeO42- occurs through ion-exchange of nitrate present in the interlayer galleries of LDH. These results promising the use carbon-dot/LDH composite materials for the total remediation of both anionic and cationic radioactive nuclides from waste water.

.
8. Sasaki Keiko, Bioleaching of Cu from enargite using thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi: Spectroscopic study for stabilizing As, Copper 2016, 2016.11.
9. Sasaki Keiko, Wuhui Luo, GRINDING EFFECTS OF MONTMORILLONITE AND ILLITE ON FOLLOWING MODIFICATION BY DIOCTADECYL DIMETHYL AMMONIUM CHLORIDE AND ITS APPLICATION IN PERCHLORATE REMOVAL, Asian Clay 2016, 2016.11.
10. Qianqian Yu, Keiko Sasaki, BIOTEMPLATED SYNTHESIS OF A LITHIUM ION-SIEVE DERIVED FROM BIOGENIC MN OXIDE
, Asian Clay 2016, 2016.11, Microbial oxidation is a primary pathway for the Mn oxides formation in nature. Its unique structural properties provide potential for materials scientists to fabricate new functionalized materials. Using Mn oxidizing fungus Paraconiothyrium sp. WL-2 as a bio-oxidizer as well as a bio-template, a special lithium ion sieve with microtube morphology was prepared by calcination. The poorly crystalline Mn oxide facilitates the formation of well crystalline lithium ion sieve at a relatively lower temperature. The effect of calcination temperature was studied by using in situ X-ray diffraction (XRD), Rietveld analysis, X-ray absorption fine structure (XAFS) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). We found that changes of calcination temperature affected the crystal structure (e.g. contents of the spinel phase), the morphology, as well as the chemical composition (e.g. the average oxidation state of Mn) of the product. And the sorption capacity of lithium ion sieve is related with the content of Mn(III) in spinel phase. The optimized sample shows lithium adsorption capacity which is more than twice higher than particulate materials..
11. Sasaki Keiko, NATURAL ATTENUATION OF ARSENATE-CONTAMINATED RIVER IMPACTED BY ACID MINE DRAINAGES: CHARACTERIZATION OF SUSPENDED PARTICULATE MATTERS , ICHMET 2016, 2016.09.
12. Binglin Guo, Keiko Sasaki, Tsuyoshi Hirajima, COORDINATION CHEMISTRY OF SELENATE IN ETTRINGITE, ICHMET 2016, 2016.09, Introduction
Selenium often occurs in association with sulfide minerals by replacement with sulfur, and its toxicity is known as being associated with a number of specific diseases such as nail abnormalities and changes in peripheral nerves. Selenite (SeO32–) and selenite (SeO42–)are much more mobile and toxic in ecosystems. Furthermore, the high mobility of radionuclide 79Se in aqueous environments can pose the terrible threat because most minerals' surfaces are negatively charged in earth crust and it has a long half life time around 2.95×105 years.
Ettringite, which is one of calcium aluminum hydroxysulfates with several crystal water molecules, often occurs in some alkaline environments like cements. It has a general composition of A6B2(C)3(OH)12•26H2O, where A is Ca2+, Sr2+, Cd2+, Co2+; B is Cr3+, Al3+, Fe3+, Mn4+, Si4+; and C is some anions such as SO42– and SeO42– (Gougar et al., 1996). The unit cell of the crystal consists of columns of {Ca6[Al(OH)6]2・24H2O]}6+ with the inter-column spaces occupied by 3 moles of divalent anions (C) and 2 moles of H2O, which hold columns together through electrostatic force. It has been proved by the bond valence theory that AsO43– is complexed with some functional groups on the surface of columns in ettringite (Myneni et al., 1998). Thus, there are two possibilities in incorporations of oxoanions in ettringite, which are the substitution of intercolumn oxoanions or the coordination of oxoanions with functional group on ettringite. This should affect to the chemical stability of anionic species, which are sometimes pollutants in ettringite.
It is not yet clear whether SeO42– is sorbed through inner-sphere complexation or outer-sphere complexation in ettringite. In other word, the bonding Ca(Al)-O-Se-O3 should be created through covalent bond while the bonding H•••••O-Se-O3 should be formed in the later through electrostatic force. In the present work, ettringite containing different concentrations of selenate was characterized by Fourier Transform infrared spectroscopy (FTIR) and bond valence theory to figure out the sorption mechanism of selenate in ettringite.
Methods
Ettringite was synthesized with the stoichiometric amounts of Ca(OH)2 and Al2(SO4)3 with different concentrations of Na2SeO4 (0.5–20mM) in ultrapure water. All solutions were prepared by deionized water and reagent-grade chemicals. The mixture were covered with parafilm to avoid getting CO2 and stirred using a magnetic stirrer at room temperature for 120 min. Then the pH of supernatant was recorded and suspension was filtered by membrane filter for determination of remaining Ca, Al, Se and S concentrations using inductively coupled plasma optical emission spectrometry(ICP-OES).The precipitates were examined by using scanning electron microscope (SEM), X-ray diffraction (XRD), and FTIR. Bond valence theory(Brown et al.,1985)was also applied to calculate the coordination numbers of O atoms in SeO42–assurface functional groups of ettringite.

Results
Changes of water chemistry during immobilization of SeO42– in ettringite were monitored until the equilibrium by determination using ICP-OES. Based on the results of XRD for the solid residues, there is no other phases than ettringite with increase in SeO42–concentrations. Moreover, SEM image has shown needle-like crystals, which are characteristic to ettringite. These results suggest that immobilized SeO42- were completely substituted into inter column spaces in ettringite structure. Furthermore, as shown XRD results, with increasing the amount of immobilized SeO42-in ettringite, the cell parameters a and c also increased.
In ettringite, there are several types of –OH groups including ≡Ca-OH2, ≡Al-OH and ≡Ca2-OH, which produce board FTIR peaks to assign to the stretching vibration mode of O-H around 3200 to 3560 cm-1. Incorporation of SeO42-into the columns of ettringite perturbed the –OH stretching vibration. With increasing the amount of immobilized SeO42– in ettringite, the intensities of–OH stretching peaks decreased in the range of 3250 to 3400 cm-1 which is assigned to the –OH stretching vibration of ≡Ca-OH2.This indicates that SeO42-interacted with H2O which is coordinated to Ca. Based on the structure of ettringite, ≡Ca-OH2, ≡Al-OH and ≡Ca2-OH sites are arranged in the column surfaces, where≡Ca-OH2 is the most dominant sites. According to the bond valence theory, Se-O has1.62 valence units (v.u.) and O-H does about 0.78 v.u. Ligand exchange to such as ≡Ca-OH-SeO3 does not happen, because Se-O-H bond has been already saturated (Brown et al.,1985). Similar characteristic of AsO43- has been also demonstrated (Myneni et al., 1998). In ettringite, SeO42– can be only interacted with these function groups through the formation of inner-sphere complexes of ≡Ca-O-SeO3. It is supposed that the significant change in –OH vibrations may result from the SeO42– sorption in ettringite and the formation of inner-sphere complexes.
Conclusions
The ettringite shows promising application in immobilization of large concentrations of SeO42– in aqueous environments. In the present work, the mechanism of SeO42– by co-precipitation with ettringite was discussed. According to the FTIR spectra, the peak intensity in –OH stretching mode vibration significantly decreased with increasing the amount of immobilized SeO42– in ettringite. Furthermore, based on the XRD patterns, sorption of SeO42– increased the cell parameters a and c of ettringite. EXAFS and TG-DTA analysis would exemplify this assumption.
.
13. Wuhui Luo, Keiko Sasaki, ADSORPTION CHARACTERISTICS OF HAZARDOUS INORGANIC OXOANIONS ON ORGANOHDPy-MODIFIED -MONTMORILLONITE, ICHMECT 2016, 2016.09, Introduction
Adsorption of individual anions on organo-montmorillonite (OMt) was has been well investigated in previous studies (Bagherifam et al., 2014; Choung et al., 2014). In those studies different amounts of organic modifier with variable structures were usedapplied, resulting in no criterion for comparing the selectivity of anions to OMt. A systematic study in terms of adsorption of six anions on three surfactant-modified bentonites was has been conducted (Behnsen and Riebe, 2008). Their results showed the relationship between affinity and hydration energy of the anions. Besides, the amount of released organic modifier may be associated with the species of target anions. Compared with poorly hydrated anions of smaller size, a fully hydrated anion of larger size would be less able to penetrate into the head group region of a cationic surfactant for effective neutralization of the bilayer (Leontidis et al., 2002). As a result, the original counter ion would be readily replaced with those poorly hydrated anions to form tight binding and to minimize the repulsive force, inhibiting the dissociation of adsorbed surfactant back into the bulk aqueous solution (Li et al., 1997). Thus, to compareit is of great significance to evaluate the adsorption characteristic of inorganic different oxoanions, which include hazardous heavy metals and are often mobile in environments, on OMt is of great significance.
Methods
10 g of Mt with a cation exchange capacity (CEC) of 111.4 meq/100g was dispersed in 500 mL deionized water at room temperature for 2 h. Separately, 44.56 mmol of HDPy-Cl, corresponding to four times the CEC of Mt, was dissolved in 500 mL deionized water. The HDPy-Cl solution was then slowly added into the Mt suspension and the mixture was vigorously stirred for 24 h. The obtained solid was separated by centrifugation, freeze-dried, ground, and sieved.
1.0 mmol/L Na2MoO4, Na2SO4, NaClO4, NaReO4, NaI, KIO3, NaBrO3, NaNO3, Na2SeO3, Na2SeO4, Na2CrO4, Na2WO4, NaVO3, and KH2AsO4 were separately prepared, without pH adjustment. Forty mg HDPy/Mt was dispersed in 50 mL target anion-bearing solution and then shaken at 25 °C for 24 h. The pH and Eh of solutions before and after adsorption were measured. After the mixture was filtered through a 0.45-μm filter, the obtained solution was provided to determine the residual anion concentration in equilibrium using ion chromatography (Dionex ICS-2100, Sunnyvale, CA, USA), and inductively coupled plasma atomic emission spectroscopy (ICP-AES, Seiko Instruments, Chiba, Japan). The amount of released HDPy was determined by UV-vis spectroscopy (UV-2450, Shimadzu, Tokyo, Japan) at 258 nm. The solid was dried and supplied for X-ray diffraction (XRD) measurement to investigate changes in interlayer space.
Results and Discussion
Based on pH and Eh values before and after adsorption, chemical speciation of all anions was not expected to change during adsorption on HDPy/Mt. Among the selected anions, with the exception of IO3, H2AsO4, and CrO42, monovalent anions showed higher adsorption capacities and selectivities on HDPy/Mt than divalent anions. Besides, higher adsorption capacities normally corresponded to the lower amounts of HDPy release as support by the negligible HDPy release after adsorption of monovalent anions. Release of HDPy led to the decrease of interlayer distance as proved by XRD patterns. The released HDPy presented in different forms in solution, which depends on anion species. After adsorption of the anions showing high affinity to HDPy/Mt, HDPy were slightly released in form of HDPy-target anion such as HDPy-NO3, whereas significantly released in form of HDPy-Cl for poorly selective anions which are mainly highly hydrated divalent anions. Hydration of counter ion (Cl) was the driving force of ion exchange, which accounted for the adsorption of inorganic anions on HDPy/Mt. Desorption-adsorption made partial contribution to adsorption of several anions. Dehydration of anions with stronger hydration shells consumed more energy to intercalate into HDPy/Mt and resulted in the decrease of selectivity. Moreover, the increase of dielectric constant of organic-like interlayer phase derived from HDPy release was another key factor influencing adsorption of anions on HDPy/Mt.
Conclusions
Monovalent anions normally showed higher adsorption capacities and selectivities and led to lower HDPy release on HDPy/Mt than divalent anions, because of the higher energy consumption for dehydration of divalent anions. Hydration of counter ion (Cl) was the driving force of anions adsorption on HDPy/Mt. Selectivity of HDPy/Mt to anions depended not only on the change in anionic size in different phases (from r1 in aqueous solution to r2 in the organic solvent-like OMt), but also variation of dielectric constant after HDPy release.
.
14. Binglin Guo, Keiko Sasaki, Removal of selenate by co-precipitate with ettringite in aqueous solution, Goldschmidt 2016, 2016.06, Selenium can be toxicant with high concentrations in aqueous solutions. and 79Se isotope is also one of the radionuclides present in high-level nuclear wastes with long half life periods. Because of negative surface charge of the most minerals in earth crust. S, selenate is quite mobile in ground waters.
Ettringite (Ca6Al2(SO4)3(OH)12•26H2O) is known as one of products formed in an early stage during hydration of Portland cement and can also occur naturally. The structure of ettringite consists consisting of column parts ({consisting of {Ca6[Al(OH)6]2・24H2O]} 6+) and channel parts (including tetrahedral SO42- and H2O). It has been reported that Ca2+, Al3+ and SO42- can be replaced with nuclide species. Selenate can also be partly and fully substituted with sulfate.
In the present work, we have investigated in on immobilization of selenate by co-precipitation with ettringite. , resulting in different types of ettringite by mixing stoichiometric amounts of Ca(OH)2 and Al2(SO4)3, AlCl3 with Na2SeO4 in ultrapure water. Using Ca(OH)2 and AlCl3 as Ca and Al sources, selenate was substituted with sulfate in ettringite, giving providing the highest concentration of Se in the solid residues. The potential stability of selenate-substituted ettringite has been assessed by exposing in aqueous solution under the different pHs. It is was found that more than 90% of selenate was immobilized in the structure of ettringite under the initial pH value from 5 to 11.This suggests that selenate can be effectively immobilized in the structure of ettringite in wide range of pH.
.
15. Keiko Sasaki, Application of iron-oxidizing archeaon to biohydrometallurgy of enargite, Goldschmidt 2016, 2016.06, Microbial oxidation of Fe2+ and reduced sulfur species is a basic reaction to dissolve sulfides in biohydrometallurgy. Although chalcopyrite (CuFeS2) is known as a main Cu resource, arsenic-bearing copper sulfides like enargite (Cu3AsS4) are often accompanied in deep copper ore deposits. To recover Cu even from arsenic-bearing coper sulfides, arsenic immobilization should be considered. Acidianus brierleyi, which is an iron-oxidizing hyperthermophilic archeaon, was applied to bioleaching of enargite at 70˚C in the presence of Fe2+ ions as an energy source in a lab scale to find the optimal condition and elucidate the mechanism under the optimal condition. By controling Fe2+ concentrations and pulp density of enargite, 91% of Cu recovery with immobilizing 94% of arsenic species was concurrently achieved. According to the comprehensive interpretation of XANES As K-edge, XRD, and SEM-EDX, the main storage of arsenic was scorodite (FeAsO4), which is in the most ideal form because of high stability and high density of arsenic. Although the released species from enargite is arsenite and A. brierleyi does not oxidize arsenite into arsenate, arsenic was mainly immobilized as scorodite under the optimized condition. Based on spectroscopic and microscopic observation of not only bulk reaction but also interface reaction involving biological tissues, the reaction mechanism is discussed..
16. Kojo Konadu, Sasaki Keiko, Kwadwo Osseo-Asare, Grace OFORI-SARPONG, Activated carbon as surrogate for carbonaceous matter in gold ores: degradation via enzyme treatment, International Conference of the African Materials Research Society , 2015.12.
17. Shugo NAGATO, Tsuyoshi Hirajima, Sasaki Keiko, Effect of Al3+ Additives on Fluoride Removal by (Co-)Precipitation as Apatites, International Symposium on Earth Science and Technology 2015 (CINEST), 2015.12.
18. Kenta TOSHIYUKI, Tsuyoshi Hirajima, Sasaki Keiko, Co-Precipitation of Boron with Hydroxyapatite Using Various Ca Sources, International Symposium on Earth Science and Technology 2015 (CINEST), 2015.12.
19. Yu TAKAKI, Paulmanickam KOILRAJ, Tsuyoshi Hirajima, Sasaki Keiko, Delaminated Layered Double Hydroxide Nanosheets for Arsenate Immobilization, International Symposium on Earth Science and Technology 2015 (CINEST), 2015.12.
20. Wuhui Luo, Tsuyoshi Hirajima, Sasaki Keiko, Adsorption of Perchlorate on Slurry-like Modified Montmorillonite by Hexadecylpyridinium Chloride, The 6th Asian Conference on Colloid and Interface Science (ACCIS 2015), 2015.11.
21. KOILRAJ PAULMANICKAM, Sasaki Keiko, Amino acid anchored layered double hydroxide nanosheets and their Co2+ cation sorption behavior, The 6th Asian Conference on Colloid and Interface Science (ACCIS 2015), 2015.11.
22. Widi Astuti, Tsuyoshi Hirajima, Sasaki Keiko, Naoko Okibe, Utilization of Metabolic Citric Acid from Aspergillus niger Using Corn Starch in the Nickel Leaching of Indonesian Saprolitic Ore, 19th International Biohydrometallurgy Symposium 2015 (IBS 2015), 2015.10.
23. Sasaki Keiko, (invited) Spectroscopic and microscopic investigation in biohydrometallurgy , International Biohydrometallurgy Symposium 2015 (IBS 2015), 2015.10.
24. Kojo Konadu, Sasaki Keiko, Kwadwo Osseo-Asare, Bio-modification of carbonaceous matters in gold ore: Model experiments using powdered activated charcoal and cell-free extracts of Phanerochaete chrysosporium, 19th International Biohydrometallurgy Symposium 2015, 2015.10.
25. Naoko Okibe, Masahito Tanaka, Sasaki Keiko, Tsuyoshi Hirajima, Effect of Cu(II) on bio-scorodite crystallization using Acidianus brierleyi, International Biohydrometallurgy Symposium 2015, 2015.10.
26. Sasaki Keiko, Spectroscopic and Microscopic Investigation for Biohydrometallurgy, 21st International Biohydrometallurgy Symposium (IBS 2015), 2015.10.
27. Sasaki Keiko, Bio-modification of carbonaceous matters in gold ore: Model experiments using powdered activated charcoal and cell-free extracts of Phanerochaete chrysosporium, 21st International Biohydrometallurgy Symposium (IBS 2015), 2015.10.
28. Yu Takaki, Xinhong Qiu, Tsuyoshi Hirajima, Sasaki Keiko, Removal mechanism of arsenate by hydrocalumite depending on arsenate concentration, EUROCLAY 2015, 2015.07.
29. Wuhui Luo, Sasaki Keiko, Synthesis of surfactant-modified montmorillonites for adsorption of perchlorate, EUROCLAY 2015, 2015.07.
30. Akihiro Inoue, Wuhui Luo, Sasaki Keiko, Sequential Modification of Montmorillonite Using DDAC and BDOAC for Adsorption of Perchlorate, International Symposium Zeolite and Microporous Crystals 2015 (ZMPC 2015), 2015.07.
31. Paulmanickam KOILRAJ, Sasaki Keiko, Fe3O4@MgAl-NO3 Layered Double Hydroxide as Magnetically Separable Phosphate Sorbent From Aqueous Solution, International Symposium on Zeolite and Microporous Crystals 2015(ZMPC2015), 2015.07.
32. Yu TAKAKI, Paulmanickam KOILRAJ, Tsuyoshi Hirajima, Sasaki Keiko, Adsorption Characteristic of Arsenate on Delaminated Layered Double Hydroxides, Euroclay2015, 2015.07.
33. Akihiro INOUE, Wuhui LUO, KWADWO OSSEO-ASARE, Tsuyoshi Hirajima, Sasaki Keiko, Sequential Modification of Montmorillonite Using DDAC and BDOAC for Adsorption of Perchlorate, International Symposium on Zeolite and Microporous Crystals 2015(ZMPC2015), 2015.06.
34. Xinhong Qiu, Sasaki Keiko, Synthesis of layered double hydroxide intercalated with gluconate for removal of boron species, 4th International Conference on Multifunctional Hybride and Nanomaterials (Hybride Materials 2015), 2015.03.
35. Wuhui Luo, Sasaki Keiko, Evaluation of BDTAC, DDAC and BDOAC-modified montmorillonites for perchlorate removal, Hybride Materials 2015, 2015.03.
36. KOILRAJ PAULMANICKAM, Sasaki Keiko, Srinivasan KANNAN, Amino acid assisted solvothermal synthesis of layered double hydroxides, Hybride Materials 2015, 2015.03.
37. Sasaki Keiko, Biohydrometallurgy of enargite: A spectroscopic investigation of bioleaching by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi , IGO-2015, 2015.01.
38. Sasaki Keiko, Sequential modification of montmorillonite using DDAC and BDOAC for removal of perchlorate: Effect of DDAC dosage
, CINEST 2014, 2014.12.
39. Shugo NAGATO, Kenta TOSHIYUKI, Takeshi KAWASHIMA, Tsuyoshi Hirajima, Sasaki Keiko, Enhancement in precipitation rate of fluoroapatite by Mg2+ additives: Advanced utilization of hydrate of calcined dolomite in water treatment, International Symposium on Earth Science and Technology 2014 (CINEST), 2014.12.
40. Keiko Sasaki, Qianqain Yu, Synthesis of biogenic Mn oxide and its engineering application to Li ion sieve, 247th American Chemical Society, 2014.03.
Membership in Academic Society
  • Geochemical Society
Awards
  • Silicate Covering Layer on Pyrite Surface in the Presence of Silicon-Catechol Complex for Acid Mine Drainage Prevention
  • Japan Prize Committee Members 2015
  • Characteristic Sorption of H3BO3/B(OH)4- on Magnesium Oxide, , MMIJ Best Paper Award 2015
  • Kyushu University Best Research Activity Award 2013
  • Kyushu University Best Research Activity Award 2012
  • Kyushu University Best Research Activity Award 2011
  • Treatment of Heavy Metals in a Constructed Wetland, Kaminokuni, Hokkaido – Role of Microorganisms in Immobilization of Heavy Metals in Wetland Soils –, MMIJ Best Paper Award 2011
  • Concurrent transformation of Mn2+ and removal of Zn2+ using a Mn-oxidizing fungus Paraconiothyrium sp. WL-2 at pH 6.5、CINEST Best Paper Award 2010
  • Decomposition Behavior of Oil Palm Fiber and Shell under Hydrothermal Treatment, CINEST Best Paper Award 2009
  • Characterization of secondary formed minerals in bioleaching of enargite by As-adapted Acidithiobacillus ferrooxidans, CINEST Best Paper Award 2009
  • Sorption of Co2+ ions on the biogenic Mn deposits by a Mn-oxidizing fungus, Paraconiothyrium sp.-like strain WL-2, Materials Transaction, 49(3), 605-611 (2008), MMIJ Best Paper Award 2008
  • ROLE OF WOOD-CHIPS IN PERMEABLE REACTIVE BARRIERS FOR REMOVAL OF BORATE IN GROUNDWATERS、CINEST Best Paper Award 2008
  • JSPS Bilateral Researcher Exchange Program 2003
  • MMIJ Young Researcher Award 1998
Educational
Other Educational Activities
  • 2018.08.
  • 2018.04.
  • 2017.07.
  • 2012.10.
  • 2009.04.
  • 2008.07.
  • 2008.07.
  • 2008.08.
  • 2007.04.
  • 2007.04.
  • 2006.12.
  • 2006.04.
  • 2005.10.
  • 2005.04.
  • 2004.07.
  • 2004.05.
Social
Professional and Outreach Activities
Investigation of Groundwater Remediation by Permeable Reactive Barriers in North America.