九州大学 研究者情報
総説一覧
内田 竜也(うちだ たつや) データ更新日:2023.10.03

准教授 /  基幹教育院 自然科学実験系部門 教育実践部・自然科学部門


総説, 論評, 解説, 書評, 報告書等
1. Daiki Doiuchi, Tatsuya Uchida, Recent Strategies in Non-Heme-Type Metal Complexes-Catalyzed Site-, Chemo-, and Enantioselective C–H Oxygenations, Synthesis, 2021.06, C–H bonds are ubiquitous and abundant in organic molecules. If such C–H bonds can be converted to the desired functional groups in a site-, chemo-, diastereo-, and enantio-selective manner, the functionalization of C–H bonds would be an efficient tool for the step-, atom- and redox-economic organic synthesis. C–H oxidation is one of a typical C–H functionalization, to afford hydroxy and carbonyl groups, which are essential key functional groups in organic synthesis and biological chemistry, directly. Recently, significant developments have been made using non-heme-type transition metal catalysts. Oxygen functional groups can be introduced to not only simple hydrocarbons but also complicated natural products. In this paper, the recent developments, during the last fourteen years, of non-heme-type complex-catalyzed C–H oxidations are reviewed. .
2. Hayashi, Hiroki; Uchida, Tatsuya, Nitrene Transfer Reactions for Asymmetric C-H Amination: Recent Development, EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 10.1002/ejoc.201901562, 2020.02, [URL], C-H bonds are ubiquitous and abundant in organic molecules. If C-H bonds could be directly converted to desired functional groups in a chemo-, site-, and stereoselective manner, C-H functionalization would be a strong and useful tool for organic synthesis. Recent developments in catalytic and enzymatic chemistry have achieved highly sustainable and selective nitrene C-H insertion. Initially, C-H amination was inspired by model studies on enzymatic oxidation and used iminoiodinanes, nitrogen analogs of iodosobenzene, as nitrene precursors. Transition-metal/iminoiodinane systems are well studied and established. These systems can directly introduce sulfonamide groups with excellent stereoselectivity, albeit with co-production of iodobenzene as waste material. Fortunately, the atom economics of this methodology were improved by introducing highly sustainable nitrene sources such as azide compounds and 1,2,4-dioxazol-5-one derivatives. In this review, we present the details of these developments with respect to their catalysts and nitrene sources..
3. RYO IRIE, TATSUYA UCHIDA, KAZUHIRO MATSUMOTO, Katsuki Catalysts for Asymmetric Oxidation: Design Concepts, Serendipities for Breakthroughs, and Applications, Chemical Letters, 2015.08.
4. TATSUYA UCHIDA, Tsutomu Katsuki, Asymmetric nitrene transfer reactions: sulfimidation, aziridination and C-h amination using azide compounds as nitrene precursors, The Chemical Record, 2014.02, Nitrogen functional groups are found in many biologically active compounds and their stereochemistry has a profound effect on biological activity. Nitrene transfer reactions such as aziridination, C-H bond amination, and sulfimidation are useful methods for introducing nitrogen functional groups, and the enantiocontrol of the reactions has been extensively investigated. Although high enantioselectivity has been achieved, most of the reactions use (N-arylsulfonylimino)phenyliodinane, which co-produces iodobenzene, as a nitrene precursor and have a low atom economy. Azide compounds, which give nitrene species by releasing nitrogen, are ideal precursors but rather stable. Their decomposition needs UV irradiation, heating in the presence of a metal complex, or Lewis acid treatment. The examples of previous azide decomposition prompted us to examine Lewis acid and low-valent transition-metal complexes as catalysts for azide decomposition. Thus, we designed new ruthenium complexes that are composed of a low-valent Ru(II) ion, apical CO ligand, and an asymmetry-inducing salen ligand. With these ruthenium complexes and azides, we have achieved highly enantioselective nitrene transfer reactions under mild conditions. Recently, iridium-salen complexes were added to our toolbox..
5. TATSUYA UCHIDA, Tsutomu Katsuki, Green Asymmetric Oxidation Using Air as Oxidant, Synthetic Organic Chemistry Japan, 2013.11, Nitrogen functional groups are found in many biologically active compounds and their stereochemistry has a profound effect on biological activity. Nitrene transfer reactions such as aziridination, C-H bond amination, and sulfimidation are useful methods for introducing nitrogen functional groups, and the enantiocontrol of the reactions has been extensively investigated. Although high enantioselectivity has been achieved, most of the reactions use (N-arylsulfonylimino)phenyliodinane, which co-produces iodobenzene, as a nitrene precursor and have a low atom economy. Azide compounds, which give We found that (NO)- and (aqua)ruthenium-salen complexes are efficient catalysts for the asymmetric aerobic oxygen atom transfer reactions such as epoxidation and sulfoxidation at ambient temperature. (NO)ruthenium-salen complexes 2 and 3 could catalyze oxidation of sulfides and the epoxidation of conjugated olefins with good to high enantioselectivity using dioxygen as oxidant, albeit under visible light-irradiation, respectively. On the other hand, (aqua)ruthenium-salen complex 5 was found to catalyze highly enantioselective epoxidation in air even without irradiation. Although the mechanism of this ruthenium-catalyzed aerobic oxidation has not been completely elucidated, water that is bound to the ruthenium ion has been considered to play a critical role in proton coupled electron transfer, a key step for oxygen activation, and to be regenerated via oxo-hydroxo tautomerization. We also found that (di-μ-hydroxo)iron-salan complexes catalyzes asymmetric dehydrogenative oxidation reactions such as 2-naphthol coupling, alcohol oxidation, and dearomatization, using air as oxidant..
6. Uchida Tatsuya, Katsuki Tsutomu, a-Diazoacetates as Carbene Precursors: Metallosalen-Catalyzed Asymmetric Cyclopropanation, Synthesis, 2006(10), 1715-1723, 2006.03.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。