九州大学 研究者情報
発表一覧
松本 広重(まつもと ひろしげ) データ更新日:2024.04.02

教授 /  カーボンニュートラル・エネルギー国際研究所 エネルギー変換科学ユニット


学会発表等
1. Kwati Leonard, Mariya E. Ivanova, Wendelin Deibert, Wilhelm A. Meulenberg, Tatsumi Ishiraha, Hiroshige Matsumoto, Processing Proton-Conducting Solid Oxide Electrolysis Cells for low Temperature Large-scale Hydrogen Production, 22nd International Conference on Solid State Ionics (SSI-22), 2019.06, [URL], Intermediate temperature (400–600 °C) steam electrolysis using ceramics proton conducting electrolytes (PC-SOECs) might offer a solution to high electrical energy consumption associated with conventional water electrolyzers through a combination of favorable thermodynamics and kinetics. This class of electrolytes is particularly favored for their relatively high ionic conductivities within this operating regime. There has been an increased interest towards PC-SOECs in recent years, aimed at reducing the cost of electrolytic hydrogen production. Although some progress has been made with small scale type PC-SOECs devices, a significant challenge has been upscaling robust and affordable planar type devices. The fabrication of such multilayered devices usually via a tape casting process requires careful control of shrinkages of individual layers to prevent warping, cracking during sintering.
In this paper, 50 mm square planar cathode supported protonic electrolysis half cell consisting of Ba(Zr0.5Ce0.4)8/9Y0.2O2.9 electrolyte, NiO SrZr0.5Ce0.4Y0.1O3 δ cathode functional layer and NiO
Ba(Zr0.5Ce0.4)8/9Y0.2O2.9 substrate were successfully processed using a sequential tape casting route. The smooth tri layered green tapes produced, yielded suitably dense and gas tight electrolyte after co sintering at 1350 ºC/5h. Current voltage characteristics and hydrogen evolution rates measured in the temperature range 500 600°C, using Ba0.5La0.5CoO3−δ as anode demonstrate excellent performance and durability.Electrolysis voltage as low as 1.4 V are attainable at current densities of 0.2 and 0.5 A/cm2 at 500 and 600 o C, achieving ~86 % current efficiency in the later, which is among the best PC SOECs performance reported in literature. Beside electrochemical characteristics, the morphology of the tri layered half cells were also analyzed by a combination of high angle annular dark field scanning transmission electron microscopy (HAADF STEM) with energy dispersive X ray spectroscopy (EDS).The results show substential about of Sr and Ba inter diffusion and some amount Ni migrate in the vicinity of NiO grain and the electrolyte interphase for all half cells sintered above 1450 ºC which intend results to significant ohmic losses at higher current density..
2. Takaya Fujisaki, Aleksandar Tsekov Staykov, Yuhang Jing, Kwati Leonard, Narayana R Aluru, Hiroshige Matsumoto, Understanding the Effect of Ce and Zr on Chemical Expansion in Yttrium doped Strontium Cerate and Zirconate by Density Functional Theory and High Temperature X-Ray Analysis, 22nd International Conference on Solid State Ionics (SSI-22), 2019.06, [URL], Aliovalent cation-doped perovskite-type oxides (ABO3) exhibit proton conductivity originating from the hydration of oxide ion vacancies [1]. The hydration reaction is accompanied by structural deformation, i.e. chemical expansion. The chemical expansion may lead to mechanical failure in electrochemical devices, and thus it is necessary to understand the causes of this process at the atomic scale. In this study, the chemical expansion behaviors of Y-doped strontium cerate and zirconate were comparatively investigated. High-temperature X-ray diffraction (See Figure 1) and thermogravimetric analysis revealed that the cerate exhibits larger chemical expansion. Density functional theory calculations revealed that this tendency can be accounted for by the different atomic distribution of the Y dopant between the cerate and zirconate, which results in differences in the size of the oxide ion vacancies to be hydrated as well as different elastic character [2]..
3. 野村 宗充、寺山 友規、山内 美穂、曽根 理嗣、John Andrews、松本 広重, 層状酸化チタンナノ粒子の水中イオン伝導性, 第44回 固体イオニクス討論会, 2018.12, [URL].
4. 古川 翔一、野村宗充、寺山友規、曽根理嗣、John Andrews、松本広重, プロトン伝導性層状チタンナノ粒子集合体を電解質層に用いた吸水多孔質電解質水電解セル, 第44回 固体イオニクス討論会, 2018.12, [URL].
5. Hiroshige Matsumoto, Kwati Leonard, Young-sung Lee, Issei Okuzaki, Intermediate Temperature Steam Electrolysis using BZCY and SZCY Proton Conducting Perovskites, 19th International Conference on Solid State Protonic Conductors (SSPC-19), 2018.09, [URL], Steam electrolysis is characterized by high energy conversion efficiency compared to low temperature PEM and alkaline water electrolysis, and thus is useful for hydrogen production particularly from renewable energy. Proton conducting perovskites are studied to apply to steam electrolysis for intermediate-temperature operation. We have reported so far SrZr0.5Ce0.4Y0.1O3-δ (SZCY541) and BaZr0.44Ce0.36Y0.2O3-δ (BZCY(54)8/92) to be suitable as the proton-conducting electrolytes for steam electrolysis, having both sufficient conductivity, e.g. 1.44 × 10-2 S cm-1 in wet 1 % H2 at 600°C in BZCY(54)8/92, and acceptable stability in steam at operation temperatures. In this paper, our state-of-the art steam electrolysis performance using these electrolyte materials is reported and challenges existing for their practical use is discussed.
Fig. 1 shows the i-V characteristics and H2 evolution rates of a steam electrolysis experiment conducted with BZCY(54)8/92 with different thickness at 600°C. A cell terminal voltage of 1.45 V at a current density of 500 mA cm-2 with Faradaic efficiency of ~ 0.82 was obtained (T: 12 µm). From these quantities, the electric power necessary for producing 1 Nm3of H2 is calculated to be 4.2 kWh.
Electronic leakage seen in Fig. 1 (b), Ohmic resistance higher than that estimated from the original conductivity, and so on are the challenges and are discussed with experimental data..
6. Kwati Leonard, Wendelin Deibert, Mariya E. Ivanova, Wilhelm A. Meulenberg, Tatsumi Ishiraha, Hiroshige Matsumoto, Processing Ceramic Proton Conductors by Sequential Tape Casting for use in Steam Electrolysis, 19th International Conference on Solid State Protonic Conductors (SSPC-19), 2018.09, [URL], Steam electrolysis using proton conducting electrolytes (PC-SOECs) are potentially the most efficient and cost-effective option for hydrogen production at intermediate temperatures (400–600 °C) from renewable sources. These class of electrolytes are particularly favored for their relatively high ionic conductivities within this regime. Although significant progress has been made with small scale laboratory type PC-SOECs devices, a significant challenge has been upscaling robust and affordable planar type devices for comercialisation. The fabrication of such multilayered devices via a tape casting process requires careful control of shrinkages of individual layers to prevent warping, cracking or even delaminating during sintering..
7. Issei Okuzaki1, Young Sung Lee, Kwati Leonard, Hiroshige Matsumoto, Heating-Cooling Procedure to Avoid Mechanical Failure of Proton-Conducting
Ceramics, 19th International Conference on Solid State Protonic Conductors (SSPC-19), 2018.09, [URL], Hydration of oxide ion vacancy is a part of the mechanism of proton conduction to take place in aliovalent-cation-doped metal oxides but leads to chemical expansion at the critical temperature, typically 400-600°C, where the degree of hydration changes. Thus, high proton concentration that may lead to high proton conductivity will be accompanied by large chemical expansion that causes mechanical failure of the ceramic specimens. In the case of AB1-xMxO3-δ perovskite-type proton-conductors, the level of dopant M is mostly limited to 20% to the total molar amount of M and B, because highly doped specimens frequently break during preparation or conductivity measurement. In this study, we have investigated the relation between the dopant level and chemical expansion, and then a dry atmosphere or vacuum is partly introduced for the sintering and the heating-cooling during the conductivity measurement..
8. Munemitsu Nomura, Yuki Terayama, Hiroto Eguchi, Miho Yamauchi, Yoshitsugu Sone, Omar Mendoza, Junko Matsuda, Hiroshige Matsumoto, Ionic conductivity of Protonated Layered Titanate Nano-Powder Compact in Water, 19th International Conference on Solid State Protonic Conductors (SSPC-19), 2018.09, [URL], Ion conduction in ceramic materials needs high temperature due to the necessity of thermal activation for the ionic defects to move through the crystal lattice. Analogous to the proton conduction in polyelectrolyte, the surface of hydrated metal oxide grains possibly works as proton conduction pathway with the aid of adsorbed water as conceptually shown in Fig. 1. We have reported so far high protonic conduction in Anatase nanoparticles surface-modified with sulphuric acid [1], but the sulphuric acid gradually detached on soaking with water, suggested by decreasing pH of the surrounding water. Recently, Wu et al., reported the synthesis of hydrated titania, H2Ti2O5・H2O, via a solvothermal method [2]. This work has utilized this material to investigate possible proton conduction on the surface of hydrated metal nan oxide.
H2Ti2O5・H2O was prepared in the method reported in the literature [2], and spherical nano particles are obtained. XRD measurement revealed the layered structure which phase was stable up to 290°C; further increase in the temperature resulted in dehydration to deform to Anatase. The obtained powder compacted in a rectangular bar shape showed high resistance in air but the resistance markedly decreased when soaked in water: a conductivity of 7.55×10-3 s・cm-1 was obtained in water at 90°C. pH was maintained almost neutral and the conductivity seems to take place not through water. We tried to use this material for water electrolysis and evolution of hydrogen and oxygen was confirmed [3]. From these results, it is conclusive that this material has a significant ionic conduction in water or at high liquid water activity..
9. 古川翔一、 野村宗充、 曽根理嗣、松本 広重, 撥水電極触媒層の作成及び無機多孔質電解質燃料電池の電極特性, 第14回固体イオニクスセミナー, 2018.09, [URL].
10. 藤崎 貴也、ステイコフ アレクサンダー、ジン ユーハン、アルール ナラヤン、松本 広重 , 第一原理計算と高温X線回折法によるYを添加したストロンチウムセレートとジルコネートにおけるCeとZrが化学膨張に与える影響の理解
, 第14回固体イオニクスセミナー, 2018.09, [URL], ペロブスカイト構造を有するプロトン伝導性酸化物は、400℃から600℃のプロトン伝導の優位性により、燃料電池や水蒸気電解装置への応用が期待されている。プロトン伝導性酸化物は酸素空孔を有し、湿潤環境の下、約600℃以下から酸素空孔に対して水和が起こり始める。その水和はプロトン伝導の要因となっている一方、水和により化学膨張を引き起こすことが知られている。化学膨張は燃料電池や水蒸気電解装置の構成部品を破損させる原因となり得るため、化学膨張の度合いは小さい方が望ましい。本研究は、ペロブスカイト構造のAサイトにSrを用いた際、 B-サイトのCeとZrが化学膨張に与える影響について、第一原理計算により比較を行った。また計算結果は高温X線回折法によっても比較された。.
11. 吉森 洸平、松本 広重, プロトン伝導性電解質を用いた水蒸気電解の研究, 第14回固体イオニクスセミナー, 2018.09, [URL].
12. Kwati Leonard, Vincent Thoreton, John Druce, John A. Kilner, Hiroshige Matsumoto, Characterisation of Proton Uptake through Air Electrode Materials for Electrochemical devices, Materials Challenges in Alternative and Renewable Energy (MCARE) 2018, 2018.08, [URL], Low temperature operation of solid oxide electrochemical devices such as fuel cell and electrolyzers can reduce both manufacturing and materials cost of such systems [1-3]. One approach can be the use of proton-conducting electrolytes since their activation energy for proton conduction (0.3-0.6 eV), is lower compared to oxygen-ion conducting electrolytes. In addition, such proton conducting electrolytes are very promising for steam electrolyzers to generate hydrogen, utilizing renewable energy sources [1, 3]. The vast majority of research in this area has focused on the electrolytes, with a range of materials being shown to exhibit high proton conductivity [2]. However, a key factor limiting progress in this area is the sluggish catalytic activity of the air/oxygen electrodes. For this purpose, some double perovskite oxide like BaGd0.8La0.2Co2O6−δ (BGLC) [1] has been reported to exhibit, electronic (p-type), oxygen ion and protonic conduction.
In this paper, we investigate and compare the performance and cell polarization resistances of Ba0.5La0.5CoO3 (BLC) and double perovskite oxide BGLC anode on cathode supported protonic electrolysis cells using a 20μm SrZr0.5Ce0.4Y0.1O3-δ (SZCY541) electrolyte with Ni-SZCY541 composite as the H2-electrode. Also Isotope exchange experiments (18O and 2H2O tracers), Tritium imaging and Time-of-Flight Secondary Ion Mass Spectrometry depth profiling were used to study the proton uptake in the dense ceramic pellets of both materials as a means of broadening current knowledge on the availability of protons and to clarify the relationship between protons and oxide ions conduction. The BGLC 2H distribution, as inferred from the 2H216O− signal, shows an apparent depth profile which could be interpreted as 2H diffusion. Our data also suggest BGLC can indeed incorporate protons in the bulk relative to BLC at 300 ºC and that both materials retains appreciable mixed oxygen ion/electron conduction behavior. Tritium imaging plate technique however showed similar levels of protons in both materials (~5х10-8mol H/g), which are about one order of magnitude lower than that of BaZr0.44Ce0.36Y0.2O2.9 (~2,9х10-7mol H/g) at 600ºC These results will be presented together with recent work on protonic electrolysis cells.
.
13. Hiroshige Matsumoto, Young-sung Lee, Mariya E. Ivanova, Kwati Leonard, Wendelin Deibert, Wilhelm A. Meulenberg, Processing Ceramic Proton conductor Membranes for Intermediate temperature Steam Electrolysis , Materials Challenges in Alternative and Renewable Energy (MCARE) 2018, 2018.08, [URL], Electrochemical devices such as solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) are promising environmentally friendly alternative technologies for sustainable energy production. These devices generally consist of two porous electrodes separated by a dense electrolyte membrane and classified by the type of electrolyte used. Traditionally, oxide ion conducting zirconia and ceria based electrolytes have been favored for such devices, although very recently proton conducting alkaline earth cerates, zirconates and their solid solutions based electrolytes have also been attracting growing interest for lower temperature operation (600 ~ 400 °C). We have recently made significant progresses in the development of our steam electrolysis devices in two fronts. Starting from SrZr0.5Ce0.4Y0.1O3-we examined the effects of Ba substitution for Sr and the doping level of Y on the lattice structure, electrical properties, as well as chemical stability. BaZr0.44Ce0.36Y0.2O3-δ our state-of–the-art electrolyte retained a conductivity of 1.44 × 10-2 Scm-1 in wet 1 % H2 at 600°C. A cell terminal voltage of 1.45V at a current density of 500mAcm-2 with ~82 % hydrogen production efficiency was also obtained under electrolysis mode.
In this presentation we will discuss some of the challenges of these proton conductors particularly for electrolysis mode of operation. On the anode side, Several transition metal containing perovskites, such as Sm0.5Sr0.5CoO3 (SSC55) can be used with acceptable electrode performance, but these materials are not sufficiently durable against high steam concentration at intermediate temperature. Another issue is the inter-diffusion of transition metal species from the electrodes to the electrolyte causing the reduction of the proton conductivity. We have examined the impact of several transition metals by introducing them as a part of the B-site component of AB0.9Y0.1O3-δ (A=Ba, Sr; B=Ce, Zr) and found that proton conductivity is more or less reduced by the transition metal incorporation. In addition, preliminary results of our recent efforts in fabricating and scaling up our protonic membrane devices by sequential tape casting will be presented.
Acknowledgement
This work was supported by the Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "energy carrier" (Funding agency: JST) and by World Premium International Research Center Initiative (WPI), MEXT Japan.

.
14. Hiroshige Matsumoto, Young-sung Lee, Mariya E. Ivanova, Kwati Leonard, Wendelin Deibert, Wilhelm A. Meulenberg, Intermediate Temperature Steam Electrolysis using Proton Conducting perovskites membrane, 15th International Conference on Inorganic Membranes (15 ICIM 2018), 2018.06, [URL], Electrochemical devices such as solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) are promising environmentally friendly alternative technologies for sustainable energy production. These devices generally consist of two porous electrodes separated by a dense electrolyte membrane and classified by the type of electrolyte used. Traditionally, oxide ion conducting zirconia and ceria based electrolytes have been favored for such devices, although very recently proton conducting alkaline earth cerates, zirconates and their solid solutions based electrolytes have also been attracting growing interest for lower temperature operation (600 ~ 400 °C). We have recently made significant progresses in the development of our steam electrolysis devices in two fronts. Starting from SrZr0.5Ce0.4Y0.1O3-we examined the effects of Ba substitution for Sr and the doping level of Y on the lattice structure, electrical properties, as well as chemical stability. BaZr0.44Ce0.36Y0.2O3-δ our state-of–the-art electrolyte retained a conductivity of 1.44 × 10-2 Scm-1 in wet 1 % H2 at 600°C. A cell terminal voltage of 1.45V at a current density of 500mAcm-2 with ~82 % hydrogen production efficiency was also obtained under electrolysis mode.
In this presentation we will discuss some of the challenges of these proton conductors particularly for electrolysis mode of operation. On the anode side, Several transition metal containing perovskites, such as Sm0.5Sr0.5CoO3 (SSC55) can be used with acceptable electrode performance, but these materials are not sufficiently durable against high steam concentration at intermediate temperature. Another issue is the inter-diffusion of transition metal species from the electrodes to the electrolyte causing the reduction of the proton conductivity. We have examined the impact of several transition metals by introducing them as a part of the B-site component of AB0.9Y0.1O3-δ (A=Ba, Sr; B=Ce, Zr) and found that proton conductivity is more or less reduced by the transition metal incorporation. In addition, preliminary results of our recent efforts in fabricating and scaling up our protonic membrane devices by sequential tape casting will be presented..
15. Yasuhiro Takamura, Kwati Leonard, Hiroshige Matsumoto, Effect of Dispersion of Platinum Nanoparticles in Strontium Zirconate and Strontium Cerate Proton Conductors, 233rd ECS MEETING, 2018.05, [URL], The interface of two materials having different work function leads to the development of space charge, resulting in the change of defect equivalence and hence the change in the charge carrier concentration. Another possibility lies in the formation of strain at the interface resulting in the change of the mobility of ionic charge carriers. If we can use these effects for the enhancement of ionic conductivity, introduction of hetero-interface is a potential guideline for designing new ion conduction in solids.
We have reported previously that when Pt nanoparticles precipitate in proton conducting SrZr0.9Y0.1O3-δ (SZY), the electrical conductivity decreases markedly due to nanoionics effects; small amount of Pt can be dissolved into the Zr site and becomes zero-valent upon exposure to hydrogen [1]. Such a change in the macroscopic electrochemical properties is considered as a result of the unique microscopic electrochemical properties of the nanoscale space charge layer generated in the vicinity of the interface when the Pt nanoparticles are precipitated [2]. Using electrochemical spectroscopy, SrCe0.95Yb0.05O3-δ (SCYb) and Sr(Zr,Ce,Y)O3 proton conducting oxide thus doped with Pt were investigated with the aim to clarify the effects and mechanism of the Pt/oxide interface on the electrical properties of proton conducting oxide.
Pt-doped proton conducting oxides were prepared by combustion synthesis method. The electrical conductivity of Pt-SZY and Pt-SCYb measured at 800 °C under 1% H2 and air atmospheres revealed a reversible nanoionics phenomenon as a result of precipitation and dissolution of platinum nanoparticles (Fig.1). The electrical conductivity then decreases significantly when the atmosphere is change to hydrogen for Pt-SZY. In the case of Pt-SCYb an increase in the conductivity can be seen for the same changes of the atmosphere. This change in electrical conductivity has been explained by the effect of precipitated Pt particles. In other words, a proton deficient region is formed in the vicinity of the interface between Pt and SZY whereas at the interface between Pt and SCYb, there is no such influence.
Also, this result can be applied to deepen understanding of the reaction at the electrodes of the electrochemical cell. Comparing the electrode overvoltage when SZY and SCYb are used for the electrolyte in a cell using Pt as the electrode, SZY is several orders of magnitude larger than SCYb [3]. The reason for this can be explained if it is thought that the region where protons are not present is formed near the interface of Pt / SZY like as the case of Pt nanoparticles disperse in the bulk of SZY. On the other hand, the reason why the overvoltage at Pt/SCYb interface is smaller than that at SZY is considered to be a reasonable result of the loss of protons not taking place significantly near the interface.
.
16. 奥崎 一誠,Young Sung Lee,Kwati Leonard,松本広重, プロトン伝導性酸化物の化学膨張に伴う割れ発生と新規焼成プロセスの提案, 公益社団法人電気化学会第85回大会, 2018.03, [URL],  プロトン伝導性酸化物は、酸化物イオン伝導体と比べ低い温度領域においてより高い電気伝導性を持つため、固体酸化物燃料電池(SOFC)や水蒸気電解(SOEC)の低温作動化に役立つと期待される。そこで当研究室では、より高い電気伝導性、化学的安定性を持つ電解質の開発を目指し、BaZrxCeyY1-x-yO3-δ(以下BZCY系と記す)に注目した。これまでにBaZr0.44Ce0.36Y0.2O3-δにおいて高いプロトン伝導性が発現することを報告しているが[1]、BZCY系の他の組成では試料の作製過程で割れが発生するものがあった(BZCY-aおよび-bと称す)。プロトン伝導性は酸素空孔の水和によって発現する。一方、水和時に格子体積の膨張が起こることが知られている[2]。この体積変化が大きいために割れが発生している場合、材料の水和量が大きい、つまり高いプロトン伝導性を持つ材料であることが期待される。そこで本研究では、水和による膨張と関連付けながら、割れの発生のメカニズムを考察し、割れ発生を回避する新規焼成プロセスおよび作製された試料の電気化学的特性について検討した。.
17. 藤崎 貴也,ステイコフ アレクサンダー,ジン ユーハン,アルール ナラヤン,松本 広重, 第一原理計算によるプロトン伝導性酸化物の化学膨張の評価, 公益社団法人電気化学会第85回大会, 2018.03, [URL],  ペロブスカイト構造(ABO3)を有するプロトン伝導性酸化物は、400℃から700℃での温度領域で優れたプロトン伝導性を有していることから、燃料電池や水蒸気電解装置への応用が期待されている。湿潤環境下で700℃から温度を下げていくと、プロトン伝導性酸化物は約600℃以下の温度領域で水和による化学膨張が起こることが知られている1。化学膨張は燃料電池や水蒸気電解装置の構成部品を破損させる原因となり得るため、化学膨張が小さいことが望ましい。本研究では、プロトン伝導性酸化物のBサイトにセリウムとジルコニウムを選択したときの化学膨張に対する影響を、第一原理計算により検討した。また、実際に調製した試料について高温X線回折測定により格子体積の温度依存性を求め、計算の結果と比較した。.
18. クワティ レオナルド,Vincent Thoreton,John Druce,John A. Kilner,松本広重, Characterization of Protonic Transport through Air Electrode Materials, 公益社団法人電気化学会第85回大会, 2018.03, [URL],  Lowering the operation temperature of solid oxide electrolysis cells (SOECs) is an attractive concept, which avoids many of the inconveniences related to high temperature operation. Proton-conducting electrolytes (PCEs) offer some unique advantages for SOECs; one because of their low activation energy for proton motion between 400 and 600 ºC. However, there are no reported air electrode materials tailored for use with PCEs application. In the present work, Isotope exchange experiments (18O and 2D2O tracers) and Time-of-Flight Secondary Ion Mass Spectrometry depth profiling were used to study proton uptake in dense ceramic pellets of Ba0.5La0.5CoO3−δ (BGLC) and BaGd0.8La0.2Co2O6−δ (BGLC). The BGLC 2D distribution, as inferred from the 2D216O− signal, shows an apparent depth profile, which could be interpreted as 2D diffusion. Our results suggest BGLC incorporate protons in the bulk relative. We subsequently exemplify performance of both materials in in a typical steam electrolysis cell at 600°C, using SZCY541 electrolyte with Ni-SZCY541 composite as cathode..
19. 古川翔一,寺山友規,土師崇雅,Omar Mendoza,西原正道,曽根理嗣,松本広重, 多孔質電解質材料と共に用いる水電解セルの撥水電極触媒層の作製と電解特性評価, 公益社団法人電気化学会第85回大会, 2018.03, [URL],  水電解は、再生可能エネルギーを利用した水素製造の観点から重要である。本研究室では、100℃以上の高温、5気圧以上での高圧条件を目指し、無機多孔質材料を電解質層として用いた水電解セルの開発を進めている1。本研究では、前記の水電解セルに適用可能な耐水性、ガス透過性、電子伝導性全てを有する、撥水電極触媒層を作製した。本発表では種々の材料組成により作製したガス拡散層(GDL層)と電極触媒層の評価結果とそれを用いた水電解特性について説明する。.
20. 野村 宗充,寺山 友規,山内 美穂,曽根 理嗣,松本 広重, 層状酸化チタンナノ粒子の調製とその水中イオン伝導性評価, 公益社団法人電気化学会第85回大会, 2018.03, [URL],  我々は新規水電解の手法として、吸水多孔質電解質水電解セルについて検討している。図1に模式的に示すように、無機ナノ粒子界面をプロトン(H+)伝導場とする界面プロトン伝導体を電解質として用いることを特徴としており、アルカリ水電解や高分子形水電解に比べて、高い温度で作動できる可能性を持つ。プロトン伝導性のナノ粒子として、表面にプロトンを持つ固体酸が利用できる可能性がある。Wuらはソルボサーマル法によりチタンアルコキシドからプロトン化された酸化チタン化合物、H2Ti2O5・H2Oが合成できることを報告している1。この材料は層状のチタニアであり、チタンナノシートの間にプロトンが入っている構造であるとされている。本研究では、この材料のイオン伝導性を調べた。DLS、XRD、TG、IR、TEMによるキャラクタリゼーションの結果及び、水中イオン伝導性について報告する。.
21. 寺山 友規,古川翔一,野村宗充,土師崇雅,西原正通,Omar Mendoza,曽根正嗣,松本広重, プロトン伝導性層状チタンナノ粒子を電解質層に用いた吸水多孔質電解質水電解セルの電解特性, 公益社団法人電気化学会第85回大会, 2018.03, [URL],  本研究室では、無機多孔質材料を電解質とした吸水多孔質電解質水電解セルの開発を進めている。本セルは、プロトン伝導性の無機多孔電解質層を撥水触媒層と撥水性ガス拡散層で挟み込む構造である(Fig.1 (a))。そのため、多孔質電解質層を通じて電極層への水供給が容易であり水枯れが起こりにくい。また、加圧供給した水を撥水触媒層で塞き止めるため、高圧下で水電解を行うことが可能である。これまでの研究では、高電気伝導性を示す硫酸修飾チタニアを使用してきたが、水電解使用環境下で硫酸基が脱離する問題(酸溶出)が発生した。1本セルの作動するためには酸溶出の少ない高伝導性の材料が必要であり、固体酸の一種である層状チタンナノ粒子に着目することにした。本発表では、層状チタニアナノ粒子を電解質層に用いたセルの作製方法と、その電解特性について説明する。.
22. @松本広重,@寺山友規,#野村宗充,@曽根理嗣,@山内美穂, 層状酸化チタンナノ粒子の水中でのイオン伝導性, 第43回 固体イオニクス討論会, 2017.12, [URL], Proton availability in the bulk of Ba0.5La0.5CoO3−δ (BGLC) and BaGd0.8La0.2Co2O6−δ (BGLC) has been investigated using TOF-SIMS depth profiling. The cell performance of both materials was also evaluated on cathode supported protonic electrolysis cells at 600 ºC. TOF-SIMS results show that, BGLC can incorporate protons into the bulk relative to BLC..
23. KWATI LEONARD, Vincent Thoreton, John Druce, John A. Kilner, 松本 広重, Evaluation of Protonation of Air Electrode Materials and Application in Steam Electrolysis, 第43回 固体イオニクス討論会, 2017.12, [URL], Proton availability in the bulk of Ba0.5La0.5CoO3−δ (BGLC) and BaGd0.8La0.2Co2O6−δ (BGLC) has been investigated using TOF-SIMS depth profiling. The cell performance of both materials was also evaluated on cathode supported protonic electrolysis cells at 600 ºC. TOF-SIMS results show that, BGLC can incorporate protons into the bulk relative to BLC..
24. LEE YI HSUAN, LEE YOUNGSUNG, KWATI LEONARD, Hiroshige Matsumoto, Effect of transition metal on BZCY-based protonic conductor, INTERNATIONAL WORKSHOP PROSPECTS ON PROTONIC CERAMIC CELLS (PPCC-2017), 2017.10, [URL], Proton conductor has been regarded as electrolyte materials for solid oxide fuel cells (SOFC) and electrolysers (SOEC). Given that proton conductor could reduce operating temperature for SOFC/SOEC system, this system will extend wildly applications. Oxides containing transition metals are commonly utilized as electrodes. During preparation and operation process, transition metals would diffuse from anode or cathode to the electrolyte. These phenomena caused to degrade the electrolyte conductivity. Shimura et al. shows significant decrease in the conductivity of BaCe0.9Y0.1O3-δ-based proton conductors when partial replacement of Fe, Mn and Co for Ce [1]. In addition, Leonard et al. reported that Ba(Zr0.5Ce0.4)0.8Y0.2O3-δ (BZCY542) has a high proton mobility and chemical stability [2]. The BCZY542 could be considered as a suitable electrolyte material for SOFC/SOEC. In this study, therefore, the transition metal doping BZCY542-based materials were fabricated, i.e., Ba(Zr0.5Ce0.4)0.75Y0.2M0.05O3-δ (M = Co, Fe and Ni), and the effect of transition metals were investigated on their electrical conduction properties.
BZCY542-based materials were prepared by a chemical solution method. Phase identification was carried out by X-ray diffraction. The conductivity was measured by a four-terminal AC impedance method.
Figure 1 shows that the introduction of transition metals resulted in the reduction conductivity of the BZCY-based materials under air and H2 atmosphere. Furthermore, the conductivity tendency of BZCYNi, comparing with BZCYCo and BZCYFe, changed more significantly in 1% H2 atmosphere than in air atmosphere. It is suggested that the difference between in air and in H2 condition may result from the tendency to absorb O-H and the change of proton transport number.

.
25. 松本 広重, セラミックス中のプロトン伝導とその応用, 電気化学会九州支部・東海支部合同シンポジウム, 2017.09, [URL], SrCe0.95Yb0.05O3-αやBaCe0.8Y0.2O3-αなどを典型的な組成とする「プロトン伝導性希土類複合酸化物」は、高温でプロトン(水素イオン)による電気伝導性を発現する固体酸化物であり、1980年頃にSrCeO3系のペロブスカイト型酸化物が有意なプロトン伝導性を持つことが、岩原らにより報告された。おもにAサイトが2価、Bサイトが4価の金属カチオンからなるABO3型のペロブスカイト型構造を基本とし、Bサイト元素として典型的にZrとともにCeが用いられ、その一部を3価のYやYbなどで置換することが、その材料設計である。このような操作により生じた酸素空孔にガス雰囲気中の水蒸気が取り込まれることにより、プロトン(水素イオン)が格子間イオンとして取り込まれ、これがイオン伝導種として働く。
一方、筆者は近年、金属酸化物の界面に生じる酸点着目し、これを利用した低温におけるプロトン伝導性に関する検討を行っている。固体酸・塩基性は従来、不均一触媒において議論され、利用されてきたが、酸点に存在するH+が可動であるかについてはこれまであまり検討されていない。しかし、固体高分子型燃料電池の電解質として用いられるパーフルオロスルホン酸(ナフィオンなど)は、高分子を基材として界面に酸点を持つ材料であり、良好なプロトン伝導性を示す。これと同様に無機酸化物表面の酸点がプロトン伝導性を生じてもおかしくはない(いわゆる、無機ナフィオン)
本発表では、いずれもセラミックス材料である上記のバルク型および表面型のプロトン伝導性に関してこれまでにわかってきたこと、そして、まだあまりわかっていないことがそれぞれどのようなことであるか述べたい。
電気化学デバイス、すなわち電極と電解質からなる電気化学セルを用いたデバイスは、そのエネルギー変換、物質分離・変換、検知などの機能が様々に応用されている。特に、二酸化炭素排出の抑制が急務である現在、電気化学的エネルギー変換の効率の高さは、省エネルギーや蓄エネルギー技術として役立っている。二次電池は、電子機器およびEV用の変換効率の高い(したがって、熱散逸が少ない)蓄電に利用されている。家庭用燃料電池(エネファーム)の中には、火力発電の平均を上回る効率で、各家庭で発電できるものもある。筆者は特に、上記の材料による水素製造に着目し、水/水蒸気電解の検討を行っている。異なる二種類の材料を用いた電解にはそれぞれ、特徴や長所、短所が存在する。検討例と合わせてこれを紹介したい。.
26. 藤崎 貴也, 髙村 泰宏 , Alexander Staykov, 松本 広重, Theoretical Study for the Effect of Pt Nanoparticles on the Proton Conducting Properties of Strontium Cerate and Zirconate, トークシャワー・イン・九州2017, 2017.09, [URL],  ペロブスカイト構造を有するプロトン伝導性酸化物(一般式:AB1-xMxO3-δ)は、水蒸気雰囲気において400℃から800℃程度の温度でプロトン伝導性を発現する。近年、Ptを固溶させたプロトン伝導体の一種であるSrZr0.9Y0.1O3-δは、水素中でPtナノ粒子が析出し電気伝導率が下がることが報告された。一方、Ptを固溶させたSrCe0.95Yb0.05O3-δは、水素中で同様にPtナノ粒子が析出し、電気伝導率が上がることが報告された[1]。本研究は、上記の二つの現象が析出したPtナノ粒子とプロトン伝導性酸化物のヘテロ界面において、電荷の移動が起こり互いの欠陥平衡に影響を及ぼした可能性を挙げ、第一原理計算により調査を行った。.
27. 奥崎 一誠, Young Sung Lee, KWATI LEONARD, 松本 広重, プロトン伝導性酸化物の化学膨張に伴う割れ発生のメカニズム, トークシャワー・イン・九州2017, 2017.09, [URL],  プロトン伝導性酸化物は、酸化物イオン伝導体と比べ低い温度で高い電気伝導性を持つため、水蒸気電解システムの耐久性の向上や低コスト化に役立つと期待されている。しかし、酸化物イオン伝導体と比べ、プロトン伝導性酸化物は、水蒸気やCO2に対し化学的安定性が低く、かつ作動時の電気伝導性が低いという欠点がある。そこで当研究室では、より高い電気伝導性、化学的安定性を持つ電解質の開発を目指し、BaZrxCeyY1-x-yO3-δ(BZCY)に注目した。一方、セルの作製段階でBZCY試料に割れが発生するものが確認された。プロトン伝導性酸化物は酸素空孔の水和によってプロトン伝導性を発現し、また、水和時に格子体積の膨張が起こることが知られている。本研究では、水和による膨張と関連付けながら割れ発生のメカニズムを解明し、新規焼成プロセスの確立を目指した。.
28. 髙村 泰宏 , KWATI LEONARD, 松本 広重, 微細に分散した白金がプロトン伝導性固体酸化物の電気的性質に及ぼす影響, トークシャワー・イン・九州2017, 2017.09, [URL],  当研究室では、これまでにプロトン伝導性酸化物であるSrZr0.9Y0.1O3-δ中にナノサイズのPt粒子を析出させると、界面での電子の授受により酸化物側が負に帯電することでプロトンの伝導を阻害し、電気伝導度が著しく低下することを報告している(ナノイオニクス現象)。一方で、SrCe0.95Yb0.05O3-δではPt粒子を析出させ、ヘテロ界面を導入しても電気伝導度の低下は確認されないが、この原因については、いまだ明らかになっていない。本研究ではPtの析出に伴い生じるヘテロ界面が、欠陥平衡式やイオン伝導機構に及ぼす影響を明らかにすることを目的とした。.
29. 藤崎 貴也 , Alexander Staykov, 高村 泰宏, 松本 広重, Theoretical Study for the Effect of Pt Nanoparticles on the Proton Conducting Properties of Strontium Cerate and Zirconate, 第13回 固体イオニクスセミナー, 2017.09, [URL],  ペロブスカイト構造を有するプロトン伝導性酸化物(一般式:AB1-xMxO3-δ)は、水蒸気雰囲気において400℃から800℃程度の温度でプロトン伝導性を発現する。近年、Ptを固溶させたプロトン伝導体の一種であるSrZr0.9Y0.1O3-δは、水素中でPtナノ粒子が析出し電気伝導率が下がることが報告された。一方、Ptを固溶させたSrCe0.95Yb0.05O3-δは、水素中で同様にPtナノ粒子が析出し、電気伝導率が上がることが報告された[1]。本研究は、上記の二つの現象が析出したPtナノ粒子とプロトン伝導性酸化物のヘテロ界面において、電荷の移動が起こり互いの欠陥平衡に影響を及ぼした可能性を挙げ、第一原理計算により調査を行った。.
30. KWATI LEONARD, John Druce, Vincent Thoreton, John A. Kilner, 松本 広重, Mixed Proton-Electron Conducting Air Electrode for Protonic Steam Electrolysis Cells, 第13回 固体イオニクスセミナー, 2017.09, [URL], Proton conducting electrolytes (PC) are promising intermediate temperature alternative to oxide ion conducting electrolytes (OC) in electrolysis and solid oxide fuel cells. Interest in PC stems from their high conductivity and low migration energy barriers which are usually within the range [1, 3]. A major concern with intermediate temperature operation is the sluggish kinetics, as well as high polarization resistance of the steam electrode materials particularly at high current densities. Mixed proton/electron conductor (P-MIECs) materials with protonic conductivity exceeding 10-5-10-4 to initiate a bulk transport path can significantly alleviate such drawbacks, since the reactive zone within such materials can be extended well beyond the gas/electrode/electrolyte triple phase boundary [1].
In this work, cathode supported protonic electrolysis cells using a 25μm SrZr0.5Ce0.4Y0.1O3-δ electrolyte with Ni-SZCY541 composite as the H2-electrode and double perovskite oxide BaGd0.8La0.2Co2O6−δ (BGLC) as the anode was investigated. The oxygen and proton transport properties through the bulk and across the gas electrolyte interfaces of BGLC was also studied by direct measurement of the tracer diffusions and surface exchange coefficients using a combination of stable isotope exchange experiments (18O and 2D2O tracers) and Time-of-Flight Secondary Ion Mass Spectrometry depth profiling..
31. 高村 泰宏, KWATI LEONARD, 松本 広重, 微細に分散した白金がプロトン伝導性固体酸化物の電気的特性に及ぼす影響, 第13回 固体イオニクスセミナー, 2017.09, [URL],  当研究室では、これまでにプロトン伝導性酸化物であるSrZr0.9Y0.1O3-δ中にナノサイズのPt粒子を析出させると、界面での電子の授受により酸化物側が負に帯電することでプロトンの伝導を阻害し、電気伝導度が著しく低下することを報告している(ナノイオニクス現象)。一方で、SrCe0.95Yb0.05O3-δではPt粒子を析出させ、ヘテロ界面を導入しても電気伝導度の低下は確認されておらず、Ptの析出に対する応答が異なる原因については、いまだ明らかになっていない。
本研究ではSrCe0.95Yb0.05O3-δ、YbをYに置換したSrCe0.95Y0.05O3-δ、SrZr0.9Y0.1O3-δのZrを一部Ceに置換したSrZr0.9-xCexY0.1O3-δ (0≦x≦0.9)に、析出時に0.5vol%となるようにPtを加えた試料を用いた。構成元素の異なる試料を比較することで、Ptの析出に伴い生じるヘテロ界面が、欠陥平衡式やイオン伝導機構に及ぼす影響を明らかにすることを目的とした。
.
32. Hiroshige Matsumoto, KWATI LEONARD, Young-Sung Lee, Kuninori Miyazaki, Yuji Okuyama, Intermediate-Temperature Steam Electrolysis Using Proton-Conducting Perovskite for Hydrogen Production, IUMRS-ICAM 2017, 2017.09, [URL].
33. Hiroshige Matsumoto, Proton-Conductor Steam Electrolysis Cell for Hydrogen Production, 中国材料学会2017, 2017.07, [URL], Water electrolysis is an important technology for producing renewable hydrogen and work for energy conversion between the electricity and hydrogen in combination with hydrogen fuel cells. Steam electrolysis is characterized by low electrolysis voltage in comparison with other methods, but the drawback is high operation temperature. Proton conduction in metal oxides is less temperature-dependent than oxide ion conduction in zirconia, and this aspect enables us to operate steam electrolysis at intermediate temperatures.
This paper demonstrates conductivity and stability of some perovskite-type proton conducting metal oxides and the intermediate temperature operation of steam electrolysis. We also discuss several challenges of the proton conductor cells particularly for the electrolysis mode of operation.
.
34. 古川 翔一, 寺山 友規, 松本 広重, 酸化イリジウム担持チタン電極の酸素発生反応特性と水電解への応用, 第54回化学関連支部合同九州大会, 2017.07, [URL].
35. KWATI LEONARD, John Druce, Vincent Thoreton, John A. Kilner, Hiroshige Matsumoto, Exploring Mixed Proton/Electron Conducting Air Electrode materials in Protonic Electrolysis Cells, 21st International Conference on Solid Stare Ionics, 2017.06, [URL], Ceramic proton conducting electrolytes are promising intermediate temperature alternative to oxide ion conducting electrolytes in steam electrolysis cells (SOECs) and solid oxide fuel cells (SOFCs). This stems from their lower activation energy for H+ motion and ability to produce fairly pure H2 at the cathode side wheras tradition oxide ion conducting electrolytes leave wet H2 at the steam side when operated in electrolysis mode. A major concern with intemediate temperation operation is the sluggish kinetics, as well as high polarization resistance of the steam electrode materials particularly at high current densities and low faradaic efficiencies. Mixed proton/electron conductor (P-MIECs) materials with protonic conductivity exceeding 10-5-10-4 to initiat a bulk transport path can significantly alliviate such drawbacks, since the reactive zone within such materials can be extended well beyond the gas/electrode/electrolyte triple phase boundary. Very recently Ba0.5Sr0.5Fe0.8Zn0.2O3-δ (BSFZ) [1] and double perovskite oxide BaGd0.8La0.2Co2O6−δ (BGLC) [2] were proposed as possible mixed proton/electron conductors (P-MIECs) on acount of their considerable protonation between 300–400 °C. Although these materials works effectively on proton conducting electrolytes very few studies have probe the specific ionic carriers responsible for transport within the bulk of such materials.
In the present contribution, cathode-supported protonic electrolysis cells using a 25μm SrZr0.5Ce0.4Y0.1O3-δ electrolyte [3] with Ni-SZCY composite as the H2-electrode and BGLC as the anode was investigated. The assembled cells was tested with humidified 1%O2 (∼80% H2O) fed in at the steam electrode and 1%H2-99% Ar at the H2-electrode. The area specific resistance associated with the steam electrode polarization process between 500~700 °C was also measured by AC impedance spectroscopy whereas the voltage drop across the cells was measured by current interrupt method. The oxygen and proton transport properties through the bulk and across the gas electrolyte interfaces of BGLC was also studied by direct measurement of the tracer diffusions and surface exchange coefficients using a combination of stable isotope exchange experiments (18O and 2D2O tracers) and Time-of-Flight Secondary Ion Mass Spectrometry depth profiling (ToF-SIMS). This paper discusses these aspects as well as the interaction between P-MIECs electrode kinetics, total cell voltage, hydrogen generation efficiency and their implication on protonic steam electrolysis cells..
36. Yasuhiro Takamura, Hiroshige Matsumoto, KWATI LEONARD, Novel Functionality of Proton Conducting Perovskites Type Oxides Utilizing Nanoionics Effect, 21st International Conference on Solid Stare Ionics, 2017.06, [URL], We have reported previously that when nano-sized Pt particles precipitate in proton conducting SrZr0.9Y0.1O3-δ (SZY), the electrical conductivity decreases markedly due to nanoionics effects [1]. Such a change in the macroscopic electrochemical properties is considered as a result of the unique microscopic electrochemical properties of the nanoscale space charge layer generated in the vicinity of the interface when the Pt nanoparticles are precipitated [2]. Using electrochemical spectroscopy, Pt doped SrCe0.95Yb0.05O3-δ (SCYb) and Sr(Zr,Ce,Y)O3 proton conducting oxide were investigated with the aim to clarify the effects and mechanism of the Pt / oxide interface on the electrical properties of protonic conducting oxide. Furthermore, the voltage drop at the electrode / electrolyte interface in electrochemical cells comprising Pt/ Sr(Zr,Ce,Y)O3/Pt were also measured using current interruption method in order to adequately compare and contrast these effects on proton conducting oxide. Based on the obtained knowledge, we aim to construct a novel electrode / electrolyte having excellent functionality. Pt-doped proton conductivity oxides were prepared by combustion synthesis method. The electrical conductivity of Pt-SZY and Pt-SCYb measured at 800°C under 1% H2 and air atmospheres revealed a reversible nanoionics phenomenon as a result of precipitation and dissolution of platinum nanoparticles. The electrical conductivity then decreases significantly when the atmosphere is change to hydrogen for Pt-SZY. In the case of Pt-SCYb an increase in the conductivity can be seen for the same changes of the atmosphere. This change in electrical conductivity has been explained by the effect of precipitated Pt particles. In addition, from the current interruption method using Pt as the electrode on SZY and SCYb electrolyte, the electrode overvoltage significantly increases after applying a small current on Pt/SZY/Pt cell. On the other hand the electrode overvoltage drops when SCYb electrolyte is used in the same system. This indicates that a high resistance layer is formed at the Pt/SZY interface, which is related to the decrease of the electrical conductivity under 1% H2 in the four prove method. In my presentation, we discuss these results together with the electrochemical characteristics of the Pt/oxide interface with proton conductive oxide..
37. KWATI LEONARD, Lee Young-Sung, Hiroshige Matsumoto, Degradation Behavior in Steam Electrolysis Cells Using SZr0.5Ce0.4Y0.1O3-δ Proton conducting electrolyte, 電気化学会第84回大会, 2017.03, [URL].
38. 高村 泰宏, 松本 広重, KWATI LEONARD, ナノイオニクス効果を利用したプロトン伝導性酸化物の新規機能性, 電気化学会第84回大会, 2017.03, [URL].
39. 古川 翔一, 寺山 友規, 松本 広重, 電解メッキで調製したIrO2電極の酸素発生反応特性と水電解への応用, 電気化学会第84回大会, 2017.03, [URL], 当研究室では、界面プロトン伝導性ナノ粒子を電解質として用いる水電解方式として「吸水多孔質電解質水電解」を提案し、検討を行ってきた。本研究では、アノード電極の触媒に関し開発を行い、チタン電極にイリジウムを電解メッキし、調製した酸化イリジウム電極の酸素発生側反応特性について検討した。測定はサイクリックボルタンメトリーによって行った。比較として白金担持カーボンよりも酸素発生反応のよい電極性能を確認した。.
40. 寺山 友規, 土師 崇雅, 松本 広重, 無機多孔質材料を電解質とした水電解セルの電解特性, 電気化学会第84回大会, 2017.03, [URL].
41. Hiroshige Matsumoto, Young-Sung Lee, KWATI LEONARD, Yuji Okuyama, Influence of transition metal inter diffusion on proton-conductivity and electrode activity of perovskites , The 8th German-Italian-Japanese Meeting of Electrochemists, 2016.12, [URL], Proton-conducting electrolytes are an important and indispensable component of fuel cells and electrolyzers, governing the performance and to a large extent the design of the system. Oxides containing transition metals are commonly used as electrodes. During preparation and operation of the fuel cells, transition metals will diffuse from the electrodes to the electrolyte. A possible concern is that the diffusion of these transition metals will degrade the electrical conductivity of the electrolyte. There is a concern that the diffused transition metals will degrade the electrolyte conductivity. Shimura et al. reported significant decrease in the conductivity of BaCe0.9Y0.1O3-δ-based proton conductors on replacing partially Fe, Mn and Co for Ce [1]. In this study, the transition metal doping has been performed, i.e., AB0.9-xY0.1MxO3-δ (A = Ba and Sr, B = Zr and Ce, M = Co, Fe, Ni and Mn), and their electrical conduction and transport number properties were investigated to examine the effect of introducing transition metals to the proton conductor oxides.
The electrical conductivity and transport number change was observed by introducing transition metals. Especially, Ni-doped SCY and BCY were slightly changed than the un-doped original electrolytes. However, it has almost half of proton transport number at 600 oC in H2 atmosphere. These results suggest that the transition metal doping do cause changes in the ionic conductivity of the electrolytes from that of the original proton conductor and that the magnitude of the conductivity change depends on the transition metals and parent proton conductors..
42. KWATI LEONARD, Young-Sung Lee, Yuji Okuyama, Kuninori Miyazaki, Hiroshige Matsumoto, Proton Conducting Perovskites For Hydrogen Production Via Steam Electrolysis, The 8th German-Italian-Japanese Meeting of Electrochemists, 2016.12, [URL], In this contribution, we present our resent findings on conductivity and stability of some perovskite-type proton conducting metal oxides and their application in steam electrolyzers cells at intermediate temperature. Starting from SrZr0.5Ce0.4Y0.1O3-δ (SZCY541), we examined the effects of Ba substitution for Sr and the doping level of Y on the lattice structure, electrical properties, as well as the proton content of the following compositions A(Zr5/9Ce4/9)1-xYxO3-δ, (A= Ba, Sr and x=0.1, 0.2). Cell terminal voltages, examined for thin film of (SZCY541) electrolyte on Ni-SZCY541 cathode substrates with Sr0.5Sm0.5CoO3 (SSC55) as anode gave a current density of 0.5 A cm-2 at an applied electrolysis voltage of 2 V. Whereas thin film of BZCY electrolyte gave a much improved performance at the same current density. On the electrode side, we show that some of the widely use electrode materials with acceptable electrode performance like SSC55 are not sufficiently durable against high steam concentration at 600 °C. Another issue is the inter-diffusion of transition metal species from the electrodes to the electrolyte causing the reduction of the proton conductivity..
43. Yasuhiro Takamura, KWATI LEONARD, Hiroshige Matsumoto, Effect of hetero-interfaces introduced dispersion of platinum nanoparticles on the proton-conducting properties of strontium cerate and zirconate, The 8th German-Italian-Japanese Meeting of Electrochemists, 2016.12, [URL], Ionic properties of metal oxides possibly changes in the vicinity of the interface with a hetero-phase material due to the formation of space charge layer and/or the strain originated from different coefficients of thermal expansion between the two materials, followed by the rearrangement of charge carriers [1]. In particular, the former case can be examined in a material with well dispersed second phase particles as an intriguing approach to alter the macroscopic properties [2]. This so-called nanoionics composite materials can be applied in energy conversion devices. In this work, we have examined and clarified the effects of homogeneously dispersed platinum nanoparticles on the proton conducting oxides..
44. KWATI LEONARD, Young-Sung Lee, Hiroshige Matsumoto, Proton Conducting Perovskites and Application to Hydrogen Production via Steam Electrolysis , EEMAS 2016, 2016.11, [URL], In the present contribution, we demonstrates our resent results on conductivity and stability of some perovskite-type proton conducting metal oxides and their application in steam electrolyzers cells at intermediate temperature. Starting from SrZr0.5Ce0.4Y0.1O3-δ (SZCY541), we examined the effects of Ba substitution for Sr and the doping level of Y on the lattice structure, electrical properties, as well as the proton content of the following compositions A(Zr5/9Ce4/9)1-xYxO3-δ, (A= Ba, Sr and x=0.1, 0.2). Cell terminal voltages, examined for thin film of (SZCY541) electrolyte on Ni-SZCY541 cathode substrates with Sr0.5Sm0.5CoO3 (SSC55) as anode gave a current density of 0.5 A cm-2 at an applied electrolysis voltage of 2 V. Whereas thin film of BZCY electrolyte gave a much improved performance at the same current density. On the electrode side, we show that some of the widely use electrode materials with acceptable electrode performance like SSC55 are not sufficiently durable against high steam concentration at 600 °C. Another issue is the inter-diffusion of transition metal species from the electrodes to the electrolyte causing the reduction of the proton conductivity.

.
45. Yasuhiro Takamura, KWATI LEONARD, Hiroshige Matsumoto, Effect of dispersion of platinum nanoparticles on the proton-conducting properties of strontium cerate and zirconate, PRiME 2016, 2016.10, [URL], Nanoionics phenomenon in a Pt-containing proton-conducting oxide (Pt-r0.9Y0.1O3−α)
was demonstrated.
.
46. Young-sung Lee, KWATI LEONARD, Yuji Okuyama, Hiroshige Matsumoto, A study of transition metal doping on the electrical properties of perovskite type proton conductor, PRiME 2016, 2016.10, [URL], Proton-conducting oxides have been studied as intermediate-temperature electrolyte materials for fuel cells and steam electrolysis. .
47. Shota Maeda, Daisuke Kurashina, KWATI LEONARD, Young-sung Lee, Hiroshige Matsumoto, Electrochemical methane reforming using SrZr0.5Ce0.4Y0.1O3-δ proton-conductor cell
, PRiME 2016, 2016.10, [URL], In this study, we examined the device for separating only hydrogen by steam eforming of methane using a proton conductor cell.
.
48. KWATI LEONARD, Young-sung Lee, Yuji Okuyama, Kuninori Miyazaki, Hiroshige Matsumoto, Proton Conduction Properties of BZCY and SZCY Perovskites Type Oxides; Addressing the Effect of Dopant Levels and Proton Content
, PRiME 2016, 2016.10, [URL], Chemically Stable proton conducting BZCY(54)8/9-2 has been developed as a promising proton conducting electrolytes for intermediate temperature BZCY(54)8/9-2 retained a high proton conductivity of 1.44 × 10-2 Scm-1 in wet 1 % H2 at 600° C as well as sufficient chemical stability under 80 % steam for 200 hours. Steam electrolysis using SZCY541 and as electrolytes was also investigated. BZCY(54)8/9-2 was most effective in reducing the cell over potential in the examined devices..
49. Yuki Terayama, Takamasa Haji, Kouhei Mori, Hiroshige Matsumoto, Water Electrolysis Using Water Absorbing Porous Electrolyte Cell, PRiME 2016, 2016.10, [URL], We have developed water electrolysis cell by use of a water absorbing porous electrolyte that works under similar conditions to a polymer electrolyte electrolysis cell. This cell consist of a surface-proton conducting metal oxide nanoparticles as proton-conducting electrolyte, a controlled-hydrophobic electrocatalytic layer, and fully hydrophobic gas diffusion layer. In this presentation, we will show that the hydrogen gas generation rate depend on the supplied water pressure by water electrolysis..
50. Hiroshige Matsumoto, KWATI LEONARD, Young-sung Lee, Yuji Okuyama, Kuninori Miyazaki, Steam Electrolysis Using Proton-Conducting Perovskite, PRiME 2016, 2016.10, [URL], Steam electrolysis using proton-conducting electrolyte is reviewed. Present status and challenges including the issue of electronic leakage and transition metal diffusion between electrode and electrolyte are presented..
51. 高村 泰宏, KWATI LEONARD, 松本 広重, プロトン伝導性固体酸化物と白金の界面におけるナノイオニクス現象, 第12回 固体イオニクスセミナー, 2016.09, [URL], 当研究室では、これまでにプロトン伝導性酸化物であるSrZr0.9Y0.1O3-δ(以下、SZY)中にナノサイズのPt粒子を析出させると、ナノイオニクス効果により電気伝導度が著しく低下することを報告している。本研究では、プロトン伝導性酸化物であるSrCe0.95Yb0.05O3-δ(SCYb)に着目し、Ptの固溶/析出によるイオン伝導機構の変化や、界面におけるナノイオニクスのメカニズムを明らかにすることを目的とした。.
52. 寺山 友規, 土師 崇雅, 森 滉平, 松本 広重, 界面プロトン伝導性ナノ粒子を用いた吸水多孔質電解質水電解セルの開発, 第12回 固体イオニクスセミナー, 2016.09, [URL], 吸水多孔質水電解セルの開発状況について発表する。本セルで必要な要素であるガス拡散層と電極層と電解質層の調整方法と性能評価について説明した。
また、各要素を組み合わせて本セルを作動した時の水電解試験の結果についても説明した。加圧供給水の圧力の値に対し、水素発生量が変化することが明らかになった。このことから、本セルで想定していた原理通りに作動していることが判明した。.
53. KWATI LEONARD, Young-Sung Lee, Yuji Okuyama, Hiroshige Matsumoto, Transport Properties of BZCY and SZCY Proton Conducting Perovskites For Hydrogen Production, 第12回 固体イオニクスセミナー, 2016.09, [URL], Dense protonic electrolytes materials with the formula A(Zr5/9Ce4/9)1-xYxO3-δ, (A= Ba, Sr and x=0.1, 0.2) were obtained via chemical solution approach BZCY(54)8/92 showed a maximum proton occupancy of 17.1 mol % at 100 °C and retained the highest protonic conductivity of 1.44 × 10-2 Scm-1 in wet 1 % H2 at 600 °C as well as sufficient stability under 80 % steam. Proton occupancy is the major driving force for the high conductivity in the materials..
54. KWATI LEONARD, Young-Sung Lee, Yuji Okuyama, Kuninori Miyazaki, Hiroshige Matsumoto, Transport Properties of BZCY and SZCY Proton Conducting Perovskites: Implication of Different Electrode Materials on the Impedance spectra, SSPC-18, 2016.09, [URL], dense yttrium doped solid solutions of barium cerate, strontium cerate and zirconate with the formula A(Zr5/9Ce4/9)1-xYxO3-δ, (A= Ba, Sr and x=0.1, 0.2) were prepared and studied as potential proton conducting electrolytes for intermediate temperature peration. The transport properties of the sintered pellets were examined by AC impedance spectroscopy using porous platinum, silver and silver palladium paste as electrode respectively. The de-convoluted bulk, and grain boundary conductivity from the respective electrodes were obtained and compared. The bulk and grain boundary contributions were easily discernable in the impedance spectra of the studied compositions when porous platinum is used as electrode relative to silver electrode..
55. Takaya Fujisaki, KWATI LEONARD, Young-Sung Lee, Yuji Zenitani, Hiroshige Matsumoto, Electrical Conduction Behavior of Yttrium-Doped Strontium Zirconate in Dry Hydrogen Gas
, SSPC-18, 2016.09, [URL], ある種の金属酸化物であるプロトン伝導体は固体酸化物燃料電池の電解質に応用が期待されている。プロトン伝導は酸素空孔に水が水和した結果として理解されている。今回、それを高温と乾燥水素に曝したところ、これまで観測されたことの無い電気伝導度が得られた。その電気伝導度が得られた条件を模した、水素濃淡電池による起電力測定により、同一方向の起電力が観測された。この起電力から、伝導種は水素が供給したプロトンの可能性が示唆された。.
56. Hiroshige Matsumoto, Young-Sung Lee, KWATI LEONARD, Yuji Okuyama, A study of the ionic properties in (Ba,Sr)(Ce,Zr)0.9Y0.1O3-δ proton conducting perovskite type oxide, SSPC-18, 2016.09, [URL], プロトン伝導性酸化物に遷移金属が固溶したときの影響を調べた。遷移金属の固溶により、多くの場合にプロトン伝導性が低下した。電気化学セルを構成した場合に、電解質抵抗だけでなく電極反応にも影響を及ぼした。.
57. 土師 崇雅, 寺山 友規, 森 滉平, 松本 広重, 界面プロトン伝導性ナノ粒子を用いた水電解, トークシャワー・イン・九州2016, 2016.09, [URL], 固体高分子型燃料電池に用いられているNafion®等のパーフルオロスルホン酸膜は低温域における電気伝導度は高いが、機械的強度や熱安定性が低く使用可能な条件が限られるため代替材料の開発が求められている。本研究室では酸化チタン粒子の表面上に硫酸修飾を施した含水酸化チタンを作成し、Nafion®と同等の導電率を達成した。しかし、この材料は水中にて粒子表面の硫酸基が脱離し、時間経過と共に導電率の減衰、水の酸性化が起こることが判明した。[1]そこでチタン-リン酸系複合酸化物が作成され、含水酸化チタンに比べ導電率は劣るが酸溶出を抑制されたプロトン伝導体を得た。本研究では複合酸化物の粒子内部にもプロトン伝導手が存在することに着目し、解砕による伝導手の増加つまりは微粒子化による導電率の向上について検討を行った。.
58. 平田 恭輔, 松本 広重, ビーズミル法を用いたSOFC電極材料の微細化, トークシャワー・イン・九州2016, 2016.09, [URL], 固体酸化物形燃料電池(SOFC)の高性能化には電極の微細化による電極過電圧の低減が有効とされている。そこで、典型的なSOFC用カソード材料のLa0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF6428)を対象に、粉砕機AまたはBを用いたビーズミル法による試料の微細化を検討した。EtOH溶媒のLSCF6428スラリー(濃度2.5wt%)を調製して、粉砕機Aを用いて1h、2h、3h、4h粉砕、または粉砕機Bを使用して7h粉砕した。結果、LSCF6428を約50~60nm程度まで粉砕することに成功した。.
59. 高村 泰宏, KWATI LEONARD, 松本 広重, プロトン伝導性固体酸化物と白金の界面におけるナノ イオニクス, 第6回九州若手セラミックフォーラム(KYCF-6), 2016.08.
60. 松本 広重, プロトン導電体材料の研究開発概要と最近の話題, 第103回 SOFC研究会, 2016.07, [URL], プロトン伝導性酸化物を用いた電気化学デバイスおよびいくつかの研究グループにおける開発状況について述べる。.
61. KWATI LEONARD, Young-Sung Lee, Takamura Yasuhiro, Hiroshige Matsumoto, Nanoionics Effects of Disperse Platinum Particles on SrCeO3 and SrZrO3 based proton conductors, Rare Earth 2016 in SAPPORO, JAPAN, 2016.06, [URL].
62. Takaya Fujisaki, KWATI LEONARD, Young-Sung Lee, Yuji Zenitani, Hiroshige Matsumoto, Electrical Conduction Behavior of Yttrium-Doped Strontium Zirconate in Dry Hydrogen Gas, Rare Earth 2016 in SAPPORO, JAPAN, 2016.06, [URL], It is essential for hydration reaction in proton conductor to introduce water molecule. At present, unexpected conductivity with proton conductor was observed in dry hydrogen. It seems that this proton conductor had proton conduction in the atmosphere..
63. Hiroshige Matsumoto, Yuki Terayama, Takamasa Haji, Kouhei Mori, Water-Absorbing Porous Electrolyte Cell for Water Electrolysis, EMN Meeting on Fuel Cells, 2016.05, [URL], A “water-absorbing porous electrolyte cell” is proposed and demonstrated as a method of water electrolysis that will play an important role for the production of renewable hydrogen. Materials and the water electrolysis characteristics is reported..
64. KWATI LEONARD, Hiroshige Matsumoto, PROTON CONDUCTORS BASED SOLID OXIDE ELECTROLYSIS CELLS, I²CNER / EnMaCh Joint International Symposium, 2016.02.
65. Yuki Terayama, Hiroshige Matsumoto, Water Electrolysis using Water-Absorbing Porous Electrolyte Cell, I2CNER Annual Symposium 2016, 2016.02, [URL], Water-absorbing porous electrolyte cell consists of a surface-proton conducting metal oxide nanoparticles, controlled-hydrophobic catalytic layers and fully hydrophobic and gas diffusion layers. (1) electrolyte, (2) gas diffusion layer, and (3) electrode parts of the cell are the research subjects, so that the investigations are also contributing to Project 1 Electrodes and Project 2 Electrolyte..
66. KWATI LEONARD, Hiroshige Matsumoto, DEVELOPMENT OF PROTON CONDUCTOR BASED SOLID OXIDE ELECTROLYSIS CELLS
, I2CNER Annual Symposium 2016, 2016.02, [URL], Design and synthesize highly durable compactible electrode materials and the fabrication of ultra-thin electrolytes (≤ 20μm) materials using microfabrication techniques for advance SPECs and SPFCs devices
Convenient production of dry and fairly pure hydrogen without additional gas separation systems, in comparison to oxygen ionic conductor

.
67. 宮地祥昂, Young soung Lee, KWATI LEONARD, 松本 広重, (La,Ba)(Ce,Sc)O3系酸化物のプロトン伝導性, 第54回セラミックス基礎科学討論会, 2016.01, [URL].
68. 寺山 友規, 土師崇雅, 森滉平, 藤原修, 松本 広重, チタン-リン酸系ナノ粒子の調製とその界面プロトン伝導特性, 第 41 回固体イオニクス討論会, 2015.11, [URL], Titanium phosphate nanoparticle (Ti-P) prepared by sol-gel method was characterized by FT-IR, and XRD measurements, and evaluated by electrical conductivity and acid dissolution tests. We confirmed that the obtained Ti-P was consisted of Ti-O-P structure and showed an electrical conductivity value of 10-3 S cm-1 and less acid dissolution than that of previous sulfuric acid modified nanoparticle..
69. レオナルド クワティ, イ ヨンソン, 高村泰宏, 松本 広重, SrCeO3系および SrZrO3系プロトン伝導体への白金ナノ粒子分散による ナノイオニクス効果, 第 41 回固体イオニクス討論会, 2015.11, [URL], The present work demonstrates nanoionics effects using SrCe0.95Yb0.05O3−δ. and SrZr0.9Y0.1O3−δ as the major matrix phases and platinum metal nanoparticles as the minor dispersed phase. The platinum phase was introduced via the combustion synthesis approach and sintered at 1100 o C, resulting in solid solutions with platinum in the perovskite lattice. A reversible nanoionics phenomenon is observed under reducing and oxidizing atmospheres as a result of platinum nanoparticles precipitation..
70. 藤崎 貴也, クワティレオナルド, イーヨンソン, 銭谷 勇磁, 松本 広重, イットリウムを添加したSrZrO3の乾燥水素中における電気伝導性, 第5回CSJ化学フェスタ2015, 2015.10, [URL], SrZrO3等の金属酸化物中においては高温で、プロトンによる伝導性が観測される。雰囲気中の水蒸気が格子中に取り込まれることでプロトン伝導性が発現すると考えられている[1]。銭谷らは乾燥水素中において、薄膜状のBaZr1-yYxO3-δが通常よりも高い電気伝導度を持つと報告した[2]。本研究では、SrZr0.9Y0.1O3-δ(以下、SZY91と略す)のバルク体に注目し、乾燥水素中における電気伝導度について検討した。.
71. Hiroshige Matsumoto, Seok-Jun Kim, Osamu Fujiwara, Yuki Terayama, KWATI LEONARD, Young-Sung Lee, Water-Absorbing Porous Electrolyte Cell for Water Electrolysis Using SurfaceProton-Conducting Nanoparticles, WHTC2015, 2015.10, [URL], Hydrogen is considered as a secondary energy and can be used as an energy carier to help address concerns about energy security and global climate change. Hydrogen can be carbon-neutral when it is produced from renewable energies, such as solar and wind energy. Water electrolysis is a means to convert electricity to hydrogen. There are several types of water electrolysis with both merit and demerit. In this paper, a “water-absorbing porous electrolyte cell” (Fig. 1 a) is propsed and demonstrated as a method of water electrolysis. Materials and the water electrolysis characteristics are introduced and discussed.
Proton conduction on an acid-modified surface metal oxide nanoparticles is employed as the electrolyte (Fig. 1 b). The interior portion of the particles is insulating whereas the surface is utilized as a proton conduction pathway (Fig. 1 c). Particle size reduction resulted in a high surface area and hence a large proton conducting surface. The authors have found so far that sulfonated titania nanoparticles prepaired via thermal decomposition of titanyl sulfate show high proton conduction in both water and humid atmosphere [1]..
72. Hiroshige Matsumoto, KWATI LEONARD, Young-Sung Lee, Yuji Okuyama, Influence of Dopant Levels on the Proton-Conducting Properties of ZCY and BZCY system, Materials Science and Technology 2015 (MS&T15), 2015.10, [URL], Y-doped A(Zr,Ce)O3, at Zr/Ce=5/4 with A being either Ba or r has been studied as a potential proton conducting electrolyte. The effects of Ba substitution for r and Y doping level on the lattice structure, proton content, electrical properties, hydration behavior, as well as chemical stability are investigated. Thermo-gravimetric analyses revealed a similar proton concentration in both 10% and 20% Y doping cases for A=r, resulting in almost comparable proton conductivities in both wet hydrogen and oxygen atmosphere. When A=Ba, Y doping level of 20% results in higher conductivity than the 10% Y doped case. These results suggest that Ba and r at A-site have different effects on hydration and proton mobility..
73. Leonard Kwati, Young Sun Lee, Yasuhiro Takamura, Hiroshige Matsumoto, Effects of Pt Nanoparticles Dispersion on SrCeO3 and SrZrO3 based proton conductors, 2015年電気化学秋季大会, 2015.09, [URL].
74. 寺山 友規, 藤原 修, 松本 広重, チタン-リン酸系ナノ粒子の調製と電気伝導特性, 2015年電気化学秋季大会, 2015.09, [URL], 固体高分子(PEM)水電解に使用する固体電解質としてスルホン酸基を有するフッ素系高分子が用いられて いる。その一つとしてナフィオンが使用されているが熱安定性が低く・装置のコストが高くなる等の課題が あるため代替材料の開発が求められている。本研究室ではセラミックスナノ粒子表面を伝導場とするプロト ン伝導性ナノ粒子の研究開発を進めており、硫酸修飾ナノチタニアが高いプロトン伝導性を有していること を明らかにしている。(1)しかしながら、水中下においてチタン粒子表面のスルホン酸基の脱離が起こりやす いため、プロトン伝導性が低下し水電解を長期間作動できない問題がある。本研究では問題解決のためリン 酸修飾ナノチタニア(Ti-P)に着目し、水電解への応用を検討した。リン酸基はスルホン酸基と比較してチタン との結合が強いため酸性基の脱離が抑制されることが期待される。本発表では Ti-P の調製方法と評価結果(プ ロトン伝導性と酸性基の経時変化)および水電解実験の結果について報告を行う。.
75. Hiroshige Matsumoto, Proton conduction properties of BZCY and SZCY perovskites , PetiteWorkshop2015, 2015.09.
76. 寺山 友規, 藤原 修, 松本 広重, チタン-リン酸系ナノ粒子の調製とその表面プロトン伝導性評価, トークシャワー・イン・九州2015, 2015.09, [URL], 固体高分子(PEM)水電解に使用する固体電解質としてスルホン酸基を有するフッ素系高分子が用いられている。その一つとしてナフィオンが使用されているが熱安定性が低く・装置のコストが高くなる等の課題があるため代替材料の開発が求められている。本研究室ではセラミックスナノ粒子表面を伝導場とするプロトン伝導性ナノ粒子の研究開発を進めており、硫酸修飾ナノチタニアが高いプロトン伝導性を有していることを明らかにしている。しかしながら、水中下においてチタン粒子表面のスルホン酸基の脱離が起こりやすいため、プロトン伝導性が低下し水電解を長期間作動できない問題がある。本研究では問題解決のためリン酸修飾ナノチタニア(Ti-P)に着目し、水電解への応用を検討した。リン酸基はスルホン酸基と比較してチタンとの結合が強いため酸性基の脱離が抑制されることが期待される。本発表ではTi-Pの調製方法と評価結果(プロトン伝導性と酸性基の経時変化)および水電解実験の結果について報告を行う。.
77. 松本 広重, 寺山 友規, 藤原 修, チタン―リン酸系ナノ粒子の調製と電気伝導特性, 第11回固体イオニクスセミナー, 2015.09, [URL], 固体高分子(PEM)水電解に使用する固体電解質としてスルホン酸基を有するフッ素系高分子が用いられている。その一つとしてナフィオンが使用されているが熱安定性が低く・装置のコストが高くなる等の課題があるため代替材料の開発が求められている。本研究室ではセラミックスナノ粒子表面を伝導場とするプロトン伝導性ナノ粒子の研究開発を進めており、硫酸修飾ナノチタニアが高いプロトン伝導性を有していることを明らかにしている(1)。しかしながら、水中においてチタン粒子表面のスルホン酸基の脱離が起こりやすいため、プロトン伝導性が低下し水電解を長期間作動できない問題がある。本研究では、リン酸修飾ナノチタニア(Ti-P)に着目し、水電解への応用を検討した。リン酸基はスルホン酸基と比較してチタンとの結合が強いため酸性基の脱離が抑制されることが期待される。本発表ではTi-Pの調製方法と評価結果(プロトン伝導性と酸性基の経時変化)および水電解実験の結果について報告を行う。.
78. Takaya Fujisaki, KWATI LEONARD, Young Sung Lee, Yuji Zenitani, Hiroshige Matsumoto, Novel Electrical Conduction Observed in Yttrium-Doped Strontium Zirconate in Dry Hydrogen
, PPCC 2015 , 2015.07, [URL], A solid oxide fuel cell (SOFC) is an electrochemical energy conversion device that directly converts the chemical energy of fuel to electricity with high energy efficiency [1]. SOFC consists of two porous electrodes (cathode and anode) and a dense electrolyte. The performance of the device depends on the efficient movement of protons within it. Proton conductivity has been reported for many perovskites type oxides (ABO3) when doped with an aliovalent element in the B site and exposure in a humidified atmosphere. The humidified atmosphere is essential for the hydration process which ultimately provides the protons in the electrolyte [2].
In the present study we report an unpreceded conductivity of SrZr0.9Y0.1O3-δ(SZY91) electrolyte after exposure to dry hydrogen gas. The high conductivity is not explicable from conventional proton and electron conduction mechanism [3]. Therefore, a conduction mechanism observed is not well understood at this time. SZY91 which is replaced zirconium with yttrium by 10% compared to SrZO3 was prepared by a solid-state reaction method. Upon exposure to dry hydrogen gas at 900 oC the observed conductivity is as shown in figure 1. This figure indicates results of conductivity at different temperatures during heating and cooling in dry hydrogen gas. According to these results,novel proton conduction may be the reason for the change in conduction. .
79. Young Sung Lee, KWATI LEONARD, Yuji Okuyama, Hiroshige Matsumoto, Effect of transition metal doping on the electrical properties of alkali earth cerates and zirconates , PPCC 2015 , 2015.07, [URL], Proton conductor can be used as electrolytes for fuel cells and electrolyzers. Solid electrolytes are the most important and indispensable component of fuel cells and electrolyzers, governing the performance and to a large extent the design of the system. Oxides containing transition metals are commonly used as electrodes. During preparation and operation of the fuel cells, transition metals will diffuse from the electrodes to the electrolyte. There is a concern that the diffused transition metals will degrade the electrolyte conductivity. Shimura et al. reported significant decrease in the conductivity of BaCe0.9Y0.1O3-δ-based proton conductors on replacing partially Fe, Mn and Co for Ce [1]. In this study, the transition metal doping has been performed, i.e., AB0.9-xY0.1MxO3-δ (A = Ba and Sr, B = Zr and Ce, M = Co, Fe, Ni and Mn), and their electrical conduction properties were investigated to examine the effect of introducing transition metals to the proton conductor oxides. AB0.9-xY0.1MxO3-δ (SZYM, SCYM, BCYM and BZYM) were prepared by a solid-state reaction method. Phase identification was carried out by X-ray diffraction. The conductivity was measured by a four-terminal AC impedance method. The electrical conductivity change was observed by introducing transition metals. These results suggest that the introduction of transition metals causes the change in the conductivity of the proton conducting electrolytes in most cases, and that the change in the conductivity depends on the sort of transition metals. This means that the impact of introducing transition metals to the electrical conduction properties depends on the oxide. The above two cases suggests that either A-site (Sr or Ba) or B-site (Ce or Zr) possibly governs for the impact of conductivity is sensitive to the transition metals. .
80. Kuninori Miyazaki, Shinya Kitaguchi, Masatoshi Ikeda, Hayahide Yamasaki, Hiroshige Matsumoto, Research of Intermediate Temperature Steam Electrolysis Cells Using Proton-conducting Oxide Electrolyte, 第4回JACI/GSCシンポジウム&第7回GSC東京国際会議, 2015.07, [URL].
81. 藤崎 貴也, クワティ レオナルド, イーヨンソン, 銭谷 勇磁, 松本 広重, イットリウムを添加したSrZrO3の 乾燥水素中における電気伝導性, 日本化学会九州支部設立100周年記念国際シンポジウム 第52回化学関連支部合同九州大会, 2015.06, [URL], SrZr0.9Y0.1O3-α(SZY91)でプロトンが伝導するには水蒸気雰囲気が必須とされてきた。水蒸気分圧が決まらない、乾燥水素中でSZY91に新たな電気伝導が発現した。この原因として、従来とは異なるプロトンの伝導機構がある可能性が示唆された。.
82. Young Sung Lee, KWATI LEONARD, Yuji Okuyama, Hiroshige Matsumoto, The effect of transition metals doping on the electrical properties of perovskite type proton conductor, 日本化学会九州支部設立100周年記念国際シンポジウム 第52回化学関連支部合同九州大会, 2015.06, [URL], The effect of the presence of transition metal at the B site of the proton conducting perovskites type oxide has been investigated. AB0.85Y0.1MxO3-δ (A=Ba, Sr, B=Ce, Zr, M = Co, Fe, Ni, Mn) was prepared and their electrochemical behavior in oxidative and reducing atmospheres examined. The electrical conductivity varies, decreasing in most cases, upon the introduction of the transition metals and the changes take place in different ways depending on A-site or B-site as well as the atmospheres..
83. 興梠 武久, イ・ヨンスン, クワティ・レオナルド, 松本 広重, プロトン伝導性酸化物を用いた水蒸気電解における複合アノードの研究, 日本化学会九州支部設立100周年記念国際シンポジウム 第52回化学関連支部合同九州大会, 2015.06, [URL].
84. 平田 恭輔, 嶋村 直美, 松本 広重, ビーズミルナノ粒子を用いた微細多孔質ガス電極の作成, 日本化学会九州支部設立100周年記念国際シンポジウム 第52回化学関連支部合同九州大会, 2015.06, [URL], 持続可能な低エネルギー社会の構築に向けて、固体酸化物燃料電池(SOFC)は効率の高いエネルギー変換デバイスと して有用であり、その高性能化が重要な課題である。多孔性ガス電極はSOFCのもっとも重要な構成要素の一つであり、 特に低温作動化に向けて、電極過電圧を低減できる高性能多孔性ガス電極の開発が求められている。電極反応は、 燃料や酸素などの気体が電極および電解質と電子やイオンを授受することで進行し、その高性能化には、構造の 微細化が有効である。我々はこれまでに遊星ミルと微小のビーズ状の粉砕媒体(~0.05mmΦ)を組み合わせた 「遊星ビーズミリング」により、種々の酸化物材料がシングルナノサイズ(~2nm)まで粉砕できる事を見出した[1]。 本研究では「遊星ビーズミリング」を固体酸化物燃料電池の電極原料の微細化に適用し、ナノ多孔質構造を有する 電極の調整とその電極特性について検討した。.
85. KWATI LEONARD, Young Sung Lee, Takaya Fujisaki, Yuji Okuyama, Hiroshige Matsumoto, Nanoionic Effects on the Proton Conductivity of Cerates and Zirconates Based Perovskites-type Oxides, 日本化学会九州支部設立100周年記念国際シンポジウム 第52回化学関連支部合同九州大会, 2015.06, [URL], The present work, we demonstrate nanoionics effects using SrCe0.95Yb0.05O3−α. and SrZr0.9Y0.1O3−α as the major matrix phase and platinum metal nanoparticles as the minor dispersed phase. A reversible nanoionics phenomenon is observed under reducing and oxidizing atmospheres as a result of platinum nanoparticles precipitation..
86. Hiroshige Matsumoto, Osamu Fujiwara, KWATI LEONARD, Young-Sung Lee, Surface-Proton Conductivity of Titanium Phosphate Nanoparticles in Water, 20th International Conference on Solid State Ionics, 2015.06, Proton conductivity of Ti-P-O complex oxide nanoparticles in water has been investigated, assuming the use as an electrolyte material for water electrolysis. Most of the solid ion conductor is crystalline and ionic defects works as charge carriers, so that relatively high temperature is necessary for the ionic conduction. Surface of the solid can work another type of the ion conduction field and nanoparticles equipped with large surface area can be ion conduction media, with examples of ceria nanoparticles and acid-modified metal oxides. In this work proton incorporated on the surface of Ti-P oxide nanoparticles in the form of hydroxyl group is assumed as a charge carrier and its conductivity with a help of liquid water is considered. The Ti-P oxide particles were prepared via a wet chemical method using titanium alkoxide and phosphoric acid. Resulting precipitates are washed dried and compacted in a disk or bar shape and electrical conductivity in water was measured. Dissolution of phosphoric acid into water was evaluated by measuring the pH. The conductivity and the dissolution tendency depends largely on the heat treatment and the ratip of Ti/P. Infrared absorption measurement reveals the P=O double bond and Ti-O-P bond, with existence of OH group part of which can be assumed to work as a source of protonic charge carrier. .
87. KWATI LEONARD, Yuji Okuyama, Young-Sung Lee, Hiroshige Matsumoto, The Influence of Dopant Levels on the Hydration Properties of  SZCY and BZCY Proton Conducting Ceramics for Hydrogen Production, 20th International Conference on Solid State Ionics, 2015.06, Ionic conductivity is an important transport process for all electrochemical energy conversion and storage devices and very relevant for a sustainable energy economy. In the present work Yttria-doped strontium zirconate partially substitted with ceria SrZr0.5Ce0.4Y0.1O3-α (SZCY541) have been studied as a potential proton conducting electrolyte for intermediate temperature steam electrolysis. The effects of Ba substitution for Sr on the lattice structure, proton content, electrical properties, hydration behavior, as well as chemical stability are investigated. Proton content was examined by tailoring dopant concentration to improve the proton conductivity. Thermo-gravimetric analyses revealed a similar proton concentration in both SZCY541 and SrZr0.44Ce0.35Y0.2O3-α (SZCY542) with a constant Zr/Ce fraction of 5:4. Both samples showed almost comparable proton conductivities in both wet hydrogen and oxygen atmosphere. Whereas BaZr0.44Ce0.35Y0.2O3-α (BZCY542) showed a higher proton mobility than BaZr0.5Ce0.4Y0.1O3-α (BZCY541) and retained the highest proton conductivity of 1.44 × 10-2 Scm-1 in wet 1 % H2 at 600 o C as well as excellent chemical stability under 80 % steam for 200 hours. These results suggest Ba and Sr at A-site have different effects on hydration and proton mobility. This paper discusses these aspects based on experimental results as well as steam electrolysis using SZCY-541 and BZCY542 as electrolytes. .
88. Hiroshige Matsumoto, Proton Ceramic Fuel Cells and Steam Electrolyzers for Hydrogen, Japan Norway Science Week 2015, 2015.05, [URL].
89. 松本 広重, プロトン伝導性希土類複合酸化物を用いた水蒸気電解による水素製造, 第32回希土類討論会, 2015.05, [URL].
90. 宮地 祥昂, Youngsung Lee, KWATI LEONARD, 松本 広重, BaCeO3-LaMO3(M=Sc,Y)系酸化物のプロトン伝導性, 日本セラミックス協会2015年会, 2015.03.
91. 松本 広重, プロトン伝導性酸化物を用いたSOFCおよびSOEC について, 第97回SOFC研究会, 2015.01.
92. 松本 広重, 吸水多孔質水電解と水素・酸素製造への応用, 第41回炭素材料学会年会, 2014.12, [URL].
93. KWATI LEONARD, Hiroshige Matsumoto, Yuji Okuyama, Young-Sung Lee, Proton Conduction and Concentration in Ba and Sr Cerate-Zirconate Solid Solution with different Y doping level, Solid State Protonic Conductors-17, 2014.09.
94. Yuji Okuyama, Hiroshige Matsumoto, KWATI LEONARD, Young-Sung Lee, Incorporation of Proton in SrZr₀.₉-xY₀.₁O₃-δ, Solid State Protonic Conductors-17, 2014.09.
95. Young-Sung Lee, Hiroshige Matsumoto, Yuji Okuyama, KWATI LEONARD, Influence of transition metal doping on the electrical properties of (Ba,Sr)(Ce,Zr)₀.₉Y₀.₁O₀-δ -based oxides, Solid State Protonic Conductors-17, 2014.09.
96. Hiroshige Matsumoto, Yuji Okuyama, KWATI LEONARD, Young-Sung Lee, Intermadiate Temperature Steam Electrolysis Using Proton-conducting Provuskite for Hydorogen Productin, Solid State Protonic Conductors-17, 2014.09.
97. Hiroshige Matsumoto, KWATI LEONARD, プロトン伝導性酸化物を用いた水蒸気電解による水素製造への挑戦, 公益社団法人日本セラミックス協会 第27回秋季シンポジウム, 2014.09.
98. KWATI LEONARD, Hiroshige Matsumoto, Yuji Okuyama, Young-Sung Lee, Proton Conduction in SZCY and BZCY systems
, 第9回固体イオニクスセミナー, 2014.09, [URL].
99. Hiroshige Matsumoto, プロトン伝導性酸化物と燃料電池・水蒸気電解への応用, 日本セラミックス協会 第 48 回基礎科学部会セミナー, 2014.07.
100. Hiroshige Matsumoto, 藤原 修, チタン-リン酸系ナノ粒子の調製と電気伝導性, 第51回化学関連支部合同九州大会, 2014.06.
101. 高村 泰宏, Hiroshige Matsumoto, プロトン伝導性酸化物に与えるPtの界面効果-ストロンチウムセレートとストロンチウムジルコネートの比較-, 第51回化学関連支部合同九州大会, 2014.06.
102. KWATI LEONARD, Hiroshige Matsumoto, Influence of transition metal doping on proton conducting perovskites, 第51回化学関連支部合同九州大会, 2014.06.
103. Hiroshige Matsumoto, Proton-conducting oxides for solid oxide fuel cells and steam electrolysis, The 7th German-Italian-Japanese Meeting , 2014.06.
104. 松本広重, プロトン伝導性酸化物を用いた中温水蒸気電解, 日本化学会第94春季年会(2014), 2014.03.
105. 松本広重, 新規ナノ界面プロトン伝導体と水電解による水素製造への応用, 共進化社会システム創成拠点フォーラム, 2014.03.
106. Young-Sung Lee, Yuji Okuyama, Hiroshige Matsumoto, The effect of transition metal addition on the ionic properties of proton conducting perovskites, International Conference on Hydrogen Production 2014, 2014.02.
107. Young-Sung Lee, Yuji Okuyama, Hiroshige Matsumoto, Effect of Transition Metal Doping on the Electrical Properties of Perovskite Oxides, The 30th Japan-Korea International Seminar on Ceramics, 2013.11.
108. 奥山勇治, 池田翔平, 米田武寛, 伊佐佳織, 酒井孝明, 松本広重, 酸化物プロトン伝導体のプロトン溶解量に対するカチオン混合効果, 第39回固体イオニクス討論会, 2013.11.
109. Young-Sung Lee, 畑田直行, 酒井孝明, 松本広重, Effect of transition metal doping on proton conduction properties of alkali earth cerates and zirconates, 第39回固体イオニクス討論会, 2013.11.
110. 松本広重, 環境問題における科学と技術, (社)日本工学アカデミー九州支部 高等学校出張講演会◇ 『生活を豊かにする工学と技術』, 2013.10.
111. 小田浩之, 米田武寛, 奥山勇治, 酒井孝明, 松本広重, 遊星型ビーズミリング法を用いたナノ構造電極の作製とPCFCへの応用, 2013年電気化学秋季大会, 2013.09.
112. LeeYoung-Sung, 畑田直行, 奥山勇治, 松本広重, ペロブスカイト型プロトン伝導体への遷移金属の影響, 2013年電気化学秋季大会, 2013.09.
113. Hiroshige Matsumoto, Steam Electrolysis for Hydrogen Production Using Proton Conducting Oxides, Kyocera Technical Meeting, 2013.09.
114. Hiroshige Matsumoto, Seok-Jun KIM, Takaaki Sakai, Jun-ichi HAMAGAMI, Yuji Okuyama, WATER ELECTROLYSIS USING WATER-ABSORBING POROUS ELECTROLYTE CELL, Innovative Materials for Processes in Energy Systems 2013, 2013.09.
115. Hiroshige Matsumoto, Impact of transition metal doping on proton conduction properties of alkali earth cerates and zirconates , International Workshop on Protonic Ceramic Fuel Cells Status & Prospects, 2013.07.
116. 伊佐佳織, 奥山勇治, 酒井孝明, 松本広重, La系ペロブスカイト型プロトン伝導体を用いた電気化学的水素分離・生成デバイスの開発, 第50回化学関連支部合同九州大会, 2013.07.
117. 米田武寛, 奥山勇治, 松本広重, BaCe0.8-xZrxY0.2O3-δのプロトン溶解と電気化学特性, 第50回化学関連支部合同九州大会, 2013.07.
118. Young-Sung Lee, Naoyuki Hatada, Takaaki Sakai, Yuji Okuyama, Jin-Won Park, Hiroshige Matsumoto, EFFECT OF TRANSITION METAL DOPING ON THE ELECTRICAL PROPERTIES OF SrZr0.9Y0.1O3-δ-BASED OXIDES, The 19th International Conference on Solid State Ionics, 2013.06.
119. Yuji Okuyama, Shohei Ikeda, Takaaki Sakai, Hiroshige Matsumoto, INCORPORATION OF PROTON INTO LA0.9SR0.1(MxM’1-x)O3-δ(M, M’=Yb, Y, In) , The 19th International Conference on Solid State Ionics, 2013.06.
120. Takaaki Sakai, Kaori Isa, Maki Matsuoka, Takeshi Kozai, Yuji Okuyama, Tatsumi Ishihara, HIROSHIGE MATSUMOTO, ELECTROCHEMICAL HYDROGEN PUMPING USING Ba DOPED LaYbO3 TYPE PROTON CONDUCTING ELECTROLYTE, The 19th International Conference on Solid State Ionics, 2013.06.
121. Hiroyuki Oda, Takaaki Sakai, Yuji Okuyama, Hiroshige Matsumoto, PREPARATION OF NANO-STRUCTURED CATHODE FOR PCFC BY BEAD-MILLING METHOD, The 19th International Conference on Solid State Ionics, 2013.06.
122. Hiroshige Matsumoto, Takaaki Sakai, Shotaro Matsushita, Keita Arakawa, Yuji Okuyama, Tatsumi Ishihara, STEAM ELECTRTOLYSIS USING Sr(Zr,Ce,Y)O3-BASED PROTON-CONDUCTING OXIDES, The 19th International Conference on Solid State Ionics, 2013.06.
123. 松本 広重, La0.9Sr0.1Yb1-xInxO3-δペロブスカイト型酸化物のプロトン伝導特性, 電気化学会第79回大会, 2012.03.
124. 奥山勇治,小材剛史,酒井孝明,松本広重, LaYbO3系酸化物におけるドーパント種が与えるプロトン導電特性への影響, 電気化学会第79回大会, 2012.03.
125. 酒井孝明,荒川敬太,奥山勇治,石原達己,松本広重, プロトン伝導性酸化物を用いた中温水蒸気電解におけるアノード反応の雰囲気依存性, 電気化学会第79回大会, 2012.03.
126. 松本広重、酒井孝明、奥山勇治, プロトン伝導性無機酸化物を用いた水/水蒸気電解による水素製造, 電気化学会第79回大会, 2012.03.
127. Seok-Jun Kim, Hiroshige Matsumoto, Water Electrolysis Using Water-Absorbing Porous Electrolyte Consisting of a Sulfonated Nanotitania Proton Conductor, 水素先端世界フォーラム2011, 2012.02.
128. 小材 剛史、奥山 勇治、酒井 孝明、松本 広重, La1-xMxYbO3-δにおけるプロトン伝導特性, セラミックス基礎科学討論会第50回記念大会, 2012.01.
129. 荒川 敬太、松下 正太郎、酒井 孝明、奥山 勇治、橋本 真一、松家 万起、石原 達己、松本 広重, ペロブスカイト型プロトン伝導体を用いた中温水蒸気電解, セラミックス基礎科学討論会第50回記念大会, 2012.01.
130. Seok-Jun Kim, Takaaki Sakai, Junichi Hamagami, Yuji Okuyama, Tatsumi Ishihara, Hiroshige Matsumoto, Water Electrolysis using Water-absorbable Porous Electrolyte Consisting of Inorganic Proton Conductor based on a Sulfonated Titanium Oxide Nanoparticles, 第37回固体イオニクス討論会, 2011.12.
131. 酒井 孝明、奥山 勇治、石原 達己、松本 広重, 遊星型ビーズミリングによるプロトン伝導性酸化物ナノ粒子の調製とその性質, 日本セラミック協会九州支部平成23年度秋季合同研究発表会, 2011.12.
132. 松本 広重 , ナノイオニクスー固体内イオン伝導への界面の利用, 日本セラミック協会九州支部平成23年度秋季合同研究発表会, 2011.12.
133. 奥山 勇治、小材 剛史、佐藤 恭彦、河崎 裕哉、酒井 孝明、松本 広重, MnをドープしたSrZrO3におけるレドックスプロトネーション, 日本金属学会秋季大会, 2011.11.
134. Hiroshige Matsumoto, Proton Conducting Perovskite-properties and Experiences for Hydrogen Transport and Energy Applications Materials, PROSPECTS PCC 2011, 2011.11.
135. 酒井 孝明、奥山 勇治、石原 達己、松本 広重, 遊星型ビーズミリングによるプロトン伝導性酸化物ナノ粒子の調製とその性質, 日本セラミックス協会・第24回秋季シンポジウム, 2011.09.
136. 小田 浩之、濱上 寿一、河村 剛、武藤 浩行、松本 広重、松田 厚範, Pdナノ粒子/チタニア薄膜オプティカル水素センサの作製, 第7回固体イオニクスセミナー, 2011.09.
137. 小材剛史、佐藤恭彦、酒井孝明、奥山勇治、松本広重, SrZr1-xMnxO3-dにおけるレドックス型プロトネーション, 第48回化学関連支部合同九州大会, 2011.07.
138. Kim Seok-Jun, Takaaki Sakai, Jun-ichi Hamagami, Hiroyuki Oda, Hiroshige Matsumoto, Tatsumi Ishihara, Inorganic Proton Conductor based on Titanium Oxide Nanoparticles and Application to Water Electrolysis, 18th International Conference on Solid State Ionics, 2011.07.
139. 小田浩之、濱上寿一、河村剛、武藤浩行、松本広重、松田厚範, 高分散Pdナノ粒子/チタニアオプティカル水素センサの作製, 第48回化学関連支部合同九州大会, 2011.04.
140. 荒川敬太、松下正太郎、酒井孝明、奥山勇治、橋本真一、松家万起、石原達己、松本広重, プロトン伝導性酸化物を用いた中温水蒸気電解, 第48回化学関連支部合同九州大会, 2011.04.
141. Hiroshige Matsumoto, Intermediate-Temperature Steam Electrolysis for Hydrogen Production using Proton-Conducting Perovskite-Type Oxide, International Green Energy Business Conference 2011, 2011.04.
142. 松下正太郎,金納孝雄,酒井孝明,松本広重,石原達己, LaGaO3系酸化物イオン伝導体を用いる中温可逆作動型SOFC, 電気化学会第78回大会, 2011.03.
143. 荒川敬太,松下正太郎,酒井孝明,橋本真一,松家万起,石原達己,松本広重, SrZr0.5Ce0.4Y 0.1O3-δを用いた薄膜水蒸気電解セルの作製と電解特性, 電気化学会第78回大会, 2011.03.
144. 小材剛史,佐藤恭彦,酒井孝明,松本広重, SrZr1-xMnxO3-dにおける電荷移動型プロトン化, 電気化学会第78回大会, 2011.03.
145. 松下正太郎,金納孝雄,酒井孝明,松本広重,石原達己, LaGaO3系酸化物イオン伝導体を用いる低温水蒸気電解, 第36回固体イオニクス討論会, 2010.11.
146. Seok-Jun Kim, Satoshi Kajitani, Takaaki Sakai, Jun-Ichi Hamagami, Hiroshige Matsumoto, Tatsumi Ishihara, Inorganic Proton Conductor based on Titania Nanoparticles and Application to Water Electrolysis, 第36回固体イオニクス討論会, 2010.11.
147. 酒井孝明, 伊田進太郎, 石原達己, 松本広重, 遊星型ビーズミリングによるペロブスカイト酸化物ナノ粒子の調製とその性質, 第36回固体イオニクス討論会, 2010.11.
148. 小材剛史, 佐藤恭彦, 酒井孝明, 松本広重, Mnをドープしたストロンチウムジルコネイトにおける電荷移動型プロトン化, 2010年 日本化学会西日本大会, 2010.11.
149. 松本広重, 無機プロトン伝導体の開発と水電解による水素製造への応用, 2010年 日本化学会西日本大会, 2010.11.
150. 松下正太郎,金納孝雄,萩原英久,酒井孝明,伊田進太郎,松本広重,石原達己, LaGaO3系酸化物イオン伝導体を電解質に用いる中温水蒸気電解, 2010年電気化学秋季大会, 2010.09.
151. 松本広重, 酒井孝明, プロトン伝導性無機酸化物とその水電解への応用, 平成22年度 資源・素材関係学協会合同秋季大会, 2010.09.
152. H. Matsumoto, T. Sakai, Y. Kawasaki, Y. Sato and T. Ishihara,, Charge Transfer Protonation of a Manganese-Doped Strontium Zirconate,, 15th International Conference on Solid State Protonic Conductors (SSPC-15), 2010.08.
153. 坂井雅史, 酒井孝明,石原達己, 松本広重, 白金を分散したストロンチウムセレート系プロトン伝導性酸化物におけるナノイオニクス現象, 第47回化学関連支部合同九州大会, 2010.07.
154. Seok-Jun Kim, Satoshi Kajitani, Takaaki Sakai, Jun-Ichi Hamagami, Hiroshige Matsumoto, Tatsumi Ishihara, Inorganic Proton Conductor based on Titania Nanoparticles and Application to Water Electrolysis, 第47回化学関連支部合同九州大会, 2010.07.
155. Hiroshige Matsumoto, Takaaki Sakai, Water electrolysis as a mean to produce hydrogen using inorganic proton conductors, Fourth International Conference on the Science and Technology for Advanced Ceramics (STAC-4), 2010.06.
156. S.-J. Kim, S. Kajitani, T. Sakai, J. Hamagami, H. Matsumoto, T.Ishihara,, Inorganic Proton Conductor based on Nano Titania for Water Electrolysis,, The 7th Asian conference on Electrochemistry in Kumamoto, , 2010.05.
157. H. Matsumoto, T. Sakai, S. Kajitani, S. Matsumoto, S.-J. Kim, T. Ishihara,, Water Electrolysis for Hydrogen Production using Proton-Conducting Inorganic materials,, The 7th Asian conference on Electrochemistry in Kumamoto,, 2010.05.
158. 松本広重・酒井孝明・松下正太郎・石原達己, 遊星型ビーズミルによるセラミックス微粒子の調製, 日本セラミックス協会 2010年年会, 2010.03.
159. 酒井孝明・松下正太郎・松本広重・石原達己, 遊星型ビーズミル法を用いた酸化物ナノ粒子の調製とその性質, 電気化学会第77回大会, 2010.03.
160. 坂井雅史・松本広重・徳永隆司・酒井孝明・石原達己, 白金を分散したストロンチウムセレート系ペロブスカイトの電気伝導度特性, 電気化学会第77回大会, 2010.03.
161. 松本広重・梶谷智史・Kim Seok-Jun・酒井孝明・石原達己, 酸修飾ナノチタニア粒子のプロトン伝導性, 第48回セラミックス基礎科学討論会, 2010.01.
162. 坂井雅史・松本広重・丹司敬義・雨澤浩史・川田達也・内本喜晴・徳永隆司・酒井孝明・石原達己, 白金を分散したストロンチウムセレート系ペロブスカイトのナノイオニクス効果, 第48回セラミックス基礎科学討論会, 2010.01.
163. 酒井孝明・松下正太郎・松本広重・石原達己, プロトン伝導性固体酸化物を用いた中温水蒸気電解, 石油学会 九州・沖縄支部30周年記念沖縄大会, 2009.12.
164. 八代圭司・阿子島聡志・工藤孝夫・大石昌嗣・松本広重・佐藤一永・川田達也・水崎純一郎, ペロブスカイト型プロトン導電体の水素水蒸気雰囲気における化学拡散と導電挙動, 第35回固体イオニクス討論会, 2009.12.
165. 宇根本篤・開米篤志・佐藤一永・八代圭司・松本広重・水崎純一郎・雨澤浩史・川田達也, La-Sr-Zr-Fe-O系、ペロブスカイト型酸化物における高温プロトン導電特性, 第35回固体イオニクス討論会, 2009.12.
166. 松下正太郎・兵頭潤次・酒井孝明・松本広重・石原達己, SrZrO3系プロトン伝導体薄膜を用いた中温水蒸気電解, 2009年日本化学会西日本大会, 2009.11.
167. 酒井孝明・松下正太郎・松本広重・石原達己, ペロブスカイト型プロトン伝導体を用いた水素ポンプにおけるセリア中間層導入の電極反応への影響, 2009年日本化学会西日本大会, 2009.11.
168. 佐藤恭彦・岡田祥夫・松本広重・石原達己, RuをドープしたSrZrO3系酸化物の高電気伝導性, 2009年日本化学会西日本大会, 2009.11.
169. 兵頭潤次・佐藤恭彦・酒井孝明・松本広重・石原達己, SrZr0.5Ce0.4Y0.1O3-aプロトン伝導体薄膜を用いた燃料電池の調整と発電特性, 第46回化学関連支部合同九州大会, 2009.07.
170. 徳永隆司・松本広重・丹司敬義、雨澤浩史・川田達也・内本喜晴・酒井孝明・石原達己, プロトン伝導性酸化物への白金ナノ粒子の分散効果, 第46回化学関連支部合同九州大会, 2009.07.
171. 原田宏紀・石原達己・松本広重, Pt/CeO2の固体高分子形燃料電池の酸素還元活性, 第46回化学関連支部合同九州大会, 2009.07.
172. 重冨一輝・東実時・松本広重・石原達己, 水素透過膜型反応器を用いたC3H8の1次改質ガス用新規水蒸気改質触媒, 第46回化学関連支部合同九州大会, 2009.07.
173. 濱元誠治・大石哲也・石原達己・松本広重, Pr6O11系酸化物におけるディーゼルパティキュレートの酸化特性(3)格子酸素の反応性, 第46回化学関連支部合同九州大会, 2009.07.
174. 神代政子・松本広重・石原達己, メタン-COからのH2O2を用いた液相酸化による酢酸合成(4), 第46回化学関連支部合同九州大会, 2009.07.
175. H. Matsumoto, Nanoprotonics in Platinum-containing Perovskite-type, 17th International Conference on Solid State Ionics(SSI-17), 2009.06.
176. T. Sakai, Z. Hao, H. Matsumoto, T. Ishihara, Power Generating Property of Direct CH4 Fueled SOFC using LaGaO3 Electrolyte, International Conference on Materials for Advanced Technologies 2009, 2009.06.
177. K. Yashiro・ S. Akoshima・T. Kudo・H. Matsumoto・K. Sato・T. Kawada・J. Mizusaki, Chemical Relaxation Process of Perovskite-type Proton Conductors, 17th International Conference on Solid State Ionics(SSI-17), 2009.06.
178. 酒井孝明・松下正太郎・松本広重・石原達己, 酸化物型プロトン伝導体を用いた電気化学セルにおけるセリア中間層導入の電極反応への影響, 第26回希土類討論会, 2009.05.
179. Tatsumi Ishihara, Hao Zhong, Hiroshige Matsumoto, Akira Toriyama, Honeycomb Type SOFC Using LaGaO3 Based Electrolyte for High Volumetric Power Density, ASME 6th Annual Fuel Cell Science, Engineering & Technology Conference, 2008.06.
180. Tatsumi Ishihara, Jingwang Yan, Ken Tominaga, and Hiroshige Matsumoto, Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Based Oxide Film Deposited by PLD Method, The 3rd Annual Korea-USA Joint Symposium on Hydrogen & Fuel Cell Technologies, 2008.06.
181. Tatsumi Ishihara, Ken Tominaga, Sachio Okada, and Hiroshige Matsumoto, Effects of Excess Ga on the Oxygen Permeation and Electrical Conducting Property of Pr2Ni0.75Cu0.25O4 Based Oxide, 213th ECS Meeting, 2008.05.
182. Tatsumi Ishihara, Kazuki Saimen, Yuji Yokoyama and Hiroshige Matsumoto, Cathodic Performance of Graphitic Carbon/ Lithiated Oxide Composite for New Concept of Dual Carbon Cell, 213th ECS Meeting, 2008.05.
183. Tatsumi Ishihara, Hao Zhong, Hiroshige Matsumoto, Akira Toriyama, Power Generating Property of Honercomb type SOFC using LaGaO3 based perovskite oxide , 6th Asian Conference on Electrochemistry in Taipei(ACEC2008), 2008.05.
184. 佐藤恭彦、松本広重、野村育代、岡田祥夫、石原達己, ストロンチウムジルコネート系プロトン伝導体を用いた燃料電池の電極材の検討, 電気化学会第75回大会, 2008.03.
185. 松下正太郎、酒井孝明、松本広重、岡田祥夫、石原達己, SrZrO3系プロトン導電体を用いた中温水蒸気電解における電極材の検討, 日本化学会第88春季年会, 2008.03.
186. 梶谷智史、松本広重、石原達己, 硫酸修飾チタニアナノ粒子圧粉体のプロトン伝導特性, 日本セラミックス協会2008年年会, 2008.03.
187. 萩原英久、松本広重、石原達己, 色素増感したKTaO3系触媒による水の光完全分解(9)色素の酸化還元準位と光触媒能, 第101回触媒討論会, 2008.03.
188. 市丸慎一郎、松本広重、石原達己, SiOからの気相法によるウィスカー状SiCの合成と水素吸蔵特性, 第101回触媒討論会, 2008.03.
189. 後藤和也、松本広重、石原達己, BaOを担持した酸化物触媒におけるNOの直接分解(2) —反応条件の影響—, 第101回触媒討論会, 2008.03.
190. 西面和希、横山友嗣、松本広重、石原達己, Li含有金属酸化物/グラファイト混合電極のLiイオン二次電池正極特性, 2008.03.
191. 富永健、松本広重、石原達己, Pr2NiO4 系混合伝導体におけるHall 効果による電子的電荷担体の挙動解析, 日本化学会第88春季年会, 2008.03.
192. 横山友嗣、下坂暢明、松本広重、芳尾真幸、石原達己, 正負極ともに電気化学的インターカレーションを利用した高容量二次電池(4), 日本化学会第88春季年会, 2008.03.
193. 金納孝雄、日浦昭二、松本広重、石原達己, 廃熱回収を目的とした中温水蒸気電解による高効率水素及び酸素製造, 日本化学会第88春季年会, 2008.03.
194. 萩原英久、松本広重、石原達己, 色素増感型KTaO3光触媒の水の光完全分解活性と色素の酸化還元電位, 日本化学会第88春季年会, 2008.03.
195. 市丸慎一郎、松本広重、石原達己, SiOとMWNTを用いた気相法によるSiCナノワイヤーの合成と水素吸蔵特性, 日本化学会第88春季年会, 2008.03.
196. Hiroshige Matsumoto, Satoshi Kajitani, Tatsumi Ishihara, Protonic Conduction Behavior in Nano Powder Compact of Sulfated Hydrous Titania, The 9th International Symposium on Eco-materials Processing and Design, 2008.01.
197. Tatsumi Ishihara, Hidehisa Hagiwara, Hiroshige Matsumoto, Photocatalytic Water Splitting on SnS Sensitized with Organic Dye, The 9th International Symposium on Eco-materials Processing and Design, 2008.01.
198. Yoshihisa Furuya, H. Matsumoto, S. Okada, and T. Ishihara, Investigation of Nanoionics Behaviour of SrZr0.9Y0.1O3-α at Platinum Interface, The 3rd Summer Seminar on Nanoionics, 2007.10.
199. 後藤和也,松本広重,石原達己, Ba担持酸化物触媒におけるNOの直接分解, 第37回石油・石油化学討論会, 2007.10.
200. 中島健一,松本広重,石原達己, Pr2NiO4系酸化物を酸素透過膜とした膜型反応器によるメタンの部分酸化反応, 第37回石油・石油化学討論会, 2007.10.
201. 東 実時,松本広重,茶木一壽,石原達己, 水素透過膜を用いた膜型反応器による分解反応に基づく新しい水素製造プロセス(14)加圧が水素生成速度に及ぼす影響, 第37回石油・石油化学討論会, 2007.10.
202. S.Kajitani, H.Matsumoto, T.Ishihara, Ionic conduction properties of hydrous titania nano particles synthesized from titanyl
sulfate
, The 3rd Summer Seminar on Nanoionics, 2007.09.
203. 横山友嗣、下坂暢明、松本広重、藤田弘輝、對尾良則、芳尾真幸、石原達己, 添加物による黒鉛系カーボンを用いる高容量キャパシタの可逆性向上, 2007年電気化学秋季大会, 2007.09.
204. 岡田祥夫、榎木真紀子、松本広重、石原達己, Ni-Fe系多孔質金属をアノード電極としたLaGaO3膜を用いる低温作動型SOFC, 2007年電気化学秋季大会, 2007.09.
205. 古谷佳久、松本広重、岡田祥夫、石原達己、丹司敬義, Pt/SrZr0.9Y0.1O3-a界面の直流分極測定と欠陥構造の推定, 2007年電気化学秋季大会, 2007.09.
206. 河崎裕哉、松本広重、岡田祥夫、石原達己, (La0.5-xSr0.5+x)(Mg0.5+yNb0.5-y)O3-δのプロトン導電特性と化学的安定性, 2007年電気化学秋季大会, 2007.09.
207. 梶谷智史、松本広重、石原達己, 硫酸チタニルから合成した含水酸化チタンのイオン伝導特性, 2007年電気化学秋季大会, 2007.09.
208. 野村要平、畑佑以子、松本広重、石原達己, H2の気相酸化を用いた接触酸化による過酸化水素合成(13)—ナノコロイドにおけるH2O2生成速度の向上—, 第100回触媒討論会(触媒討論会A), 2007.09.
209. 石原達己、新名祐介、松本広重, 窒素酸化物の直接分解用ペロブスカイト触媒の調製と機能解析, 第100回触媒討論会(触媒討論会A), 2007.09.
210. 三角優子、松本広重、石原達己, メソポーラスTi(OH)4におけるフッ素イオン交換特性(5)‐分子テンプレート剤による細孔径制御‐, 第100回触媒討論会(触媒討論会A), 2007.09.
211. 熊谷恒佑、松本広重、石原達己, SドープによるKTaO3の可視光応答性と水の完全分解触媒, 第100回触媒討論会(触媒討論会A), 2007.09.
212. 市丸慎一郎、松本広重、石原達己, Si-炭素チューブコンポジットの合成と水素吸蔵特性(3), 第100回触媒討論会(触媒討論会A), 2007.09.
213. 大石哲也、松本広重、石原達己, CeO2系複合酸化物におけるパティキュレート酸化(3)格子酸素の放出特性, 第100回触媒討論会(触媒討論会A), 2007.09.
214. 東実時、松本広重、茶木一壽、石原達己, 水素透過膜を用いた膜型反応器による炭化水素からの新しい水素製造プロセス(13)—加圧の効果—, 第100回触媒討論会(触媒討論会A), 2007.09.
215. 萩原英久、松本広重、石原達己, 色素増感KTaO3系触媒による水の光完全分解に及ぼす増感色素の複合効果, 第100回触媒討論会(触媒討論会B), 2007.09.
216. HaO Zhong, Hiroshige Matsumoto, Tatsumi Ishihara, Akira Toriyama , Honeycomb-type solid oxide fuel cells using LaGaO3 electrolyte, 16th International Conference on Solid State Ionics, 2007.07.
217. Tatsumi Ishihara, Kenichi Nakashima, Sachio Okada, Makiko Enoki, and Hiroshige Matsumoto, Defect chemistry and oxygen pereation proerty of Pr2Ni0.75Cu0.25O4 oxide deoped with Ga, 16th International Conference on Solid State Ionics, 2007.07.
218. H.Matsumoto, I.Nomura, S.Okada, T.Ishihara, INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS USING
PEROVSKITE-TYPE OXIDE BASED ON BARIUM CERATE
, 16th International Conference on Solid State Ionics, 2007.07.
219. Y. Kawasaki, H. Matsumoto, S.Okada, T. Ishihara, ELECTRICAL CONDUCTIVITY AND CHEMICAL STABILITY OF PEROVSKITE-TYPE
PROTON CONDUCTORS
, 16th International Conference on Solid State Ionics, 2007.07.
220. Y. Furya, H. Matsumoto, S. Okada, T. Ishihara, T.Tanji, NANOIONICS EFFECT OF FINE METAL DESPERSION IN A PROTON CONDUCTING
OXIDE
, 16th International Conference on Solid State Ionics, 2007.07.
221. T. Ishihara, J. W. Yan, H. Matsumoto, High Power SOFC using LaGaO3 Based Oxide Electrolyte Film Prepared on Porous Metal
Substrate
, Tenth International Symposium on Solid Oxide Fuel Cells, 2007.06.
222. H. Zhon, H. Matsumoto, T. Ishihara, A. Toriyama, Power Generating Performance of Honeycomb-type Solid Oxide Fuel Cell Consisting of
LaGaO3 Based Oxide Electrolyte
, Tenth International Symposium on Solid Oxide Fuel Cells, 2007.06.
223. 横山友嗣・下坂暢明・松本広重・藤田弘輝・對尾良則・芳尾真幸・石原達己 , 黒鉛系カーボンを用いる高容量キャパシタの充放電特性へ及ぼす支持塩の影響 , 電気化学会第74回大会, 2007.03.
224. 岡田祥夫・松本広重・河崎裕哉・石原達己, RuをドープしたSrZrO3系酸化物の高電気伝導性, 電気化学会第74回大会, 2007.03.
225. 古谷佳久・松本広重・岡田祥夫・石原達己・丹司敬義 , プロトン導電体/白金界面に起こるナノイオニクス現象, 電気化学会第74回大会, 2007.03.
226. 榎木真紀子・松本広重・石原達己, Ba3Ga2O6系酸化物の合成と酸素イオン導電性, 電気化学会第74回大会, 2007.03.
227. 下坂暢明・横山友嗣・古賀宗幹・松本広重・芳尾真幸・石原達己, 正負極ともに電気化学的インターカレーションを利用した高容量二次電池(2)サイクル特性の向上, 電気化学会第74回大会, 2007.03.
228. 道下浩征・松本広重・石原達己, ナフィオン膜を用いる水電気分解における高圧水素製造(2)高圧下でのナフィオン膜の安定性, 電気化学会第74回大会, 2007.03.
229. 熊谷恒佑・松本広重・石原達己, 色素増感型可視光応答光触媒による水の光完全分解(2)タンタル酸カリウムへのアニオンの添加効果, 日本化学会第87回春季年会, 2007.03.
230. 市丸慎一郎・松本広重・石原達己, 炭素チューブで被覆された金属ナノ粒子の合成と水素吸蔵特性, 日本化学会第87回春季年会, 2007.03.
231. 三角優子・松本広重・石原達己, メソポーラスTi(OH)4におけるフッ素イオン交換特性(4) ‐細孔構造の制御‐, 日本化学会第87回春季年会, 2007.03.
232. 河崎裕哉・松本広重・岡田祥夫・石原達己, (La0.5-xSr0.5+x)(Mg0.5+yNb0.5-y)O3-α系酸化物のプロトン導電特性 , 日本化学会第87回春季年会, 2007.03.
233. 萩原英久・熊谷恒佑・松本広重・石原達己, 色素増感型光触媒による水の光完全分解, 日本化学会第87回春季年会, 2007.03.
234. 松本広重・野村育代・石原達己 , プロトン伝導性ペロブスカイトを用いた中温燃料電池, 日本化学会第87回春季年会, 2007.03.
235. 金納孝雄・日浦昭二・星野孝二・松本広重・石原達己, LaGaO3系固体電解質を用いた中温水蒸気電解装置の開発, 日本化学会第87回春季年会, 2007.03.
236. 萩原英久・松本広重・石原達己, 色素増感した硫化物触媒による水の光分解(2), 第99回触媒討論会, 2007.03.
237. 熊谷恒佑・松本広重・石原達己, 色素増感型可視光応答光触媒による水の完全分解(1)KTaO3へのアニオンの添加効果, 第99回触媒討論会, 2007.03.
238. 野村要平・畑佑以子・松本広重・石原達己, H2の気相酸素を用いた接触酸化による過酸化水素合成(12)コロイドの調製条件の影響, 第99回触媒討論会, 2007.03.
239. 大石哲也・松本広重・藤田弘樹・原田浩一郎・對尾良則・高見明秀・石原達己, Pr,Laを添加したCeO2複合酸化物における酸素放出特性とPM酸化(2), 第99回触媒討論会, 2007.03.
240. 三角優子・松本広重・石原達己, メソポーラスTi(OH)4におけるフッ素イオン交換特性(3)—テンプレート剤の検討—, 第99回触媒討論会, 2007.03.
241. 新名祐介・松本広重・石原達己, Sr-Fe系複合酸化物におけるNOの直接分解と反応機構(2), 第99回触媒討論会, 2007.03.
242. 中島健一・松本広重・石原達己, Pr2NiO4系酸化物を酸素透過膜に用いた膜型反応装置によるメタンの部分酸化, 第99回触媒討論会, 2007.03.
243. 久保寛明・松本広重・石原達己, 担持Ru触媒によるプロパンの水蒸気改質反応, 第99回触媒討論会, 2007.03.
244. 東実時・西田和弘・松本広重・茶木一壽・石原達己, 水素透過膜を用いた膜型反応器による炭化水素からの新しい水素製造プロセス(14)—水素透過膜材料の影響—, 第99回触媒討論会, 2007.03.
245. T. Ishihara*, J.Yan, M. Enoki, H. Matsumoto, Preparation of Nano Porous Metal Substrate by Thermal Etching Method and Application for Intermediate Temperature SOFC, 31st International Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites,, 2007.01.
246. S. Okada*, H. Matsumoto, T. Ishihara, Conducting Properties and Hydrogen Permeability of Ruthenium-doped Strontium Zirconate , 31st International Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites, , 2007.01.
247. Y. Kawasaki, H. Matsumoto, S. Okada, T. Ishihara, Effect of Dopant on the Conductivity and Chemical Stability of Barium Cerate Based Proton Conductors, The 8th International Symposium on Eco-materials Processing and Design , 2007.01.
248. H. Hagiwara, H. Matsumoto, T. Ishihara, Effects of Dye mixing on Photocatalytic Splitting of H2O into H2 and O2 on KTaO3, The 8th International Symposium on Eco-materials Processing and Design , 2007.01.
249. H. Zhong, H. Matsumoto, T. Ishihara, A. Toriyama, Development of Honeycomb-type Solid Oxide Fuel Cell Consisting of LaGaO3 Electrolyte, The 8th International Symposium on Eco-materials Processing and Design , 2007.01.
250. N. Jirathiwathanakul, H. Matsumoto, T. Ishihara , Intermediate Temperature Steam Electrolysis UsingDoped Lanthanum Gallate Solid Electrolyte (2) Effects of CeO2 interlayer on Activity, The 8th International Symposium on Eco-materials Processing and Design, 2007.01.
251. 新名祐介、松本広重、石原達己, Fe系複合酸化物によるNOの直接分解(2)共存ガスの影響, 第97回触媒討論会, 2006.03.
252. 萩原英久、松本広重、石原達己, 色素増感したKTaO3触媒による水の光完全分解(8)色素及び助触媒の複合効果, 第97回触媒討論会, 2006.03.
253. 2. 畑佑以子、中島健一、松本広重、石原達己, H2の気相酸素を用いた接触酸化による過酸化水素合成(10), 第97回触媒討論会, 2006.03.
254. 大石哲也、松本広重、石原達己, CeO2系複合酸化物のパティキュレート酸化特性, 第97回触媒討論会, 2006.03.
255. Y.Kawasaki, H.Matsumoto, and T.Ishihara, EFFECT OF TRIVALENT DOPANTS ON THE ELECTRICAL CONDUCTIVITY AND CHEMICAL STABILITY OF BaCeO3-BASED PROTON CONDUCTORS, 16th IKETANI Conference 2006 , 2006.01.
256. H.Matsumoto, Y.Furuya, S.Okada, T.tanji, and T.Ishihara, ELECTRICAL CONDUCTION ANOMALY IN A FINE-PLATINUM-DISPERSED PROTON CONDUCTING OXIDE: A POSSIBLE ILLUSTRATION OF NANOIONICS, 16th IKETANI Conference 2006, 2006.01.
257. 古谷佳久、松本広重、岡田祥夫、松本広重, 金属を微分散させた高温プロトン導電体の導電特性, 第32回固体イオニクス討論会, 2006.01.
258. 河崎裕哉、松本広重、岡田祥夫、石原達己, BaCeO3系酸化物の導電特性と化学的安定性に対するどーパント効果, 第32回固体イオニクス討論会, 2006.01.
259. Hiroshige Matsumoto, Heterointerfacial Electrical Conduction property Appearing in Fine Platinum Dispersed
SrZr0.9Y0.1O3‐δ
, 13th Solid State Proton Conductor Conference, 2006.01.
260. 松本広重、山本れいり、岡田祥夫、佐々木一哉、石原達己, ジルコネート系プロトン導電体に対するパラジウムの水素電極特性, 第98回触媒討論会, 2006.01.
261. 古谷佳久, 松本広重, 岡田祥夫, 石原達己, 丹司敬義, 雨沢浩史, 内本喜晴, プロトン導電性酸化物/白金界面における導電特性, 2006年電気化学秋季大会, 2006.01.
262. 岡田祥夫、松本広重、志村哲生、樋口 透、橋本真一、石原達己, 種々の雰囲気におけるプロトン‐電子混合導電体SrZr0.8Y0.1Ru0.1O3-αの電気化学特性, 2006年電気化学秋季大会, 2006.01.
263. 河崎裕哉、松本広重、岡田祥夫、石原達己, BaCeO3系酸化物のドーパント種が導電特性と化学的安定性に与える影響 , 2006年電気化学秋季大会, 2006.01.
264. 松本広重, プロトン導電性固体酸化物とその応用, 2006.01.
265. Hiroshige Matsumoto, Application of Protonic Conduction in Perovskitetype Oxides: Mixed Proton- electron-conducting Membrane for Hydrogen Separation, 11th International Ceramics Congress 4th Forum on New Materials, 2006.01.
266. 古谷佳久、松本広重、丹司敬義、石原達己, 白金を分散させた高温プロトン導電体の導電特性, 第43回化学関連支部合同九州大会, 2006.01.
267. 河崎裕哉、松本広重、石原達己, BaCeO3系固体電解質の燃料電池特性, 第43回化学関連支部合同九州大会, 2006.01.
268. 松本広重、古谷佳久、井坂真也、大竹隆憲、八代圭司、川田達也、水崎純一郎、丹司, プロトン導電性酸化物/金属界面における導電特性, 電気化学会第73回大会, 2006.01.
269. 古谷佳久、松本広重、井坂真也、大竹隆憲、八代圭司、川田達也、水崎純一郎、, プロトン導電性ペロブスカイト−白金コンポジットの導電特性, 日本化学会第86春季年会, 2006.01.
270. 松本広重・志村哲生・樋口 透・大竹隆憲・八代圭司・川田達也・水崎純一郎・橋本真一・石原達己, Ruを含むペロブスカイト酸化物中のプロトン−電子混合導電性, 日本化学会第85春季年会, 2005.01.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。