九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
酒井 健(さかい けん) データ更新日:2023.11.27

教授 /  理学研究院 化学部門 無機・分析化学講座


主な研究テーマ
燃料電池に適用可能な金属多核触媒の開発
キーワード:燃料電池 酸素還元 アルコール酸化
2006.07.
特異的な電子状態を持つ二核錯体を基盤とした白金一次元錯体の構築
キーワード:白金一次元錯体、固体物性、電気伝導
1991.04.
白金制癌剤として新規白金錯体の合成、構造、及び抗腫瘍特性評価
キーワード:制癌剤、白金
1998.07.
単一分子光水素発生デバイスの合成、光触媒機能評価、及び応用
キーワード:光分子デバイス、単一分子デバイス、光触媒、水素エネルギー
1991.04.
水の分解触媒として均一系錯体触媒の開発
キーワード:錯体触媒、水の均等分解、水素エネルギー
1991.04.
金属多核錯体の合成と触媒への応用
キーワード:金属多核錯体
1991.04.
従事しているプロジェクト研究
単一分子光水素発生デバイスの合成と機能制御
2009.04~2012.03, 代表者:酒井健, 九州大学, 文部科学省科研費基盤研究(B).
ビオローゲンナノワイヤーを有する可視光変換デバイスの構築と光機能界面への応用
2010.04~2012.03, 代表者:酒井健, 九州大学, 文部科学省新学術領域研究.
高次環境調和型反応の開発ー反応空間と触媒機能の同調的相乗化
2006.07, 代表者:香月 勗, 九州大学理学研究院.
単一分子光水素発生デバイスの機構解明と高度反応制御
2005.04, 代表者:酒井健, 九州大学, 文部省科研費基盤研究(A)(日本).
研究業績
主要著書
主要原著論文
1. 酒井 健, Hitoshi Sakai (1930-2008), Applied Geochemistry, 10.1016/j.apgeochem.2012.02.004, 2012.02.
2. Masaki Yoshida, Shigeyuki Masaoka and Ken Sakai, Oxygen Evolution from Water Catalyzed by Mononuclear Ruthenium Complexes with a Triazamacrocyclic Ligand in a Facial Fashion, Chem. Lett., 2009, 38, 702-703, 2009.07.
3. Reiko Okazaki, Shigeyuki Masaoka and Ken Sakai, Photo-Hydrogen-Evolving Activity of Chloro(terpyridine)platinum(II): a Single-Component Molecular Photocatalyst, Dalton Trans., 2009, 6127-6133, 2009.06.
4. Kosei Yamauchi, Shigeyuki Masaoka and Ken Sakai, Evidence for the Pt(II)-Based Molecular Catalysis in Thermal Reduction of Water into Molecular Hydrogen, J. Am. Chem. Soc., 2009, 131, 8404-8406, 2009.06.
5. T. Yamaguchi, S. Masaoka and K. Sakai, Hydrogen Production from Water Catalyzed by an Air-stable Di-iron Complex with a Bio-relevant Fe2(μ-S)2 Core, Chem. Lett., 2009, 38, 434-435, 2009.05.
6. S. Masaoka and K. Sakai, Clear Evidence Showing the Robustness of a Highly Active Oxygen-Evolving Mononuclear Ruthenium Complex with an Aqua Ligand, Chem. Lett., 38, 182-3, 2009.02.
7. M. J. Katz, K. Sakai and D. B. Leznoff, The use of aurophilic and other metal-metal interactions as crystal engineering design elements to increase structural dimensionality, Chem. Soc. Rev., 2008, 37(9), 1884-95., 2008.07.
8. Ken Sakai and Hironobu Ozawa, Homogeneous catalysis of platinum(II) complexes in photochemical hydrogen production from water, Coordination Chemistry Reviews, 251, 2753-2766, 2007.11.
9. Hironobu Ozawa and Ken Sakai, An Effect of Structural Modification in the Photo-hydrogen-evoluting RuIIPtII Dimers, Chemistry Letters, 36, 920-921, 2007.07.
10. Hironobu Ozawa, Yuki Yokoyama, Masa-aki Haga, and Ken Sakai, Syntheses, Characterization, and Photo-Hydrogen-Evolving Properties of Tris(2,2´-bipyridine)ruthenium(II) Derivatives Tethered to a cis-Pt(II)Cl2 Unit: Insights into the Structure-Activity Relationship, Dalton Trans., 12, 1197-1206, 2007.05.
11. Hironobu Ozawa, Masa-aki Haga, Ken Sakai, A Photo-Hydrogen-Evolving Molecular Device Driving Visible-Light-Induced EDTA-Reduction of Water into Molecular Hydrogen, J.Am.Chem.Soc., 4926-4927, 2006.04.
12. Ken Sakai, Hironobu Ozawa, Hajime Yamada, Taro Tsubomura, Mariko Hara, Akon Higuchi, Masa-aki Haga, A Tris(2,2'-bipyridine)ruthenium(II)Derivative Tetherred to a cis-PtCl2(amine)2moiety:Syntheses, Spectroscopic properties, and Visible-Light-Induced Scission of DNA, Dalton Trans., 3300-3305, 2006.04.
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
1. Ken Sakai, Mechanistic Insights into the Molecular Catalysis of Water Splitting and CO2 Reduction, The 2023 edition of the European Winter School on Physical Organic Chemistry (E-WISPOC), 2023.02.
2. Ken Sakai, Sustainable Energy Cycles based on Water Splitting and CO2 Reduction , 錯体化学会第72回討論会, 2022.09, [URL].
3. Ken Sakai, Cobalt Porphyrin Catalysts for Water Oxidation and Fuel Generation, The 44th International Conference on Coordination Chemistry(ICCC2022), 2022.08, [URL].
4. Ken Sakai, Photocatalytic Water Splitting and CO2 Reduction, The 8th Asian Conference on Coordination Chemistry (ACCC8), 2022.08, [URL].
5. Ken Sakai, Mechanistic Studies on Water Splitting and CO2 Reduction Towards Solar Fuels Production, The 24th International Symposium on the Photochemistry and Photophysics of Coordination Compounds(ISPPCC), 2022.07, [URL].
6. Ken Sakai, Earth-abundant and environmentally friendly molecular photocatalysts for CO2 reduction in aqueous media, Global Renewable Energy Researchers Meet, 2021.05, [URL].
7. Ken Sakai, Molecular Catalysts and Photocatalysts for Water Splitting and CO2 Reduction, Symposium on Materials Chemistry for Sustainable Energy in Chuo University, 2020.03.
8. Ken Sakai, Molecular Catalysis of Water-Splitting and CO2 Reduction, International Symposium bitween ETH Zurich and Kyushu University, 2020.01.
9. Ken Sakai, Molecular Catalysis and Photocatalysis for Water Splitting and CO2 Reduction, International Conference on Artificial Photosynthesis-2019 (ICARP2019), 2019.11, [URL].
10. Ken Sakai, Molecular Catalysis and Photocatalysis for Water Splitting and CO2 Reduction, 12th China-Japan Joint Symposium on Metal Cluster Compounds (CJJSMCC2019), 2019.10.
11. Ken Sakai, Molecular Catalysis for Water Splitting and CO2 Reduction, The 7th Asian Conference on Coordination Chemistry , 2019.10, [URL].
12. Ken Sakai, Molecular Photocatalysis Towards Solar Water Splitting and CO2 Reduction, 2019 ESP-IUPB WORLD CONGRESS, 2019.08, [URL], Over the past decade, our group has focused on the studies of transition-metal-based molecular systems relevant to the development of artificial photosynthetic molecular devices. The targets of our research involve the studies on (i) water oxidation catalysis in order to uptake protons and electrons required for fuels generation, (ii) catalytic water or CO2 reduction into sustainable fuels (i.e., H2, CO, etc.), (iii) artificial light-harvesting systems towards the effective charge separation and/or migration, and (iv) molecular- and instrumental-level chemical engineering by making hybrid molecular and/or heterogeneous systems using multiple key components. Deeper insights into the mechanism of reaction of interest are always greatly appreciated for the sake of inspiring the rational design strategies towards the more desirable/efficient systems in promoting all relevant processes. In this context, substantial efforts have been devoted to more carefully study the reaction kinetics and equilibria in solution that are relevant to each topic. Various spectrophotometric, electrochemical, and photochemical techniques have been adopted to better understand the mechanistic aspects relevant to all of our systems. Some of the reaction steps of interest are not observable by any experimental techniques, and must be discussed on the basis of our DFT results, which have also greatly helped us understand the mechanism of reactions. Importantly, one of our findings is that, in any catalysis, the reactivity of metal(s) can be rationally tuned by use of redox active ligands that are more or less hybridized with metal(s) in their orbitals. Such issues are often involved in our discussion. One of our interests has concentrated on the molecular Pt-catalyzed hydrogen evolution reactions and their application to fabricate photosensitizer-catalyst hybrid molecular devices [1-3]. Our recent kinetic and electrochemical studies evidence the formation of a hydridodiplatinum(II,III) intermediate when H2 evolution is catalyzed by a simple mononuclear Pt(bpy)Cl2 derivative, which is also rationalized by our DFT results. Our studies have also provided new aspects on photo-induced multi-charge separation [4], near-infrared-driven water reduction [5], water oxidation catalysis using various transition metal complexes [6,7], non-precious metal based H2 evolution catalysis [8], and photoelectrochemical cells for the overall water splitting [9].

References

1. Ozawa, H.; Haga, M.; Sakai, K. J. Am. Chem. Soc. 2006, 128, 4926-4927.
2. Sakai, K.; Ozawa, H. Coord. Chem. Rev. 2007, 251, 2753-2766.
3. Kitamoto, K.; Sakai, K. Angew. Chem. Int. Ed. 2014, 53, 4618-4622.
4. Kitamoto, K.; Sakai, K. Chem. Eur. J. 2016, 35, 12381-12390.
5. Tsuji, Y.; Yamamoto, K.; Yamauchi, K.; Sakai, K. Angew. Chem. Int. Ed. 2018, 57, 208-212.
6. Nakazono, T.; Sakai, K. Dalton Trans. 2016, 45, 12649-12652.
7. Parent, A.R.; Nakazono, T.; Tsubonouchi, Y.; Taira, N.; Sakai, K. Adv. Inorg. Chem. 2019, in press.
8. Koshiba, K.; Yamauchi, K.; Sakai, K. ChemElectroChem 2019, published online.
9. Morita, K.; Sakai, K.; Ozawa, H. ACS Appl. Energy Mater. 2019, 2, 987-992..
13. Ken Sakai, Molecular Catalysis Towards Artificial Solar Generation of Fuels, 19th International Conference on Biological Inorganic Chemistry (ICBIC-19), 2019.08, [URL], Over the past decade, our group has focused on the studies of transition-metal-based molecular systems relevant to the development of artificial photosynthetic molecular devices. The targets of our research involve the studies on (i) water oxidation catalysis in order to uptake protons and electrons required for fuels generation, (ii) catalytic water or CO2 reduction into sustainable fuels (i.e., H2, CO, etc.), (iii) artificial light-harvesting systems towards the effective charge separation and/or migration, and (iv) molecular- and instrumental-level chemical engineering by making hybrid molecular and/or heterogeneous systems using multiple key components. Deeper insights into the mechanism of reaction of interest are always greatly appreciated for the sake of inspiring the rational design strategies towards the more desirable/efficient systems in promoting all relevant processes. In this context, substantial efforts have been devoted to more carefully study the reaction kinetics and equilibria in solution that are relevant to each topic. Various spectrophotometric, electrochemical, and photochemical techniques have been adopted to better understand the mechanistic aspects relevant to all of our systems. Some of the reaction steps of interest are not observable by any experimental techniques, and must be discussed on the basis of our DFT results, which have also greatly helped us understand the mechanism of reactions. Importantly, one of our findings is that, in any catalysis, the reactivity of metal(s) can be rationally tuned by use of redox active ligands that are more or less hybridized with metal(s) in their orbitals. Such issues are often involved in our discussion. One of our interests has concentrated on the molecular Pt-catalyzed hydrogen evolution reactions and their application to fabricate photosensitizer-catalyst hybrid molecular devices [1-3]. Our recent kinetic and electrochemical studies evidence the formation of a hydridodiplatinum(II,III) intermediate when H2 evolution is catalyzed by a simple mononuclear Pt(bpy)Cl2 derivative, which is also rationalized by our DFT results. Our studies have also provided new aspects on photo-induced multi-charge separation [4], near-infrared-driven water reduction [5], water oxidation catalysis using various transition metal complexes [6,7], non-precious metal based H2 evolution catalysis [8], and photoelectrochemical cells for the overall water splitting [9].



References
[1] Ozawa, H.; Haga, M.; Sakai, K. J. Am. Chem. Soc. 128 (2006), 4926-4927.
[2] Sakai, K.; Ozawa, H. Coord. Chem. Rev. 251 (2007), 2753-2766.
[3] Kitamoto, K.; Sakai, K. Angew. Chem. Int. Ed. 53 (2014), 4618-4622.
[4] Kitamoto, K.; Sakai, K. Chem. Eur. J. 35 (2016), 12381-12390.
[5] Tsuji, Y.; Yamamoto, K.; Yamauchi, K.; Sakai, K. Angew. Chem. Int. Ed. 57 (2018), 208-212.
[6] Nakazono, T.; Sakai, K. Dalton Trans. 45 (2016), 12649-12652.
[7] Parent, A.R.; Nakazono, T.; Tsubonouchi, Y.; Taira, N.; Sakai, K. Adv. Inorg. Chem. 2019, in press.
[8] Koshiba, K.; Yamauchi, K.; Sakai, K. ChemElectroChem 2019, published online.
[9] Morita, K.; Sakai, K.; Ozawa, H. ACS Appl. Energy Mater.2 (2019), 987-992.
.
14. Ken Sakai, Molecular Catalysis Relevant to Solar Energy Conversion and Storage, The 23rd International Symposium on the Photochemistry and Photophysics of Coordination Compounds (ISPPCC 2019), 2019.07, [URL], Over the past decade, our group has focused on the studies of transition-metal-based molecular systems relevant to the development of artificial photosynthetic molecular devices. The targets of our research involve the studies on (i) water oxidation catalysis in order to uptake protons and electrons required for fuels generation, (ii) catalytic water or CO2 reduction into sustainable fuels (i.e., H2, CO, etc.), (iii) artificial light-harvesting systems towards the effective charge separation and/or migration, and (iv) molecular- and instrumental-level chemical engineering by making hybrid molecular and/or heterogeneous systems using multiple key components. Deeper insights into the mechanism of reaction of interest are always greatly appreciated for the sake of inspiring the rational design strategies towards the more desirable/efficient systems in promoting all relevant processes. In this context, substantial efforts have been devoted to more carefully study the reaction kinetics and equilibria in solution that are relevant to each topic. Various spectrophotometric, electrochemical, and photochemical techniques have been adopted to better understand the mechanistic aspects relevant to all of our systems. Some of the reaction steps of interest are not observable by any experimental techniques, and must be discussed on the basis of our DFT results, which have also greatly helped us understand the mechanism of reactions. Importantly, one of our findings is that, in any catalysis, the reactivity of metal(s) can be rationally tuned by use of redox active ligands that are more or less hybridized with metal(s) in their orbitals. Such issues are often involved in our discussion. One of our interests has concentrated on the molecular Pt-catalyzed hydrogen evolution reactions and their application to fabricate photosensitizer-catalyst hybrid molecular devices [1-3]. Our recent kinetic and electrochemical studies evidence the formation of a hydridodiplatinum(II,III) intermediate when H2 evolution is catalyzed by a simple mononuclear Pt(bpy)Cl2 derivative, which is also rationalized by our DFT results. Our studies have also provided new aspects on photo-induced multi-charge separation [4], near-infrared-driven water reduction [5], water oxidation catalysis using various transition metal complexes [6,7], non-precious metal based H2 evolution catalysis [8], and photoelectrochemical cells for the overall water splitting [9].

References

1. Ozawa, H.; Haga, M.; Sakai, K. J. Am. Chem. Soc. 2006, 128, 4926-4927.
2. Sakai, K.; Ozawa, H. Coord. Chem. Rev. 2007, 251, 2753-2766.
3. Kitamoto, K.; Sakai, K. Angew. Chem. Int. Ed. 2014, 53, 4618-4622.
4. Kitamoto, K.; Sakai, K. Chem. Eur. J. 2016, 35, 12381-12390.
5. Tsuji, Y.; Yamamoto, K.; Yamauchi, K.; Sakai, K. Angew. Chem. Int. Ed. 2018, 57, 208-212.
6. Nakazono, T.; Sakai, K. Dalton Trans. 2016, 45, 12649-12652.
7. Parent, A.R.; Nakazono, T.; Tsubonouchi, Y.; Taira, N.; Sakai, K. Adv. Inorg. Chem. 2019, in press.
8. Koshiba, K.; Yamauchi, K.; Sakai, K. ChemElectroChem 2019, published online.
9. Morita, K.; Sakai, K.; Ozawa, H. ACS Appl. Energy Mater. 2019, 2, 987-992..
15. Ken Sakai, Molecular Catalysts and Photocatalysts for Solar Energy Conversion and Storage, 2nd Kyushu-Mainz Joint Chemistry Symposium, 2019.01.
16. Ken Sakai, Molecular Catalysts and Photocatalysts towards Artificial Photosynthesis, 東京大学理学部化学教室雑誌会セミナー(Department Seminer), 2018.12, In order to achieve practically useful artificial photosynthetic devices, we still need to gain deeper knowledge and skills in handling the basic chemical reactions catalyzed or photocatalyzed by transition metal based molecular systems. Our studies involve new materials synthesis, structure analysis, reaction kinetics, electrocatalysis, photocatalysis, DFT calculations, and so on. The presentation will focus on our recent advancements in clarifying the mechanism of some important energy-related molecular catalysis, such as hydrogen evolution, oxygen evolution, and even carbon dioxide reduction. The development of hybrid molecular devices consisting of multiple molecular components will also be discussed..
17. Ken Sakai, 金属単体や錯体による触媒反応, 錯体化学若手の会夏の学校2018, 2018.09.
18. Ken Sakai, Coordination Chemistry focused on Photochemical Water Splitting Molecular Devices, 43rd International Conference on Coordination Chemistry(ICCC2018), 2018.07.
19. Ken Sakai, Water Oxidation and CO2 Reduction Catalyzed by Co-, Cu- and Ru-Centered Catalysts including Cobalt Porphyrins, Tenth International Conferernce on Porphyrins and Phthalocyanines(ICPP-10), 2018.07, [URL], Please refer to the attached sheet..
20. Ken Sakai, Catalytic Hydrogen Evolution Reactions Coupled with Proton-Coupled Electron Transfer Processes, 3rd Interntational Conference on Proton Coulpled Electron Transfer (PCET2018), 2018.06, [URL], Please refer to the attached sheet..
21. Ken Sakai, Hybrid Molecular Catalysts and Photocatalysts for Solar Water Splitting
Reactions
, 3rd Japan - UK Joint Symposium on Coordination Chemistry, 2018.04, [URL], The chemistry of water oxidation and reduction has been extensively studied from many
viewpoints due to their significant relevance to solve the problems arising from the global
warming and the shortage of fossil fuels. For both processes, proton-coupled electron
transfer (PCET) processes have been considered to play the central role in drastically
lowering the activation barriers for the relevant elementally steps. In the past decades, our
group has paid specific interest in clarifying the mechanisms of transition-metal-based
molecular catalysis for both processes [1-6]. In this presentation, some PCET processes that
govern the rate of catalytic water reduction to evolve dihydrogen from water are discussed.
The figure shown below illustrates that transition-metal-catalyzed water reduction can be
roughly considered to undergo through three different types of PCET-based ratedetermining
steps. The first metal-centered model is the case where the anti-bonding orbital
in the square planar complex like a Pt(II) system forms a hydridoplatinum(III) intermediate
[1,2,5]. This path will was also shown to undergo via formation of a diplatinum(II,III)
interemediate due to its favorable stabilization via the Pt-Pt bond formation. An exceptional
case is a Co NHC catalyst, for which metal-centered PCET occurs upon reduction of Co(II)
d
7
leading to protonation at a Co(I) d8
system [4], implying that the dz2 filled orbital
provides basicity strong enough to promote protonation at the metal center. Our recent
studies also demonstrated some unique hydride forming paths in which ligand-based
reductions coupled with protonation at the ligand geometries can lead to metal hydride
intermediate species required to catalyze hydrogen evolution from water [5,6].
References
1. Sakai, K.; Ozawa, H., Coord. Chem. Rev., 2007, 251, 2753.
2. Ogawa, M. Ajayakumar, G.; Masaoka, S.; Kraatz, H.-B.; Sakai, K., Chem. Eur. J., 2011,
17, 1148.
3. Kimoto, A.; Yamauchi, K.; Yoshida, M.; Masaoka, S.; Sakai, K., Chem. Commun., 2012,
48, 239.
4. Kawano, K.; Yamauchi, K.; Sakai, K., Chem. Commun., 2014, 50, 9872.
5. Yamauchi, K.; Sakai, K., Dalton Trans., 2015, 44, 8685.
6. Koshiba, K.; Yamauchi, K.; Sakai, K., Angew. Chem. Int. Ed., 2017, 56, 424.
22. Ken Sakai, Molecular Catalysts and Photocatalysts for Water Splitting Reactions and their Applications in Surface Modified TiO2 Electrodes, I2CNER-UGö IRTG Proposal Workshop , 2018.04.
23. Ken Sakai, Molecular Design and Control of Transition Metal Complexes and Their Hybrids for Photocatalytic Water Oxidation and Reduction, The 2018 Gordon Research Conference, 2018.01.
24. 酒井 健, 金属錯体を触媒とした水からの酸素及び水素発生反応の開拓, 東京工業大学 すずかけ台キャンパス 吉沢研究室, 2018.01.
25. Ken Sakai, Molecular Catalysts and Photocatalysts towards Solar Energy Conversion and Storage, 11th Japan-China Joint Symposium on Metal Cluster Compounds, 2017.10.
26. Ken Sakai, Molecular Catalysts and Photocatalysts for Water Oxidation and Reduction, The 2nd Japan-US Bilateral Meeting on Coordination Chemistry, 2017.09.
27. Ken Sakai, Molecular Catalysts and Photocatalysts for Water Oxidation and Reduction, APCC2017, 2017.07.
28. Ken Sakai, Molecular Photocatalysts for Solar Water Splitting, ISPPCC2017, 2017.07.
29. Ken Sakai, Single-Molecular Hybrid Photocatalysts towards Solar Water Splitting Devices, 2017NAGC/ CTMNM Workshp, 2017.05.
30. 酒井 健, Hydrogen Production from Water Photocatalyzed by
Platinum-based Hybrid Molecular Systems, 9th Singapore International Chemistry Conference(SICC9), 2016.12.
31. 酒井 健, Hybrid Molecular Photocatalysts for Hydrogen Generation from Water, 9th Asian and Oceanian Photochemistry Conference(APC2016), 2016.12.
32. 酒井 健, Molecular Catalysts and Photocatalysts for Solar Water Splitting Reactions, Dublin City University, Trinity College Dublin, University of Cork, University of Limerick, NUI Galway, 2016.11.
33. 酒井 健, Molecular catalysts and photocatalysts towards solar water splitting reactions, Inorganic Chemistry Symposium, 2016.10.
34. 酒井 健, Hybrid Molecular Photocatalysts for Hydrogen Generation from Water, 5th International Symposium on Solar Fuels and Solar Cells (5th SFSC), 2016.10.
35. 酒井 健, Hybrid Molecular Systems for Photocatalytic Water Oxidation and Reduction, 42nd edition of the International Conference on Coordination Chemistry (ICCC2016), 2016.07.
36. 酒井 健, Molecular Catalysts and Photocatalysts for Water Splitting Reactions, Japan-Ireland joint seminar "Design and Characterization of Advanced Materials", 2016.06.
37. 酒井 健, Hybrid Molecular Photocatalysts for Hydrogen Generation from Water, UK-Japan Solar Driven Fuel Synthesis Workshop, 2016.06.
38. 酒井 健, Hybrid Molecular Catalysts towards Solar Driven Water Splitting Reactions, 2nd International Symposium on Chemical Energy Conversion Processes (ISCECP-2), 2016.05.
39. 酒井 健, Photocatalytic Water Splitting with Hybrid Molecular Systems, 26th IUPAC International Symposium on Photochemistry, 2016.04.
40. 酒井 健, Hybrid and Non-hybrid Molecular Catalysts for Solar-driven Water Splitting Reactions, City University of Hong Kong, 2016.03.
41. 酒井 健, Molecular Catalysts for Photochemical and Electrochemical Water Oxidation and Reduction, Sun Yat-Sen University, 2016.03.
42. 酒井 健, Molecular Photocatalysts and Electrocatalysts Towards Solar-driven Water Splitting, Institute of Chemical Research of Catalonia (ICIQ), 2016.03.
43. 酒井 健, Improving Robustness and TOF of Cobalt Porphyrin Water Oxidation Catalysts, 2nd Molecules and Materials for Artificial Photosynthesis Conference, 2016.02.
44. 酒井 健, PCETを経由する分子性ニッケル錯体触媒の水素生成機構, 新学術領域 「人工光合成」第4回公開シンポジウム, 2016.01.
45. 酒井 健, Photo-driven charge storage coupled with catalytic water reduction to hydrogen, Pacifichem2015, 2015.12.
46. 酒井 健, Molecular Catalysts for Ni,Co,Rh,Pt-based H2 Evolution and Ru,Co-based O2 Evolution, Pacifichem2015, 2015.12.
47. 酒井 健, Molecular Catalysts for Solar-driven Water Splitting Reactions, 25th Annual Meeting of MRS-J (2015), 2015.12.
48. 酒井 健, Hybrid Molecular Photocatalysts Driving H2 Evolution from Water, 10th China-Japan Joint Symposium on Metal Cluster Compounds(CJSMCC-2015), 2015.10.
49. 酒井 健, Molecular Catalysis for Water Oxidation and Reduction, 2nd Japan-Germany Joint Symposium on Coordination Chemistry (JGJSCC2), 2015.09.
50. 酒井 健, Co-based molecular water oxidation catalysts, 250th ACS National Meeting & Exposition, 2015.08.
51. 酒井 健, Hybrid Molecular Catalysts for Solar-driven Water Splitting, 5th Asian Conference on Coordination Chemistry (ACCC5), 2015.07.
52. 酒井 健, Platinum-based Molecular Photocatalysts Driving Hydrogen Evolution from Water, University of Calgary, 2015.06.
53. 酒井 健, Molecular Catalysts for Photochemical Water Oxidation and Reduction, University of Montreal, 2015.06.
54. 酒井 健, Multifunctional Molecular Devices Enabling Photocatalytic Hydrogen Evolution from Water, 98th Canadian Chemistry Conference and Exhibition(CSC2015) , 2015.06.
55. 酒井 健, Molecular Catalysts and Devices for Artificial Photosynthesis, MANA国際シンポジウム2015, 2015.03.
56. 酒井 健, 光水素発生分子デバイスの開発と機能評価, 新学術領域 「人工光合成」 第3回公開シンポジウム, 2015.01.
57. 酒井 健, Molecular Devices for Photodriven Water-Splitting Reactions, 13th Eurasia Conference on Chemical Science, 2014.12.
58. 酒井 健, Hydrogen Generation Photocatalyzed by Platinum(II)-Based Molecular Systems, 第24回日本MRS年次大会, 2014.12.
59. 酒井 健, Multifunctional molecular devices for photoinduced hydrogen evolution from water, ICARP2014, 2014.11.
60. 酒井 健, 水溶性金属単核錯体を触媒とする酸素発生反応の速度論的研究, 錯体化学会第64回討論会, 2014.09.
61. 酒井 健, Light-Driven Water Splitting to Dioxygen and Dihydrogen Photocatalyzed by Transition Metal Complexes, International Symposium on Green/Life Innovation, 2014.09.
62. 酒井 健, 金属錯体を基盤とした光水素生成システムの創成, AnApple全体会議, 2014.08.
63. 酒井 健, Molecular Photocatalysis For Water Splitting Reactions, International Conference on Coordination Chemistry (ICCC-41), 2014.07.
64. 酒井 健, 金属錯体を光触媒とする人工光合成系の開発, ゼオライト学会, 2014.06.
65. 酒井 健, Transition metal complexes for water splitting reactions, the 97th Canadian Chemistry Conference and Exhibition, 2014.06.
66. 酒井 健, Molecular Catalysts and Devices Driving Photoinduced Water Splitting Reactions, the 97th Canadian Chemistry Conference and Exhibition, 2014.06.
67. 酒井 健, Artificial Photosynthesis based on Molecular Photocatalysis of Water Splitting to Dihydrogen and Dioxygen, Nanomaterials for Alternative Energy Applications, 2014.05.
68. Takashi NAKAZONO, Ken SAKAI, Photoinduced Oxygen Evolution Catalyzed by Water-Soluble Cobalt Porphyrin Complexes, 7th International Conference on Porphyrins and Phthalocyanines on Jeju in Korea (ICPP-7), 2012.07.
69. 田中 早弥・酒井 健, ポリオキソメタレートを基盤とした水からの光化学的水素、及び酸素発生, 日本化学会第92春季年会, 2012.03.
70. Ken Sakai, The RuPt-based Photo-hydrogen-evolving Molecular Devices towards the Development of Artificial Photosynthesis Generating Hydrogen Energy from Water and Sun Light, The 3rd Japan-Korea Joint Symposium on Transition Metal Complexes, 2011.02.
71. 酒井 健, Mechanistic Insights into Photoinduced and Thermal Hydrogen Evolution Reactions Catalyzed by Platinum(II)-based Molecular Systems, 分子研研究会, 2011.01.
72. Ken Sakai, Toward the Development of Artificial Photosynthesis Generating Hydrogen Energy from Water and Sunlight, the 2010 International Chemical Congress of Pacific Basin Societies (Pacifichem 2010), 2010.12.
73. Ken Sakai, Hydrogen Production from Water using the Pt(II)-Based Molecular Catalysts, the 2010 International Chemical Congress of Pacific Basin Societies (Pacifichem 2010), 2010.12.
74. Ken Sakai, Photochemical Hydrogen Evolution from Water Catalyzed by Platinum(II)-Based Molecular Catalysts, 2010.11.
75. Ken Sakai, Charge Storage in Multi-Viologen Tethers and Its Application to Platinum(II)-Catalyzed Hydrogen Evolution from Water, the 11th International Chemistry Conference and Exhibition (11th ICCA), 2010.11.
76. 酒井 健, 電子貯蔵能と立体効果に基づく水素生成触媒活性の制御, 配位プログラミング A03班 班会議, 2010.11.
77. Ken Sakai, Photoinduced Charge Storage in Multipendant Viologen Tethers Leading to Hydrogen Evolution from Water Catalyzed by Platinum(II) Complexes, 11th Eurasia Conference on Chemical Sciences, 2010.10.
78. Ken Sakai, Photochemical Hydrogen Evolution from Water Catalyzed by Platinum(II)-Based Molecular Catalysts, 2nd International Symposium on Solar Fuels and Solar Cells, 2010.08.
79. Ken Sakai, Photochemical Hydrogen Evolution from Water Catalyzed by Platinum(II)-Based Molecular Catalysts, 2nd International Symposium on Solar Fuels and Solar Cells, 2010.08.
80. Ken Sakai, Recent Progress in the Studies on Photo-Hydrogen-Evolving Molecular Devices Involving Pt (Ii)-Based Molecular Catalysts, 8th China-Japan Joint Symposium on Metal Cluster Compounds, 2010.08.
81. Ken Sakai, Photoinduced Hydrogen Evolution from Water Driven by Pt(II)-Based Molecular Photocatalysts, Inaugural (1st) International Conference on Molecular and Functional Catalysis, 2010.07.
82. Ken Sakai, Supramolecular Systems Capable of Driving Photoinduced Hydrogen Evolution from Water, The 2010 Global COE International Symposium on Future Molecular Systems - Beyond Supramolecular Chemistry, 2010.06.
83. 酒井 健, ビオローゲン集合体を基盤とした人工光合成デバイスの構築と応用, 配位プログラミング 第3回全体会議, 2010.06.
84. Ken Skai, Photoinduced Hydrogen Evolution from Water using Supramolecular Systems Functionalized with Photosensitizers, Charge Storage Components, and Pt(II)-based Molecular Catalysts, ISMSC2010, 2010.06.
85. 酒井 健, 水の分解触媒作用を有する金属錯体の合成と機能評価, 分子研研究会, 2010.02.
86. Ken Sakai, Photo-Hydrogen-Evolving Molecular Devices Consisting of Tris(2,2'-bipyridine)ruthenium(II)-based Photosensitizers and Pt(II)-based Molecular Catalysts, the 2nd Asian Conference on Coordination Chemistry (2nd ACCC), 2009.11.
87. Ken Sakai, MOLECULAR DEVICES TOWARDS THE DEVELOPMENT OF SOLAR LIGHT-
DRIVEN WATER SPLITTING INTO MOLECULAR HYDROGEN AND OXYGEN
, The 1st Kyushu University Global-COE/ Yonsei University BK21Joint Symposium, 2009.08.
88. Ken Sakai, Hydrogen Production from Water Catalyzed by Bio-relevant and Non-bio-relevant
Multinuclear Metal Complexes, ICBIC 14, 2009.07.
89. Ken Sakai, Tris(2,2’-bipyridine)ruthenium(II)-based Photo-hydrogen-evolving Molecular Devices Using Platinum(II)- based Hydrogenic Activation, 18th ISPPCC, 2009.07.
90. 酒井 健, 水の分解触媒作用を有する金属多核錯体の合成と機能評価, 日本化学会第89春季年会, 2009.03.
91. Ken Sakai, Mechanistic Studies on Photo-Hydrogen-Evolving Molecular Devices Consisting of Ru and Pt Centers, International Mini Symposium, 2009.03.
92. Ken Sakai, Tirs(2,2’-bipyridine)ruthenium(II)-Based Photo-Hydrogen-Evolving Molecular Devices Using Pt(II)-Based Hydrogenic Activation, POSTEC/ Kyushu University Global-COE Joint Symposium on Polymers and Nanomaterials, 2009.02.
93. Ken Sakai, Shigeyuki Masaoka, Masayuki Kobayashi, Saya Tanaka, Toshiki Yamaguchi, Kosei Yamauchi, Junpei Yokoyama, Masaki Yoshida, Catalysis of Some Multinuclear Systems in Water Splitting Process, The 4th Asian Biological Inorganic Chemistry Conference, 2008.11.
94. Ken Sakai, Tirs(2,2’-bipyridine)ruthenium(II)-based photo-hydrogen-evolving molecular devices using Pt(II)-based hydrogenic activation, 7th Japan-China Joint Symposium on Metal Cluster Compounds, 2008.10.
95. 酒井 健・Bijitha Balan・小林真之・正岡重行, 過渡吸収分光法による光水素発生デバイスの反応機構解析, 第21回配位化合物の光化学討論会, 2008.08.
96. 酒井 健, 単一分子光水素発生デバイスの開発と機能制御, 「ナノサイエンス研究プロジェクト」研究発表会, 2008.06.
97. 酒井 健, 白金錯体を触媒活性部位に有する単一分子光水素発生デバイスの開発, 分子研研究会, 2008.03.
98. 酒井健, Tris(2,2’-bipyridine)ruthenium(II)-Based Photo-Hydrogen-Evolving Molecular Devices Using Pt(II)-Based Hydrogenic Activation, MIT Prof. Stephen J. Lippard Special Symposium in Fukuoka, 2008.03.
99. Ken Sakai, Satoru Takahashi, Hironobu Ozawa, Manabu Osada, Yuki Yokoyama, Kei Yamada, Masanari Hirahara, Masayuki Kobayashi, Reiko Okazaki, Junpei Yokoyama, Kosei Yamauchi, and Shigeyuki Masaoka, COORDINATION SPACE CONTROLLING THE FUNCTIONALITY OF
PHOTO-HYDROGEN-EVOLVING MOLECULAR DEVICES CONSISTING
OF PHOTOSENSITIZING AND CATALYTICALLY ACTIVE FRAGMENTS, 特定領域研究「配位空間の化学」ISCCS2007, 2007.12.
100. Ken Sakai, Hironobu Ozawa, Photo-hydrogen-evolving molecular devices based on heteronuclear Ru(II)Pt(II) complexes possessing photosensitizing and catalytically active centers, The 3rd PKNU-KU Joint Symmposium on Sciences, 2007.11.
101. 酒井 健, 単一分子光水素発生デバイスの化学, 第57回錯体化学討論シンポジウム「光を操る」―金属錯体の可能性―, 2007.09.
102. Ken Sakai, Hironobu Ozawa, Recent success in the development of photo-hydrogen-evolving molecular devices consisting of Ru(II) and Pt(II) centers, The 41st IUPAC World Chemistry Congress, 2007.08.
103. Ken Sakai, Photo-hydrogen-evolving molecular devices involving photosensitizing Ru(II) and catalytically active Pt(II) centers, The 1st Asian Conference on Coordination Compounds (ACCC), 2007.07.
104. Ken Sakai, Photo-hydrogen-evolving molecular devices consisting of Ru(II) and Pt(II) centers, The 17th International Symposium on the Photochemistry and Photophysics of Coordination Compounds (ISPPCC), 2007.06.
105. Ken Sakai, Masayuki Kobayashi, Shigeyuki Masaoka, DFT MO investigations on the photochemical H2 production from water catalyzed by Pt(II) complexes, The 1st International Symposium on Chemistry of Coordination Space (ISCCS2005) , 2005.11.
作品・ソフトウェア・データベース等
1. 酒井 健, KenX, 2002.08
単結晶X線構造解析ソフトShelxl97のグラフィカルユーザーインターフェース.
特許出願・取得
特許出願件数  2件
特許登録件数  0件
学会活動
所属学会名
Bureau Member, IUPAC
複合系の光機能研究会
日本錯体化学会
アメリカ化学会
日本化学会
学協会役員等への就任
2022.01~2023.12, IUPAC, 理事.
2018.01~2019.12, IUPAC, Bureau member.
2014.01~2015.12, IUPAC, Associate member.
2013.10, 錯体化学会, 運営委員.
2010.04~2012.03, 複合系の光機能研究会, 企画委員.
2010.01~2013.12, IUPAC, Titular member.
2008.01~2009.12, IUPAC, Associate member.
2006.05~2011.04, 日本化学会, 幹事.
2006.06~2012.09, 錯体化学会, 運営委員.
2005.10~2011.09, 錯体化学会, 理事.
2003.10~2005.09, 日本錯体化学会, 常任編集理事.
学会大会・会議・シンポジウム等における役割
2022.09.26~2022.09.28, 錯体化学会第72回討論会, 討論会実行委員長.
2019.02.23~2019.02.23, 国際周期表年2019記念シンポジウム, 国際周期表年記念事業検討分科会・IUPAC分科会 委員長.
2018.08.05~2018.08.08, Post ICCC2018 Conference in Fukuoka, 座長.
2018.07.30~2018.08.04, 43rd International Conference on Coordination Chemistry, secretariat.
2017.11.27~2017.11.30, 4th Japan-Canada Joint Symposium on Coordination Chemistry, Secretariat.
2017.11.27~2017.11.30, 4th Japan-Canada Joint Symposium on Coordination Chemistry, 座長(Chairmanship).
2017.03.16~2017.03.19, 日本化学会第94春季年会 特別企画「最新の発行測定技術が支える発光性材料開発の最前線」, 座長(Chairmanship).
2016.09.08~2016.09.10, 1st Japan-Australia Joint Symposium on Coordination Chemistry (JAJSCC), 座長(Chairmanship).
2016.05.23~2016.05.25, The 2nd International Symposium on Chemical Energy Conversion Processes(ISCECP-2), OrganizingCommittee.
2016.04.06~2016.04.08, 26th IUPAC International Symposium on Photochemistry, 座長(Chairmanship).
2015.12.17~2015.12.18, Symposium#256Inorganic Complexes for Solar Energy Harvesting(Pacifichem 2015), 座長(Chairmanship).
2015.12.15~2015.12.16, Symposium#76Molecular Catalysis of Water Splitting(Pacifichem 2015), 座長(Chairmanship).
2015.09.20~2015.09.21, 2nd Japan-Germany Joint Symposium on Coordination Chemistry (JGJSCC2), 座長(Chairmanship).
2015.09.16~2015.09.18, 2nd Japan-UK Joint Symposium on Coordination Chemistry, 実行委員長.
2015.07.12~2015.07.16, 5th Asian Conference on Coordination Chemistry (ACCC5), 座長(Chairmanship).
2014.09~2014.09, 錯体化学会第64回討論会, 運営委員長.
2014.07.21~2014.07.25, 41st International Conference on Coordination Chemistry, session organizer.
2014.07.21~2014.07.25, 41st International Conference on Coordination Chemistry (ICCC-41), 座長(Chairmanship).
2014.03.27~2014.03.30, 日本化学会第94春季年会, 座長(Chairmanship).
2013.11.02~2013.11.02, 錯体化学会第63回討論会 日本―カナダシンポジウム, 座長(Chairmanship).
2013.11.01~2013.11.02, 日本ーカナダ錯体化学二国間会議, 座長(Chairmanship).
2013.08.05~2013.08.07, 第25回配位化合物の光化学討論会, 世話人.
2013.08.05~2013.08.07, 第25回配位化合物の光化学討論会, 座長(Chairmanship).
2013.06.12~2013.06.13, The 1st International Symposium on Chemical Energy Conversion Processes(ISCECP-1), OrganizingCommittee.
2013.03.22~2013.03.25, 日本化学会第93春季年会, 座長(Chairmanship).
2013.01.28~2013.01.28, Fuel Cell and Hydrogen Production Symposium: "Alternative Materials and Devices", 座長(Chairmanship).
2012.09.21~2012.09.23, 錯体化学会第62会討論会, 座長(Chairmanship).
2012.08.13~2012.08.16, 9th Japan-China Joint Symposium on Metal Cluster Compounds, Organizing Committee.
2012.07.30~2012.07.31, 2nd International Conference on Molecular and Functional Catalysis (ICMFC-2), 座長(Chairmanship).
2012.05.26~2012.05.30, 95th Canadian Chemistry Conference and Exhibition (CSC 2012) , 座長(Chairmanship).
2012.02.21~2012.02.21, The Global COE Joint Symposium 2011, 座長(Chairmanship).
2011.11.25~2011.11.26, The 2011 Global COE International Symposium on Future Molecular Systems, 座長(Chairmanship).
2011.09.17~2011.09.19, 錯体化学会第61回討論会, 座長(Chairmanship).
2011.01.22~2011.01.22, 第10回化学・材料セミナー, 座長(Chairmanship).
2010.12.19~2010.12.19, the 2010 International Chemical Congress of Pacific Basin Societies (Pacifichem 2010), Coordination Chemistry toward Artificial Photosynthesis and Energy Conversion Processes (#194), 座長(Chairmanship).
2010.12.15~2010.12.20, 2010 International Chemical Congress of Pacific Basin Societies (Pacifichem 2010) , Organizer.
2010.12.15~2010.12.15, the 2010 International Chemical Congress of Pacific Basin Societies (Pacifichem 2010), Light Driven Generation of Hydrogen from Water (#238), 座長(Chairmanship).
2010.09.27~2010.09.30, 第60回錯体化学討論会, 座長(Chairmanship).
2010.08.28~2010.08.31, 2nd International Symposium on Solar Fuels and Solar Cells, Conference Center of DICP, 座長(Chairmanship).
2010.08.10~2010.08.14, 8th China-Japan Joint Symposium on Metal Cluster Compounds, Organizing Committee.
2010.07.11~2010.07.15, Inaugural (1st) International Conference on Molecular and Functional Catalysis, 座長(Chairmanship).
2010.03.27~2010.03.28, Asian International Symposium, 座長(Chairmanship).
2010.03~2010.03, 日本化学会第90回春期年会, 座長(Chairmanship).
2010.01.09~2010.01.09, 第9回化学・材料研究セミナー, 座長(Chairmanship).
2010.01.07~2010.01.08, 大学間連携国際会議, 座長(Chairmanship).
2009.07.04~2011.07.09, 18th ISPPCC, 組織委員.
2009.03~2009.03, 第59回錯体化学討論会, 座長(Chairmanship).
2009.03~2009.03, 日本化学会第89回春期年会, 座長(Chairmanship).
2008.11.10~2008.11.13, The 4th Asian Biological Inorganic Chemistry Conference, 座長(Chairmanship).
2008.11.01~2008.11.01, 九州錯体化学懇談会創設40周年記念シンポジウム, 組織委員.
2008.09.20~2008.09.22, 第58回錯体化学討論会, 座長(Chairmanship).
2008.03~2008.03, 第7回化学・材料研究セミナー, 座長(Chairmanship).
2008.02, The 1st Kyushu University Global COE/Yonsei University BK21 Joint Symposium on 'Future Molecular System', 座長(Chairmanship).
2007.11.30~2007.11.30, The 3rd PKNU-KU Joint Symposium on Sciences, 座長(Chairmanship).
2007.09~2007.09, 第57回錯体化学討論会, 座長(Chairmanship).
2007.08, アジア錯体化学会 2007, Secretary.
2007.03, The 1st Asian Symposium, 座長(Chairmanship).
2006.09~2006.09, 第56回錯体化学討論会, 運営委員.
2005.07, International Conference on the Photochemistry and Photophysics of Coordination Compounds, 座長(Chairmanship).
2005.03~2005.03, 日本化学会第85春季年会, 座長(Chairmanship).
2002.09~2002.09, 第52回錯体化学討論会, 組織員.
学会誌・雑誌・著書の編集への参加状況
2007.01~2014.12, 日本化学会速報誌編集委員, 国内, 編集委員.
2007.03~2010.12, Chemistry Letters, 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2022年度 39        39 
2021年度 58        58 
2019年度 27        27 
2017年度 42        42 
2016年度 64        64 
2015年度 50        50 
2014年度 45        45 
2012年度 47        47 
2011年度 31        31 
2010年度 58        58 
2007年度 35  35 
2006年度 18  18 
2005年度 13  13 
2004年度 10  10 
その他の研究活動
海外渡航状況, 海外での教育研究歴
Gruner Baum Hotel, Italy, 2023.02~2023.02.
Université Paris-Saclay, Centre national de la recherche scientifique (CNRS), University Paris Cité, France, 2023.10~2023.11.
CATALIGHT Transregional Collaborative Research Center , Germany, 2021.06~2021.07.
Suzhou Xi'an Jiaotong-Liverpool International Conference Centre, China, 2019.10~2019.10.
Putra World Trade Centre , Malaysia, 2019.12~2019.12.
ICIQ, Spain, 2019.08~2019.09.
Crowne Plaza Barcelona Fira Center, Spain, 2019.08~2019.08.
Interlaken Congress & Events, Switzerland, 2019.12~2019.12.
Palais des congrès de Paris, France, 2019.07~2019.07.
UNESCO House, France, 2019.01~2019.02.
City University of Hong Kong, China, 2019.07~2019.07.
Chinese Academy of Sciences (CAS), 北京大学, 清華大学, 天津理工大学, China, 2019.09~2019.09.
Seoul National University, Korea, 2018.10~2018.10.
The Westin Grand Munich, Germany, 2018.07~2018.07.
Chetola Resort, Blowing Rock, NC, USA, UnitedStatesofAmerica, 2018.06~2018.06.
University of St Andrews, UnitedKingdom, 2018.04~2018.05.
天津理工大学, 南開大学, 清華大学, China, 2018.04~2018.04.
Slovak University of Technology in Bratislava, SlovakRepublic, 2018.04~2018.04.
University of Göttingen, Germany, 2018.04~2018.04.
Ventra Beach Marriot, UnitedStatesofAmerica, 2018.01~2018.02.
St. George Hotel, Cyprus, 2017.05~2017.05.
University of St. Andrews/University of Oxford, UnitedKingdom, 2017.07~2017.07.
Melbourne Convention Centre, Australia, 2017.07~2017.07.
Universite Paris Diderot, France, 2017.03~2017.03.
Fiesta Americana Condesa, Mexico, 2016.02~2016.03.
University of Illinois, UnitedStatesofAmerica, 2016.03~2016.03.
Institute of Chemical Research of Catalonia(ICIQ), Spain, 2016.03~2016.03.
Universitat de Girona, Spain, 2016.03~2016.03.
Sun Yat-Sen University, China, 2016.03~2016.03.
City University of Hong Kong, Hong Kong , 2016.03~2016.03.
Quartz, Brest, France, 2016.07~2016.07.
Dublin City University (Dublin)ほか, Trinity College Dublin (Dublin), University of Cork (Cork), University of Limerick (Limerick), NUI Galway (Galway), Ireland, 2016.11~2016.11.
Nanyang Technological University (NTU) , National University of Singapore (NUS) , Singapore, 2016.12~2016.12.
Bath University, UnitedKingdom, 2015.02~2015.02.
University of Illinois at Urbana-Champaign, UnitedStatesofAmerica, 2015.03~2015.03.
University of Calgary, Canada, 2015.06~2015.06.
University of Montreal, Canada, 2015.06~2015.06.
Shaw Centre, Canada, 2015.06~2015.06.
University of Hong Kong, Hong Kong , 2015.07~2015.07.
Boston convention & Exhibition Center , UnitedStatesofAmerica, 2015.08~2015.08.
Yishan Hotel, China, 2015.10~2015.10.
Hilton Hawaiian Village, UnitedStatesofAmerica, 2015.12~2015.12.
The Fiesta Americana Condesa, Cancun in Mexico, Mexico, 2014.02~2014.02.
Friedrich-Shiller-University Jena, Germany, 2014.03~2014.03.
Congress Center - Lille, France, France, 2014.05~2014.05.
the 97th Canadian Chemistry Conference and Exhibition in Vancouver, Canada, 2014.06~2014.06.
Suntec Singapore Convention & Exhibition Centre, Singapore, Singapore, 2014.07~2014.07.
Indian Institute of Science, Bangalore, India, 2014.12~2014.12.
New Orleans, UnitedStatesofAmerica, 2013.04~2013.04.
University of Illinois at Urbana-Champaign, UnitedStatesofAmerica, 2013.05~2013.05.
Travers City, UnitedStatesofAmerica, 2013.07~2013.07.
Harbiye Museum and Convention Center, Turkey, 2013.08~2013.08.
International Convention Center, Korea, 2013.11~2013.11.
Corfu Chandris Hotel, Greece, 2012.04~2012.04.
Universite de Montreal, Calgary, Canada, Canada, 2012.05~2012.05.
Ewha Womans University (Seoul, Korea), International Convention Center (ICC) Jeju, Korea, Korea, 2012.06~2012.07.
Biopolis, Singapore, 2012.07~2012.08.
Hotel Intercontinental Dalian, China, 2012.09~2012.09.
ミュンスター大学Central Building, Germany, 2012.10~2012.10.
the University of Rennes 1, Rennnes, France, 2011.06~2011.07.
Unversity of Calgaly, Calgaly, Canada, 2011.06~2011.06.
The Palais des congrès, Montréal , Canada, 2011.06~2011.06.
Puerto Rico Convention Center, Puerto Rico, 2011.07~2011.08.
the University of Strasbourg, Strasbourg, France, 2011.07~2011.07.
Konkuk University, Seoul, Korea, 2011.10~2011.10.
the India Habitat Centre, New Delhi, India, 2011.10~2011.10.
Ramada Plaza Hotel, Jeju, Korea, 2011.10~2011.10.
Resorts World Sentosa, Singapore, Singapore, 2010.07~2010.07.
Conference Center of DICP,Dalian, China, 2010.08~2010.08.
Fujian Institute of Research on the Structure of Matter Chinese Academy of Science, Xi'an, China, 2010.08~2010.08.
King Hussein bin Talal Convention Center at the Dead Sea (KHBTCC), Jordan, Jordan, 2010.10~2010.10.
Sohag University, Tanta University, Egypt, 2010.11~2010.11.
Hawaii Convention Center; Hilton Hawaiian Village;, UnitedStatesofAmerica, 2010.12~2010.12.
POSCO International Center, Korea, 2009.02~2009.02.
Scottish Exhibition and Conference Centre (SECC), UnitedKingdom, 2009.07~2009.07.
Yonsei University, Korea, 2009.08~2009.08.
Jinling Riverside Conference Hotel, China, 2009.11~2009.11.
University of Helsinki, Finland, 2008.08~2008.08.
Ramada Plaza Jeju Hotel, Korea, 2008.11~2008.11.
大連理工大学, 南京大学, China, 2008.12~2008.12.
Lingotto Conference Centre, Italy, 2007.06~2007.06.
Trinity College, Ireland, 2007.06~2007.06.
Pukyong National University, Korea, 2007.11~2007.12.
Marriott Hotel, Korea, 2006.05~2006.05.
University College London, UnitedKingdom, 2006.07~2006.07.
Xinyuan International Hotel, China, 2006.10~2006.10.
Asilomer Conference Center, UnitedStatesofAmerica, 2005.07~2005.07.
Hyatt Regency Waikiki, UnitedStatesofAmerica, 2005.12.
Conference Center of Merida, Mexico, 2004.07~2004.07.
外国人研究者等の受入れ状況
2019.03~2019.04, 2週間以上1ヶ月未満, オタワ大学, Canada, 日本学術振興会.
2018.06~2020.05, 1ヶ月以上, UNSW (University of New South Wales), Malaysia.
2017.01~2018.12, 1ヶ月以上, ICIQ, Spain.
2017.01~2018.12, 1ヶ月以上, Fellowship from the Government of Quebec, from the Funds of Quebec for Nature and Technology, Canada.
2014.12~2014.12, 2週間未満, ノースカロライナ大学 チャペルヒル校, UnitedStatesofAmerica.
2014.11~2014.11, 2週間未満, カナダ・ブリティッシュ  コロンビア大学, Canada.
2014.02~2014.02, 2週間未満, Université Joseph Fourier, France.
2014.01~2014.01, 2週間未満, Leibniz-Institut für Katalyse an der Universität Rostock, Germany.
2013.11~2013.11, 2週間未満, University of St Andrews, Canadian and Polish.
2013.10~2013.10, 2週間未満, University of British Columbia, Canada.
2013.07~2013.07, 2週間未満, Nanyang Technological Univrsity, Singapore.
2013.06~2013.06, 2週間未満, Dalian University of Technology, China.
2013.06~2013.06, 2週間未満, KTH/Dalian Unversity of Technology, Sweden.
2013.06~2013.06, 2週間未満, Yale University, UnitedStatesofAmerica.
2013.04~2015.08, 1ヶ月以上, I2CNER, UnitedStatesofAmerica.
2013.03~2013.03, 2週間未満, ストラスブール大学, France.
2013.01~2013.01, 2週間未満, 大連工科大学, Japan, 学内資金.
2012.01~2012.01, 2週間未満, イリノイ大学, UnitedStatesofAmerica, 文部科学省.
2012.06~2012.06, 2週間未満, サイモンフレイザー大学, Canada.
2011.06~2011.06, 2週間未満, Ewha Womans University, Korea, 日本学術振興会.
2010.12~2010.12, 2週間未満, ウエスタンオンタリオ大学, Canada.
2010.10~2010.10, 2週間未満, Chalmers University of Technology, Gothenburg, Sweden , Sweden.
2010.11~2012.03, 1ヶ月以上, 九州大学, India.
2010.09~2010.10, 2週間未満, Bowling Green State University, UnitedStatesofAmerica.
2010.03~2010.03, 2週間未満, 大連理工大学, China.
2009.12~2009.12, サイモンフレイザー大学, Canada.
2009.07~2009.07, 2週間未満, ウエスタン オンタリオ大学, Canada.
2009.07~2009.07, 2週間未満, スエーデン王立工科大学, Sweden.
2009.07~2009.07, 2週間未満, ブラセッセルズ フリー大学, Belgium.
2009.06~2009.07, 1ヶ月以上, Universite de Montreal , Canada, 日本学術振興会.
2009.06~2009.07, 1ヶ月以上, Universite de Montreal , Canada, .
2009.05~2009.05, サイモンフレーザー大学, Canada.
2009.05~2009.05, ヒューストン大学, UnitedStatesofAmerica.
2009.02~2009.02, 2週間未満, Tanta University, Egypt, 外国政府・外国研究機関・国際機関.
2009.01~2010.03, 1ヶ月以上, 九州大学, India, 日本学術振興会.
2008.11~2008.11, 2週間未満, Nankai University, China.
2008.10~2008.11, 1ヶ月以上, Jordan.
2008.05~2008.05, 2週間未満, The University of Edinburgh, Scotland, UnitedKingdom.
2008.05~2008.05, 2週間未満, University of Bath, Romania.
2008.03~2010.04, 1ヶ月以上, Egypt, 外国政府・外国研究機関・国際機関.
2008.03~2008.03, 2週間未満, Massachusetts Institute of Technology, USA, UnitedStatesofAmerica.
2007.12~2007.12, 2週間未満, University of Calgary, Canada, Canada.
2007.11~2008.10, 1ヶ月以上, 九州大学, India, 日本学術振興会.
2007.09~2007.11, 1ヶ月以上, Canada.
2007.08~2007.10, 1ヶ月以上, Canada.
2007.08~2007.08, 2週間未満, Leiden University, Netherlands, Netherlands.
2007.04~2007.04, 2週間未満, York University, Canada.
2007.07~2007.07, 2週間未満, North Dakota State University, China.
2007.01~2007.01, 2週間未満, University of Saskatchewan, Canada.
2006.12~2007.10, 1ヶ月以上, 日本学術振興会, Canada, 日本学術振興会.
2006.11~2006.11, 2週間未満, University of California, Santa Barbara, UnitedStatesofAmerica.
受賞
池谷科学技術振興財団研究助成, 池谷科学技術振興財団, 2005.05.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2022年度~2026年度, 国際共同研究強化, 代表, 再生可能エネルギー循環系の構築を見据えた人工光合成システムの開発.
2021年度~2023年度, 基盤研究(B), 代表, カーボンナイトライド集積体を基盤とした分子性光燃料生成デバイスの開発.
2018年度~2020年度, 基盤研究(B), 代表, 高耐久性を有する超分子カプセル内包型錯体触媒の合成と機能評価.
2018年度~2019年度, 新学術領域研究, 代表, 分子性触媒コンポーネントを融合させた太陽光水分解用電気化学セルの開発.
2014年度~2016年度, 新学術領域研究, 分担, 水素発生光触媒機能を有する人工光合成システム.
2015年度~2017年度, 基盤研究(B), 代表, 分子性の電子伝達系を用いた水可視光分解システムの構築.
2012年度~2014年度, 基盤研究(B), 代表, 多電子貯蔵能を有する人工光合成分子システムの開発.
2012年度~2013年度, 新学術領域研究, 代表, 光酸素発生デバイスの構築と光機能界面への応用.
2010年度~2011年度, 新学術領域研究, 代表, ビオローゲンナノワイヤーを有する可視光変換デバイスの構築と光機能界面への応用.
2009年度~2011年度, 基盤研究(B), 代表, 単一分子光水素発生デバイスの合成と機能制御.
2006年度~2009年度, 特別推進研究, 分担, 高次環境調和型反応の開発ー反応空間と触媒機能の同調的相乗化ー
九州大学大学院理学研究院化学部門 香月勗(代表).
2005年度~2007年度, 基盤研究(A), 代表, 単一分子光水素発生デバイスの機構解明と高度反応制御.
2004年度~2007年度, 特定領域研究, 代表, 光水素発生デバイスにおけるエネルギー制御空間の開拓.
2002年度~2005年度, 基盤研究(B), 代表, 光水素発生機能を有するナノデバイスの開発.
日本学術振興会への採択状況(科学研究費補助金以外)
2019年度~2019年度, 外国人招へい研究者(短期), 代表, 含窒素レドックス活性配分子と錯体触媒を融合した多機能性ナノ材料の開発
Multifunctional nanocatalysts derived from nitrogen-rich redox active ligands
カナダ オタワ大学教授 Muraleetharan Murugesu.
2018年度~2020年度, 特別研究員, 金属錯体就職不均一触媒による二酸化炭素の光化学的触媒水素化反応
Light Assisted Carbon Dioxide Hydrogenation with Multinuclear Metal Complex Heterogeneous Catalyst
JSPS外国人特別研究員 Tze Hao Tan.
2009年度~2009年度, 外国人招へい研究者(短期), 新規白金ルテニウム超分子化合物の合成と光水素発生触媒機能
カナダモントリオール大学教授 Garry Hanan.
2006年度~2006年度, 外国人招へい研究者(長期), 代表, Au-Pt又はAg-Pd相互作用を持つシアノ系配位高分子錯体の創製と応用
カナダ サイモンフレーザー大学 化学科 助教授 Daniel B. Leznoff.
競争的資金(受託研究を含む)の採択状況
2005年度~2005年度, 池谷科学技術振興財団, 代表, 鉄多核錯体の合成、構造解析、及び水素エネルギー製造への応用.
共同研究、受託研究(競争的資金を除く)の受入状況
2023.04~2024.03, 代表, 水分解光触媒としての炭素量子ドット(Carbon Quantum Dot, CQD)の研究.
2022.04~2023.03, 代表, 水分解光触媒としての炭素量子ドット(Carbon Quantum Dot, CQD)の研究.
2020.03~2021.09, 代表, 水分解触媒に関する検討.
2018.12~2019.06, 代表, PTFEシート表面での水分解に関する検討.
2005.04~2006.03, 代表, 制癌剤としての白金錯体の合成、キャラクタリゼーション、及び活性評価.
寄附金の受入状況
2010年度, 田中貴金属工業, 研究協力.
2009年度, 田中貴金属工業, 研究協力.
2008年度, 田中貴金属工業, 研究協力.
2007年度, 田中貴金属工業, 研究協力.
2006年度, 田中貴金属工業, 複合型白金製剤の開発とドラッグデリバリーシステムへの応用.
2006年度, 住友商事, 直接エタノール型燃料電池のアノード触媒作用を有する金属多核錯体の探索.
2006年度, 昭栄化学工業, 学術研究費助成.
2005年度, 田中貴金属工業株式会社, 学術研究助成のため.
2004年度, 田中貴金属工業株式会社, 火災、爆破等、化学系災害の原因調査とリスク低減.
2003年度, 田中貴金属工業株式会社, 火災、爆破等、化学系災害の原因調査とリスク低減.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。