九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
内田 竜也(うちだ たつや) データ更新日:2018.06.14

准教授 /  基幹教育院 自然科学実験系部門 教育実践部・自然科学部門


主な研究テーマ
環境調和を思考した効率的有機合成法の開発
キーワード:不斉反応 触媒反応 空気酸化 アミノ化
2013.10~2013.10.
従事しているプロジェクト研究
ACT-C先導的物質変換領域
2012.10~2017.03, 代表者:香月 勗, 九大I2CNER, 化学技術振興機構.
基盤研究(A)
2011.04~2015.03, 代表者:香月勗.
研究業績
主要原著論文
1. KIM CHUNG SIK, Takuya Oguma, Chisaki Fujitomo, TATSUYA UCHIDA, Tsutomu Katsuki, Iron-Catalyzed Asymmetric Aerobic Oxidative Dearomatizing Spirocyclization of Methylenebis(arenol)s, The Chemical Society of Japan, 10.1246/cl.160680, 45, 1262-1264, 2016.08, Iron(salan) complexes are efficient catalysis in intramolecular aerobic oxidative dearomatizing spirocyclization of methylenebis(arenol)s, which was prepared from salicyl akdehydes and phenols with simple microwave irradiation. Under the iron-catalyzed aerobic oxidation conditions, methylenebis(arenol)s converted to the corresponding spirocyclic compounds with good to high enantioselectivity (up to 87% ee)..
2. Hirotaka Mizoguchi, TATSUYA UCHIDA, Tsutomu Katsuki, Ruthenium-Catalyzed Oxidative Kinetic Resolution of Unactivated and Activated Secondary Alcohols with Air as the Hydrogen Acceptor at Room Temperature., ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 10.1002/anie.201310426, 53, 3178-3182, 2014.02, Enantiopure alcohols are versatile building blocks for asymmetric synthesis and the kinetic resolution (KR) of racemic alcohols is a reliable method for preparing them. Although many KR methods have been developed, oxidative kinetic resolution (OKR), in which dioxygen is used as the hydrogen acceptor, is the most atom-efficient. Dioxygen is ubiquitous in air, which is abundant and safe to handle. Therefore, OKR with air has been intensively investigated and the OKR of benzylic alcohols was recently achieved by using an Ir catalyst without any adjuvant. However, the OKR of unactivated alcohols remains a challenge. An [(aqua)Ru- (salen)] catalyzed OKR with air as the hydrogen acceptor was developed, in which the aqua ligand is exchanged with alcohol and the Ru complex undergoes single electron transfer to dioxygen and subsequent alcohol oxidation. This OKR can be applied without any adjuvant to activated and unactivated alcohols with good to high enantioselectivity. The unique influence of substrate inhibition on the enantioselectivity of the OKR is also described..
3. Yota Nishioka, TATSUYA UCHIDA, Tsutomu Katsuki, Enantio- and Regioselective Intermolecular Benzylic and Allylic C-H Bond Amination, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 10.1002/anie.201208906, 52, 6, 1739-1742, 2013.01, We designed new ruthenium catalysts that were composed of ruthenium(II) ion, apical CO ligand, and highly enantioselective salen ligand and could for the first time achieve highly enantioselective sulfimidation, aziridination, and C-H amination using azide compounds as the nitrene precursors. Catalytic activity, stereoselectivity, and regioselectivity of the ruthenium catalysts were remarkably improved by an appropriate tuning of salen ligand..
4. Yasuaki Fukunaga, TATSUYA UCHIDA, Yutaro Ito, Tsutomu Katsuki, Ru(CO)-salen-Catalyzed Synthesis of Enantiopure Aziridinyl Ketones and Formal Asymmetric Synthesis of (+)-PD 128907, ORGANIC LETTERS, 10.1021/ol302095r, 14, 17, 4658-4661, 2012.09, Aziridination of vinyl ketones using SESN3 in the presence Ru(CO)-salen complex 1 provides the enantiopure aziridinyl ketones that can serve as useful chiral building blocks. A formal asymmetric synthesis of (þ)-PD 128907 was achieved in an eight-step sequence via aziridination..
5. Shota Koya, Yota Nishioka, Hirotaka Mizoguchi, Tatsuya Uchida, Tsutomu Katsuki, Asymmetric Epoxidation of Conjugated Olefins with Dioxygen, Angew. Chem. Int. Ed., 10.1002/anie.201201848, 51, 33, 8243-8246, 2012.07, A complex situation: Asymmetric epoxidation of conjugated olefins was achieved at room temperature using ruthenium complex 1 as the catalyst and air as the oxidant to give epoxides in up to 95 % ee. When the product was acid sensitive, the reaction was carried out at 0 °C under oxygen..
6. Chungsik Kim, Tatsuya Uchida, Tsutomu Katsuki, Asymmetric olefin aziridination using a newly designed Ru(CO)(salen) complex as the catalyst, Chem. Commun, 10.1039/c2cc32997b, 48, 7188–7190, 2012.04, Highly enantioselective and good to high-yielding aziridination of conjugated and non-conjugated terminal olefins and cyclic olefins was achieved using a newly designed Ru(CO)(salen) complex as the catalyst in the presence of SESN3 under mild conditions..
7. Masami Ichinose, Hidehiro Suematsu, Yoichi Yasutomi, Yota Nishioka, Tatsuya Uchida, and Tsutomu Katsuki, Enantioselective Intramolecular Benzylic CーH Bond Amination:
Efficient Synthesis of Optically Active Benzosultams, Angew. Chem. Int. Ed, 10.1002/anie.201101801, 50, 9884-9887, 2011.09.
8. Tanaka, H., Nishikawa, H., Uchida, T. & Katsuki, T., , Photopromoted Ru-Catalyzed Asymmetric Aerobic Sulfide Oxidation and Epoxidation Using Water as a Proton Transfer Mediator., J. Am. Chem. Soc, 10.1021/ja104184r, 132, 34, 12034-12041, 2010.05, 著者等は、光学活性なルテニウム(ニトロシル)サレン錯体が、室温、常圧の温和な条件下で還元剤を用いること無しに、分子状酸素を酸化剤とするオレフィンの不斉エポキシ化、スルフィドの不斉スルホキシ化に成功した。可視光照射条件下において、錯体2を触媒とすることで不斉スルホキシ化が最高98% eeのエナンチオ選択性にて、また錯体3を用いることにて不斉エポキシ化が76-92% eeの不斉収率にて目的とする酸化生成物が得られた。
本反応では、反応系中に存在する水分子が、ルテニウムイオンに配位し、プロトン供給源として分子状酸素活性化の一翼を担い、また、消費された水は反応サイクル中で再生するものと考えられる。.
9. Tatsuya Uchida, Tstomu Katsuki, Construction of a new type of chiral bidentate NHC ligands: copper-catalyzed asymmetric conjugate alkylation, Tetrahedron Letters, 2009.06.
10. Mizoguchi Takahiro, Ishida Koichi, Uchida Tatsuya, Katsuki Tsutomu , Ru-salen complex catalyzed chemoselective aerobic oxidation of primary alcohols to aldehydes, Tetrahedron Letters, 2009.06.
11. H. Suematsu, S. Kanchiku, T. Uchida, T. Katsuki, Construction of Aryliridium-salen Complexes: Enantio- and Cis-Selective Cyclopropanation of Conjugated and Nonconjugated Olefins, J. Am. Chem. Soc, 130, 10327-10337, 2008.12.
12. S. Kanchiku, H. Suematsu, K. Matsumoto, T. Uchida, T. Katsuki, Construction of an Aryliridium-Salen Complex for Highly cis- and Enantioselective Cyclopropanations, Angew. Chem. Int. Ed, early view , 2007.04.
13. H. Kawabata, K. Omura, T. Uchida, T. Katsuki, Construction of robust ruthenium(salen)(CO) complexes and asymmetric aziridination with nitrene precursors in the form of azide compounds that bear easily removable N-sulfonyl groups. , Chemistry -An Asian Journal, 2(2), 248-256, 2007.04.
14. Omura Kazuhumi, Murakami Masakazu, Uchida Tatsuya, Katsuki Tsutomu, Enantioselective aziridination and amination using p-toluenesulfonyl azide in the presence of Ru(salen)(CO) complex, CHEMISTRY LETTERS, 32, 4, 354-355, 32巻4号、p. 354-355, 2003.04.
主要総説, 論評, 解説, 書評, 報告書等
1. RYO IRIE, TATSUYA UCHIDA, KAZUHIRO MATSUMOTO, Katsuki Catalysts for Asymmetric Oxidation: Design Concepts, Serendipities for Breakthroughs, and Applications, Chemical Letters, 2015.08.
2. TATSUYA UCHIDA, Tsutomu Katsuki, Asymmetric nitrene transfer reactions: sulfimidation, aziridination and C-h amination using azide compounds as nitrene precursors, The Chemical Record, 2014.02, Nitrogen functional groups are found in many biologically active compounds and their stereochemistry has a profound effect on biological activity. Nitrene transfer reactions such as aziridination, C-H bond amination, and sulfimidation are useful methods for introducing nitrogen functional groups, and the enantiocontrol of the reactions has been extensively investigated. Although high enantioselectivity has been achieved, most of the reactions use (N-arylsulfonylimino)phenyliodinane, which co-produces iodobenzene, as a nitrene precursor and have a low atom economy. Azide compounds, which give nitrene species by releasing nitrogen, are ideal precursors but rather stable. Their decomposition needs UV irradiation, heating in the presence of a metal complex, or Lewis acid treatment. The examples of previous azide decomposition prompted us to examine Lewis acid and low-valent transition-metal complexes as catalysts for azide decomposition. Thus, we designed new ruthenium complexes that are composed of a low-valent Ru(II) ion, apical CO ligand, and an asymmetry-inducing salen ligand. With these ruthenium complexes and azides, we have achieved highly enantioselective nitrene transfer reactions under mild conditions. Recently, iridium-salen complexes were added to our toolbox..
3. TATSUYA UCHIDA, Tsutomu Katsuki, Green Asymmetric Oxidation Using Air as Oxidant, Synthetic Organic Chemistry Japan, 2013.11, Nitrogen functional groups are found in many biologically active compounds and their stereochemistry has a profound effect on biological activity. Nitrene transfer reactions such as aziridination, C-H bond amination, and sulfimidation are useful methods for introducing nitrogen functional groups, and the enantiocontrol of the reactions has been extensively investigated. Although high enantioselectivity has been achieved, most of the reactions use (N-arylsulfonylimino)phenyliodinane, which co-produces iodobenzene, as a nitrene precursor and have a low atom economy. Azide compounds, which give We found that (NO)- and (aqua)ruthenium-salen complexes are efficient catalysts for the asymmetric aerobic oxygen atom transfer reactions such as epoxidation and sulfoxidation at ambient temperature. (NO)ruthenium-salen complexes 2 and 3 could catalyze oxidation of sulfides and the epoxidation of conjugated olefins with good to high enantioselectivity using dioxygen as oxidant, albeit under visible light-irradiation, respectively. On the other hand, (aqua)ruthenium-salen complex 5 was found to catalyze highly enantioselective epoxidation in air even without irradiation. Although the mechanism of this ruthenium-catalyzed aerobic oxidation has not been completely elucidated, water that is bound to the ruthenium ion has been considered to play a critical role in proton coupled electron transfer, a key step for oxygen activation, and to be regenerated via oxo-hydroxo tautomerization. We also found that (di-μ-hydroxo)iron-salan complexes catalyzes asymmetric dehydrogenative oxidation reactions such as 2-naphthol coupling, alcohol oxidation, and dearomatization, using air as oxidant..
主要学会発表等
1. 内田 竜也, Site-selective Asymmetric C−H Bond Functionalization, The 1st Sino-Japanese Symposium on Catalysis for Precision Synthesis, 2018.05.
2. 内田 竜也, 分子状酸素活性化を用いたアレノール類のヘテロカップリング反応, 新学術領域研究「精密反応場」第5回公開シンポジウム, 2018.05.
3. 上野 貴正, 林 裕樹, 内田 竜也, ルテニウム触媒を用いた 2-ナフトール類の酸化的不斉カップリング, 第50回酸化反応討論会, 2017.11, アレノール類の不斉酸化的カップリング反応は、光学活性なビス(アレノール)類を得る最も直截的かつ有用な手法である。
しかし、従来の方法では、非対称ビス(アレノール)類を得ることは極めて難しく、アレノール間に大きな酸化電位差を付けなければならなかった。
一方、我々は、キラルなルテニウム触媒はユニークな触媒活性を示すことを今回見出した。
すなわち、ルテニウム触媒を用いると2つのアレノール間に大きな電位差がなくても、それぞれの置換様式の違いを認識して非対称ビス(アレノール)を選択的に与えることを明らかにした。.
4. 内田 竜 也・山川 裕生・生田 昂・香月 勗, イリジウム触媒を用いた高位置選択的不斉カルベ ン C-H 挿入反応, 第64回有機金属討論会, 2018.06.
5. 内田 竜也, Activation of Molecular Oxygen and Catalytic Asymmetric Aerobic Oxidation, 第1回精密制御反応場国際シンポジウム, 2016.07, Molecular oxygen (O2) is an ubiquitous, abundant, and highly atom economic oxidant on the earth. However, most of O2 activation required heating and/or pressurizing conditions or the addition of co-reductant, unfortunately. Stereoselectivities of these oxidations are insufficient. On the other hand, typical biological oxidation proceeded with complete stereoselectivity albeit with consuming 2H+ and 2e- and producing water as a waste material. Thus, development of new methodology for O2 activation has been strongly required. Herein, we presented ruthenium-catalyzed highly enantioselective aerobic oxidation such as epoxidation and oxidative kinetic resolution of alcohol.
Under aqueous conditions, ruthenium-salen complexes can activate O2 to active oxygen spices such as corresponding superoxide and oxo spices via single-electron-transfer (SET) and proton-coupled- electron-transfer (PCET) with water mediation, and catalyze epoxidation of trans- -methylstyrene derivatives with good to high enantioselectivity (up to 95% ee).1b On the other hand, under alcoholic conditions, racemic sec-alcohol was oxidized with high enantiomer differentiation (krel = up to 60).1a It was noteworthy that ruthenium-salen complexes catalyzed aerobic oxidations are proceed under ambient conditions without any activation methods..
6. 内田 竜也, Development of Catalytic C-C Bond Formation, I2CNER International Workshop -Natural and Chemical Catalysts for Technology-, 2017.02, C-H bond functionalization via carbene transfer reaction is one of strong and useful tool for the construction of carbon framework and has garner much attention. However, C-H bond, which is ubiquitous and abundant in organic molecule, is still difficult to convert desired function group at well. Herein, we found that (aryl)iridium(salen) complexes are efficient catalysis in C-H functionalization.1 (Aryl)iridium complex can decompose -aryl- -dizaoacetates to desired carbene intermediates and convert benzylic, allylic, and propargylic C-H bond to the corresponding C-C bond with excellent diastereo- and enantio-selectivities. Furthermore, iridium-catalyzed C-H insertion reactions showed interesting site-selectivity. That reaction carried out at only methylene C-H bond on ethyl group..
7. 内田 竜也, 生田 昂, 香月 勗, イリジウム触媒を用いたベンジル位およびアリル位へのエナンチオ・ジアステレオ・位置選択的C-Hカルベン挿入反応
, 第24回福岡万有シンポジウム, 2014.06.
8. 生田 昂, 内田 竜也, 香月 勗, イリジウム触媒を用いたベンジル位およびアリル位へのエナンチオ・ジアステレオ・位置選択的C-Hカルベン挿入反応 , 第94日本化学会春季年会, 2014.03.
9. 神谷 翔太, 西岡 洋太, 溝口 大昂, 内田 竜也, 香月 勗, ルテニウム–サレン錯体を用いた大気中酸素を酸化剤とする不斉エポキシ化
, 第46回酸化反応討論会, 2013.11.
10. 福永 恭介, 内田 竜也, 伊東 佑太朗, 香月 勗, Ru(CO)-salen 錯体を用いたアジリジノケトンの不斉合成および(+)-PD 128907 の合成への応用, 第2回CSJ化学フェスタ2012, 2012.10.
11. 西岡 洋太、内田 竜也、香月 勗 , ルテニウムサレン錯体によるアジド化合物を用いたC-H結合の分子間不斉アミノ化反応(1), 第92日本化学会春季年会, 2012.03.
12. 一瀬 麻沙美 安富 陽一 末松 英浩 西岡 洋太 内田 竜也 香月 勗 , イリジウム-サレン錯体を用いた触媒的不斉分子内C-Hアミノ化(2), 第92日本化学会春季年会, 2012.03.
13. 神谷 翔大 内田 竜也 香月 勗 , 分子状酸素を酸化剤とする不斉エポキシ化, 第92春季年会, 2012.03.
14. 溝口大昂、内田竜也、香月勗, 新規ルテニウムサレン錯体の合成と光非照射下での酸素酸化:第二級アルコールの速度論的光学分割, 第91回日本化学会春季年会, 2011.03.
15. 福永恭章、内田竜也、香月勗, 不斉アジリジン化を鍵反応とするドーパミンD3受容体アゴニスト(+)-PD 128907の不斉形式全合成, 第91回日本化学会春季年会, 2011.03.
16. 福永恭章、内田竜也、香月勗, ルテニウム(CO)サレン触媒を用いたビニルケトンの不斉アジリジン化:光学的に純粋なアジリジノケトンの合成, 第90回日本化学会春季年会, 2010.03.
17. 田中春菜、内田竜也、香月勗, ルテニウム-サレン錯体を触媒とする不斉酸素酸化:オレフィンのエポキシ化, 第90回日本化学会春季年会, 2010.03.
18. 内田竜也、香月勗, 新規光学活性二座NHC-銅錯体を用いた 不斉共役付加反応, 第90回日本化学会春季年会, 2010.03.
19. Tatsuya Uchida, Tsutomu Katsuki, Cu-Catalyzed Asymmetric Conjugate Addition of Dialkylzinc to Acyclic Enones Using a New Type of Chiral Bidentate NHC Ligands, IKCOC-11, 2009.11.
20. Hirotaka Mizoguchi, Tatsuya Uchida, Kohichi Ishida, Tsutomu Katsuki, Design of New Ru(PPh3)(OH)-salen complex: Chemoselective Aerobic Oxidation of Primary Alcohols
, IKCOC-11, 2009.11.
21. 溝口大昂、石田浩一、内田竜也、香月勗 , ルテニウム錯体を用いた第一級アルコールの化学選択的空気酸化反応, 第89回日本化学会春季年会, 2009.03.
22. 末松英浩、寒竹重史、内田竜也、香月勗, Iridium-Catalyzed Asymmetric Cyclopropanation, 日英合同不斉触媒シンポジウム(2008), 2008.12.
23. UCHIDA Tatsuya, ISHIDA Kouichi, KATSUKI Tsutomu, Chemoselective Aerobic Oxidation of Alcohols Using a New Ruthenium-salen Complex as Catalyst, 日本化学会第88回春季年会, 2008.03.
24. S. Kanchiku, K. Matsumoto, T. Uchida, T. Katsuki, Highly Cis- and Enantio-selective Cyclopropanation Using Ir-salen Complex as a Catalyst, The 10th International KYOTO Conference on New Aspects of Organic Chemistry (IKCOC-10), 2006.11.
25. S. Kanchiku, K. Matsumoto, T. Uchida, T. Katsuki, Ir(salen)-Catalyzed Cis-Selective Asymmetric Cyclopropanation, 48th Symposium on The Chemistry of Natural Products Sendai 2006, 2006.10.
26. S. Kanchiku, K. Matsumoto, T. Uchida, T. Katsuki, Asymmetric Cyclopropanation Using Ir-Salen Complex as Catalyst , International Molecular Chirality Conference in Toyama, 2006.06.
27. 内田 竜也, サレン金属錯体のcis-b構造を利用した不斉Baeyer-Villiger反応の開発, 文部科学省科学研究費補助金特定領域研究「炭素資源の高度分子変換」第1回若手シンポジウム, 2006.05, [URL].
28. A. Watanabe, T. Uchida, K. Matsumoto, R. Irie, T. Katsuki, Asymmetric Baeyer-Villiger Oxidation Using Metallosalen Complex as Catalyst, 第37回酸化反応討論会, 2004.11.
29. T. Uchida, K. Omura, Y. Tamura, R. Irie, T. Katsuki, Asymmetric Aziridination Using Azide Compounds as Nitrene Precursor in the Presence of Robust Ru(salen) Complex, 51th Symposium on Organometallic Chemistry, 2004.10.
30. T. Uchida, Y. Tamura, M. Murakami, M. Ohba, T. Katsuki, Asymmetric (OC)Ru(salen)-catalyzed sulfimdation using azide compounds as nitrene precursors: its scope and mechanism, ISCD-15, 2003.10.
31. T. Uchida, B. Saha, T. Katsuki, ASYMMETRIC INTRAMOLECULAR CYCLOPROPANATION USING METALLOSALEN COMPLEXES AS CATALYST, ICCA-8, 2002.11.
32. T. Uchida, A. Wtanabe, K. Ito, T. Katsuki, Asymmetric Baeyer-Villiger oxidation of cyclobutanones with hydrogenperoxide as terminal oxidant using metallosalen complex of cis-b-structure as catalyst, ADHOC 2002, 2002.06.
33. T. Niimi, T. Uchida, R. Irie, T. Katsuki, The First Highly cis- and Enantio-selective Cyclopropanation Using Chiral Ru- or Co-salen Complex as a Catalyst, The 8th International KYOTO Conference on New Aspects of Organic Chemistry (IKCOC-8), 2000.08.
学会活動
所属学会名
日本化学会
有機合成化学協会
学協会役員等への就任
2016.01~2016.12, 公益社団法人有機合成化学協会九州山口支部, 幹事.
2014.01~2014.12, 公益社団法人有機合成化学協会九州山口支部, 幹事.
学会大会・会議・シンポジウム等における役割
2018.09.25~2018.09.28, 第60回天然有機化合物討論会, 組織委員.
2018.05.12~2018.05.12, 2018年万有福岡シンポジウム, アドバイザリーボード.
2017.03.16~2017.03.19, 第97日本化学会春季年会, 座長(Chairmanship).
2014.03.27~2014.03.30, 第94日本化学会春季年会, 座長(Chairmanship).
2012.03.26~2012.03.30, 第92日本化学会春季年会, 座長(Chairmanship).
2011.03.26~2011.03.30, 第91日本化学会春季年会, 座長(Chairmanship).
2010.03.26~2010.03.30, 第90回日本化学会春季年会, 座長(Chairmanship).
2009.03.26~2009.03.30, 日本化学会, 座長(Chairmanship).
2008.03~2008.03, 日本化学会第88回春季年会, 座長(Chairmanship).
2007.03, 日本化学会第87回春季年会, 座長(Chairmanship).
2006.03, 日本化学会第86回春季年会, 座長(Chairmanship).
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2017年度      
2016年度      
2015年度      
2014年度      
2013年度    
2012年度    
2011年度      
2010年度      
2009年度      
2007年度      
受賞
長瀬研究振興賞, 長瀬科学財団, 2016.04.
Thieme Chemistry Journals Award, Thieme, 2016.01.
有機合成化学協会九州山口支部奨励賞, 有機合成化学協会九州山口支部, 2015.11.
Banyu Chemist Award, 万有財団, 2015.10.
有機合成化学協会研究企画賞「東レ研究企画賞」, 有機合成化学会, 2008.02.
日本化学会秋季年会講演賞, 日本化学会, 2000.11.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2018年度~2019年度, 新学術領域研究, 代表, 分子状酸素活性化を活用した高立体選択的酸化反応の開発.
2016年度~2017年度, 新学術領域研究, 代表, 新規酸素分子活性化による立体選択的分子変換法の開発.
2014年度~2016年度, 挑戦的萌芽研究, 代表, 高効率的な窒素官能基導入法の開発.
2009年度~2010年度, 若手研究(B), 代表, 含窒素キラルビルディングブロックの効率的合成法の開発.
2006年度~2006年度, 特定領域研究, 代表, 光学活性なジヒドロイミダゾリウム骨格を利用した新規不斉配位子の開発.
2005年度~2007年度, 若手研究(B), 代表, 光学活性な金属錯体を触媒として用いた不斉ハロヒドリン化の研究.
2002年度~2003年度, 特別研究員奨励費, 代表, 後周期遷移金属サレン錯体を用いる不斉酸素酸化反応の研究.
共同研究、受託研究(競争的資金を除く)の受入状況
2017.04~2018.03, 代表, 環境調和型金属触媒反応に関する研究.
2016.04~2017.03, 代表, 環境調和型金属触媒反応に関する研究.
2015.04~2016.03, 代表, 環境調和型金属触媒反応に関する研究.
寄附金の受入状況
2007年度, 東レ, 有機合成化学協会企画賞「東レ企画賞」.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」