九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
菅井 裕一(すがい ゆういち) データ更新日:2019.06.23

准教授 /  工学研究院 地球資源システム工学部門 資源システム講座


主な研究テーマ
ヨウ化物酸化微生物を用いた金の原位置リーチングに関する研究
キーワード:金、ヨウ化物酸化微生物、水溶性天然ガス、かん水、ヨウ化物、ヨウ素、三ヨウ化物、酸化還元電位
2017.10.
表層型メタンハイドレートからのメタンガス生産手法の検討
キーワード:表層型メタンハイドレート、熱水圧入、地盤沈下、シミュレーション、砂層、傾斜井
2017.04.
石炭の自然発火性評価のための室内実験手法の構築
キーワード:石炭、自然発火、酸素、酸化、発熱、熱流束
2016.04.
酵母細胞膜の水-油界面張力に及ぼす影響と石油増進回収法への適用に関する検討
キーワード:酵母、細胞膜、界面張力、石油増進回収、コア掃攻実験
2016.04.
ECBMRを目的とした二酸化炭素-メタン二成分系における各ガスの石炭への吸脱着挙動の検討
キーワード:石炭、コールベッドメタン、増進回収、二酸化炭素、吸着、脱着、圧力、混合ガス
2015.04.
ガスの溶解が水-油界面張力に及ぼす影響の検討
キーワード:ガス、溶解、界面張力、高圧、可視化、ペンダントドロップ
2015.04.
地下微生物の原位置モニタリングを目的とした基礎的研究
キーワード:地下微生物、モニタリング、原位置、リアルタイム、フローサイトメトリー、蛍光、散乱光
2015.04.
サーファクチンを用いた石油増進回収技術に関する研究
キーワード:石油増進回収、コア掃攻実験、界面張力、サーファクチン、シミュレーション
2015.04.
水溶性天然ガスの生産に関わる地下微生物の調査とそれらの制御方法に関する研究
キーワード:水溶性天然ガス、微生物、かん水、坑井、ヨウ素酸化細菌、硫酸塩還元菌、メタン菌
2015.04.
バイオスティミュレーション型微生物利用石油増進回収法に関するコア掃攻実験
キーワード:微生物,石油,MEOR,コア、油層内常在微生物、栄養源
2015.04~2018.03.
有用微生物と砕石資源(シラス)を複合させた家畜糞の臭気抑制・堆肥化促進資材の開発
キーワード:有用微生物,微生物資材,砕石,担体,pH,ミネラル,多孔質,吸着,堆肥化,臭気抑制
2012.04~2015.03.
油層内における硫酸還元菌による硫化水素の生成に関する研究
キーワード:硫酸還元菌、硫化水素、比増殖速度、シミュレーション
2012.10~2015.03.
水溶性天然ガスかん水の還元性に関わる地下棲息微生物に関する研究
キーワード:微生物、かん水、還元、ヨウ素、水溶性天然ガス、閉塞、溶存酸素、水酸化鉄
2009.04~2013.03.
有用微生物を利用した石油の増進回収法(Microbial Enhanced Oil Recovery, MEOR)に関する研究
キーワード:微生物,石油,MEOR,PCR, DGGE, 粘度, Petrotoga属, 石油分解
2005.11~2014.03.
油層内微生物によるCO2のCH4変換反応を利用した枯渇油ガス田におけるメタン鉱床再生技術に関する基礎的研究
キーワード:CO2、CH4、H2、微生物、メタン生成菌、水素生成菌、原油分解、CO2地中貯留、枯渇油田
2007.08~2013.03.
従事しているプロジェクト研究
申川コアを用いたバイオスティミュレーション型微生物EORに関するコア掃攻実験およびシミュレーション研究
2015.04~2016.06, 代表者:菅井裕一, 九州大学, 石油資源開発株式会社
 本研究においては、石油資源開発株式会社が進めている申川油田(秋田県)における土着微生物を活性化させて石油の増進回収を図るバイオスティミュレーション型の微生物利用EOR(Microbial EOR, MEOR)について、同油田のコア(以降、申川コアと称する)を用いた申川コア掃攻実験を実施し、申川油田において栄養剤/活性剤を圧入した場合における土着微生物の活性化と、それに伴う石油増進回収効果について、定量的に評価する。また、申川コア掃攻実験を再現可能なシミュレーションモデルを構築し、これを基に仮想のフィールドにおける本MEORのシミュレーション研究を実施する。これにより、申川コア掃攻実験によって評価された置換効率に加えて掃攻効率の改善も考慮した場合における石油増進回収効果を評価する。.
微生物利用EOR(MEOR)促進技術の開発
2014.04~2015.02, 代表者:菅井裕一, 九州大学大学院工学研究院, 中外テクノス株式会社(日本)
本研究プロジェクトは、油層内に棲息している微生物の増殖や代謝活動の活性化に効果的な栄養剤ならびに促進剤を圧入し、これらの微生物の代謝を促進することによって油層内で油の粘度低下、ガス生成ならびに水-油界面張力の低下などを生じさせ、石油の増進回収を図る微生物利用石油増進回収法(Microbial Enhanced Oil Recovery, MEOR)の確立を目的としている。国内の油田で採取された油ならびに油層水をベレア砂岩コアに含浸させて模擬油層を作製し、これまでの培養実験において油層水常在微生物の増殖、油の粘度低下、ガス生成ならびに油-水界面張力の低下が認められた栄養剤・促進剤を添加した油層水を同コア内に圧入して培養し、室内石油増進回収実験を行なって、有効な栄養剤ならびに促進剤をスクリーニングしている。.
Fundamental study on Microbial EOR using an oil-degrading and oil-viscosity-reducing microorganism – Consideration for suitable substrate conditions and effects of the reservoir conditions on the microorganism –
2013.04~2015.03, 代表者:菅井裕一, 九州大学, Maersk Oil Research and Technology Centre (Qatar)
当研究室が分離した石油分解・粘度低減微生物を用いた石油増進回収技術をデンマーク沖の北海油田に適用することを目的として、同油田の塩濃度・温度条件下における同微生物の増殖性ならびに石油粘度低減能力を評価している。また、これらの実験結果を基に構築した同技術に関する数値シミュレータを用いた数値実験により、本技術を北海油田に適用するにあたっての最適な実施条件等を検討している。.
琉球列島に分布する島尻層群のかん水中の微生物種の分析及びかん水成分の分析
2013.12~2014.03, 代表者:菅井裕一, 九州大学大学院工学研究院, 綜合開発株式会社(日本)
沖縄県において進められている「天然ガス資源活用促進に向けた試掘調査事業」として、那覇市、南城市ならびに宮古島市において実施された水溶性天然ガス貯留層への試掘と天然ガスの生産試験において採取された地下かん水中の微生物を調査し、同貯留層に賦存する天然ガスの由来ならびに将来的な生産操業を考慮した際に留意すべき微生物の有無について検討した。
すべての貯留層試料から二酸化炭素と水素からメタンを生成する水素資化性メタン生成菌が検出され、これらの地域に賦存する水溶性天然ガスの一部は微生物によって生成された可能性を示した。また、これらの貯留層の一部からは硫酸塩を還元して硫化水素などの硫化物を生成する好熱性の硫酸塩還元菌が検出され、水溶性正天然ガスを将来的に生産開発する場合において、これらの微生物による坑井腐食等の生産障害がもたらされる可能性が懸念され、注意が必要であることが示唆された。.
硫酸還元菌の増殖および硫化水素生成挙動の数値モデル化とシミュレーション研究
2012.10~2013.03, 代表者:菅井裕一, 九州大学大学院工学研究院, 日本海洋石油資源開発株式会社(日本)
石油の回収を目的として水を油層内に圧入する際に、圧入水中に棲息する硫酸塩還元菌(Sulfate-Reducing Bacteria, SRB)が油層内に流入し、油層内において硫酸塩を還元して硫化水素を生成する可能性が考えられる。SRBが油層内において生成する硫化水素の量によっては、生産設備において生産障害対策を必要としたり、産出油・ガスの脱硫設備の強化などを必要とするため、水圧入に伴うSRBによる硫化水素の生成がどの程度であるかなどについて、事前の調査が重要である。本研究においては、国内の油田を対象として、SRBの硫化水素生成可能性およびメカニズムを明らかにし、その結果をもとにSRBによる硫化水素の生成予測が可能な数値シミュレータを構築して、水圧入による硫化水素の発生可能性を検討することを目的とする。.
中国での石炭起源のCO2のCCS-EOR適用に関する調査研究
2010.08~2013.03, 代表者:藤原和弘, 中外テクノス株式会社, NEDO:独立行政法人 新エネルギー・産業技術総合開発機構
 微生物利用地中メタン再生技術開発の一部として,中国の油田に存在する微生物の水素生成およびメタン生成能力を評価し,将来的に石炭火力発電等で排出されるCO2を用いたEORにおける,微生物による地中メタン再生ポテンシャルについて評価・検討する。.
CO2溶解・溶出による重質油フォーミィーオイル生成と排油機構の解明
2011.08~2012.07, 代表者:佐々木久郎, 九州大学大学院工学研究院, 独立行政法人石油天然ガス・金属鉱物資源機構(日本)
重質油にCO2ガスを溶解させた後に減圧過程でCO2ガスの溶出させることで、微細なマイクロバブルを重質油中に生成することで、“フォーミィーオイル”を生成させ、砂岩コア内の流動特性を測定するとともに、岩石コアからの排油メカニズムの改善による油生産手法の開発を実施する。この際、増圧過程での重質油への飽和溶解度および溶解速度の測定を実施する。また、PVT装置を用いることで、減圧速度を変化させることで、フォーミィーオイル生成との関係を見出すことで、油生産手法の最適化とその数値モデル化を実施する。.
地球温暖化防止CO2地中貯留ナチュラルアナログテストフィールドプロジェクト
2010.04~2012.03, 代表者:佐々木久郎, 九州大学大学院工学研究院, 九州大学
地下数千mを対象とした実貯留層でのCO2拡散・分散試験を実施し,それに関する評価を行うためには数十年~数百年オーダーの研究期間を要する。CO2の貯留やCO2を利用したエネルギー資源開発の評価に関わり,地表から数100mの範囲は地下水の飽和帯から不飽和帯に変化する領域であるため,CO2挙動が未解明であり,これに関する科学的研究がとくに必要とされている。しかしながら,日本においては浅層でのナチュラル・アナログに関わるCO2ガス拡散・溶解に関する研究の必要性は軽視されがちである。
 本事業にて構築される浅層地層のナチュラル・アナログデータベースにより,これまでにない共通のCO2貯留に関わるCO2環境研究フィールドが実現し,共通基盤となる貯留層へのCO2圧入にかかわる環境研究の場と共通の地質データの提供を行う。また,本プロジェクトにより,テストフィールドと基盤的地質データを提供することに伴い先端的ジオサイエンス技術が整備されることになり,貯留層へのCO2圧入に関わる研究プロジェクトを積極的に推進する。.
水平坑井群を利用した熱刺激・重力分離によるメタンハイドレート層からのメタンガス生産手法の開発
2003.04~2013.03, 代表者:佐々木久郎, 九州大学大学院工学研究院, 経済産業省・資源エネルギー庁およびJOGMEC
 メタンハイドレートは国産の天然ガス資源として期待されている。メタンハイドレート堆積層からのガス生産を水平坑井を利用した熱水圧入などの外部からの熱量供給によって実施する場合,その貯留層内部における分解フロントでの熱・物質挙動の把握はガス生産レートを推定する上で重要である。本研究は,模擬ハイドレート層を生成させた貯留層に,水平坑井から熱水または水蒸気を圧入する実験システムによって,ハイドレート層の分解挙動を観察し,分解フロントの移動速度,熱伝達挙動,メタン生産特性などを実験によって明らかにするとともに,フィールドを対象とした生産挙動予測を実施するものである。とくに,実際のフィールドメタンハイドレート層から複数水平坑井群を用いた生産手法と海上熱併給発電設備との統合システムの提言をしている。.
水蒸気EORを用いた南米重質原油の生産手法の開発
2009.08~2010.03, 代表者:佐々木久郎, 九州大学大学院工学研究院, 韓国石油公社(KNOC、大韓民国)
南米(ベネズエラおよびコロンビア等)には重質原油の埋蔵量は中東の原油埋蔵量に匹敵するが,粘性が高く熱的な採油増進法の適用が必要とされている。本共同研究プロジェクトは,水蒸気を利用した生産手法を確立し,提言することを目的に実施する。.
研究業績
主要著書
1. 菅井裕一, 石油技術協会創立80周年記念出版石油鉱業便覧第6章第2節「7.火攻法」および「8.その他の攻法(微生物攻法、電気加熱法、地下改質法等)」, 石油技術協会, 725~731頁, 2014.08.
主要原著論文
1. Mochammad Andy Natawijaya, Yuichi Sugai, Ferian Anggara, CO2 microbubble colloidal gas aphrons for EOR application: the generation using porous filter, diameter size analysis and gas blocking impact on sweep efficiency, Journal of Petroleum Exploration and Production Technology (Springer), https://doi.org/10.1007/s13202-019-0680-3, 2019.05, The CO2 is regarded to be an excellent solvent for miscible flooding. However, it is still facing a main problem which is the high mobility. Microbubbles with their unique characters offer some advantages for CO2 EOR application. Different pore throat size filters were used to generate different dominant sizes of microbubbles that were injected into sandpacks under tertiary condition. Microscopic analysis was carried out to visualize the presence, stability and behavior of microbubbles inside the solution and porous media. The microbubbles with a dominant size of 10–50 µm showed additional 26.38% of oil recovery, showing their advantages over a larger dominant size of microbubbles up to 5.28% of oil recovery. The injection with larger microbubbles with a dominant size of 70–150 µm showed 27.5% of higher injection pressure than with a smaller dominant size of microbubbles, showing their advantage in gas blocking ability. In the heterogeneous porous media experiment, the recovery volume ratio between low- and high-permeability sandpacks was increased from 1:57 during water flooding to 1:4 during the CO2 microbubble injection with 74.65% of additional recovery from a low-permeability zone, showing the microbubble gas blocking capability to change the flow pattern inside heterogeneous porous media..
2. San Yee Khaing, Yuichi Sugai, Kyuro Sasaki, Myo Min Tun, Consideration of Influential Factors on Bioleaching of Gold Ore Using Iodide-Oxidizing Bacteria, Minerals (MDPI), https://doi.org/10.3390/min9050274, 9, 5, 274-285, 2019.05, Iodide-oxidizing bacteria (IOB) oxidize iodide into iodine and triiodide which can be utilized for gold dissolution. IOB can be therefore useful for gold leaching. This study examined the impact of incubation conditions such as concentration of the nutrient and iodide, initial bacterial cell number, incubation temperature, and shaking condition on the performance of the gold dissolution through the experiments incubating IOB in the culture medium containing the marine broth, potassium iodide and gold ore. The minimum necessary concentration of marine broth and potassium iodide for the complete gold dissolution were determined to be 18.7 g/L and 10.9 g/L respectively. The initial bacterial cell number had no effect on gold dissolution when it was 1×104 cells/mL or higher. Gold leaching with IOB should be operated under a temperature range of 30–35 °C, which was the optimal temperature range for IOB. The bacterial growth rate under shaking conditions was three times faster than that under static conditions. Shaking incubation effectively shortened the contact time compared to the static incubation. According to the pH and redox potential of the culture solution, the stable gold complex in the culture solution of this study could be designated as gold (I) diiodide..
3. Hung Vo Thanh, Yuichi Sugai, Kyuro Sasaki, Impact of a new geological modelling method on the enhancement of the CO2 storage assessment of E sequence of Nam Vang field, offshore Vietnam, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects (Taylor & Francis), https://doi.org/10.1080/15567036.2019.1604865, 1-15, 2019.04, This study proposed a new geological modelling procedure for CO2 storage assessment in offshore Vietnam by integrating artificial neural networks, cokriging and object-based methods. These methods could solve the limitations of well data that have not been addressed by conventional modelling. Petrel software was used to build a geological model for comparing conventional and new modelling workflows. Moreover, the Eclipse simulator was used for CO2 injection scenarios on the geological model of two workflows. The simulation results of CO2 flow response corroborated that the new modelling workflow by showing better performance than the traditional modelling workflow. Thus, in the selected CO2 storage sites, the new modelling workflow is preferred because it strongly enhances the CO2 storage evaluation..
4. San Yee Khaing, Yuichi Sugai, Kyuro Sasaki, Gold Dissolution from ore with Iodide-oxidising Bacteria, Scientific Reports (Nature), https://doi.org/10.1038/s41598-019-41004-8, 9, (2019) 9:4178, 1-11, 2019.03, Gold leaching from ore using iodide-iodine mixtures is an alternative to gold cyanidation. this study evaluated the ability of iodide-oxidising bacteria to solubilise gold from ore that was mainly composed of gold, pyrite, galena, and chalcopyrite. eight bacterial strains were successfully isolated from brine. Those strains were incubated in a liquid culture medium containing ore with a gold content of 0.26 wt.% and pulp density of 3.3 w/v% to evaluate their abilities to mediate the dissolution of gold. The gold was solubilised completely within 30 days of incubation in the iodine-iodide lixiviant solution generated by three bacterial strains. One strain, in particular, completed the dissolution of gold within 5 days of incubation and was identified as a member of the genus Roseovarius. thus, the possibility of bacterial gold leaching using iodide-oxidising bacteria was successfully demonstrated. Bioleaching gold with iodide would likely be more environmentally sustainable than traditional cyanide leaching. Further research is required to evaluate the techno-economic feasibility of this approach..
5. Eric O. Ansah,Yuichi Sugai,Pierre Ronald Nguele Odou,Kyuro Sasaki, Integrated microbial enhanced oil recovery (MEOR) simulation: Main influencing parameters and uncertainty assessment, Journal of Petroleum Science and Engineering (Elsevier), 10.1016/j.petrol.2018.08.005, 171, 784-793, 2018.12, [URL], The present study investigated the ability of a thermophilic anaerobic microbe (herein coded as AR80) for MEOR with the further objective to quantify the uncertainty of production forecast in terms of the cumulative probability distribution. A series of core flood experiments conducted in water-flooded Berea sandstone showed that up to 51% of initial oil-in-place was recovered when the plugs were treated with AR80 and shut-in for 14 days. Mainly, the oil recovery mechanisms were attributed to viscosity enhancement, wettability changes, permeability and flow effects. Matching the laboratory data using artificial intelligence: the optimized cumulative oil recovery could be achieved at an enthalpy of 894.2 J/gmol, Arrhenius frequency of 8.3, residual oil saturation of 20%, log of capillary number at microbe flooding stage of −1.26, and also depicted a history match error less than 3%. Therefrom, a sensitivity analysis conducted on reservoir shut-in period effect on oil recovery revealed that a relatively shorter shut-in period is recommended to warrant early incremental oil recovery effect for economical purposes. In addition, MEOR could enhance the oil recovery significantly if a larger capillary number (between 10−5 and 10−3.5) is attained. Per probabilistic estimation, MEOR could sustain already water-flooded well for a set period of time. This study showed that there is a 20% frequency of increasing the oil recovery by above 20% when a mature water-flooded reservoir is further flooded with AR80 for 2 additional years. Lastly, it was demonstrated herein that increasing the nutrient (yeast extract) concentration (from 0.1 to 1% weight) had less or no significant effect on the oil viscosity and subsequent recovery..
6. Yuichi Sugai,Yukihiro Owaki,Kyuro Sasaki,Fuminori Kaneko,Takuma Sakai, Numerical modelling of the growth of sulfate-reducing bacteria indigenous to an oilfield in Japan, Petroleum Science and Technology (Taylor & Francis), https://doi.org/10.1080/10916466.2018.1496102, 36, 19, 1597-1604, 2018.09, We performed kinetic studies of the growth of sulfate-reducing bacteria (SRB) indigenous to the water in an oilfield in Japan. The SRB growth was most active in injection water supplemented with ethanol; therefore, the SRB inhabiting the injection water of the reservoir were assumed to grow predominantly by assimilating sulfate and ethanol and generating H2S. Based on this mechanism and the results of incubation experiments in the injection water, we derived numerical models that calculate the growth rate and H2S generation of the SRB under three variables (temperature, sulfate concentration, and ethanol concentration)..
7. Eric O. Ansah,Yuichi Sugai,Kyuro Sasaki, Geological tectonics and physio-chemical metrics as screening criteria for MEOR applicability in West Africa transform regional oil wells - a review, International Journal of Petroleum Engineering, http://dx.doi.org/10.1504/IJPE.2018.093164, 3, 2, 116-137, 2018.07, Primarily, most oil wells in the West Africa transform region are produced using water or water alternating gas. This is believed to be unsustainable going forward. Also, though the region contributes less to global greenhouse emission, global warming effects in the region cannot be undermined. Microbial enhanced oil recovery (MEOR) has been proven worldwide to be environmentally friendly as well as less costly to develop. Despite the advantages of MEOR over other oil recovery methods, operating companies in the region are yet to apply this bespoke technology. Therefore, this study reviews the potential applicability of MEOR process to West African oil fields comparing the geology and physiochemical properties to major oil fields in South America (where MEOR has been previously applied). Applying MEOR in the region could be a major step towards improving production of new oil wells and enhancing sustainability of old oil wells..
8. Eric O. Ansah,Yuichi Sugai,Kyuro Sasaki, Modeling microbial-induced oil viscosity reduction: Effect of temperature, salinity and nutrient concentration, Petroleum Science and Technology (Taylor & Francis), 10.1080/10916466.2018.1463253, 1-7, 2018.05, [URL], This research simulated oil recovery with emphasis on oil viscosity reduction by direct microbe action and metabolites; predicted hydrogeochemical reactions involved with nutrient – brine interaction in reservoirs. PHREEQC was used to simulate reactions between the reservoir brine and nutrient minus microbe. Hitherto, UTCHEM was employed for the enhancement of oil viscosity by assuming production of gases and by the direct microbe action. The model depicted the precipitation of calcite plus dissolution of k-feldspar combined with the evolution of CO2 and CH4 influenced by temperature and pH. Oil recovery was directly proportional to salinity reduction and increasing nutrient concentration..
9. Isty Adhitya Purwasena,Yuichi Sugai, The analysis of bacterial diversity in high thermic-low salinity Oil Reservoirs prior to Microbial Enhanced Oil Recovery field test, Journal of Engineering and Applied Sciences, 10.3923/jeasci.2018.4104.4112, 13, 11, 4104-4112, 2018.01, [URL], Nutrition injection in Microbial Enhanced Oil Recovery (MEOR) process might stimulate not only desirable microorganisms but also the undesirable ones. Therefore, studying the properties of bacterial community in reservoir prior to field test is a critical step in MEOR process. In this study, bacterial communities from high thermic and low salinity reservoirs located in Japan, China and Indonesia were characterized by 16S rDNA sequence analysis. Bacterial genomic DNAs were extracted from produced water samples and their sequences were evaluated by genetic fingerprinting based approach. PCR-DGGE analyses showed multiple bands in all produced water samples which indicated high bacterial diversities. Sequences identified in this study were mainly related to only five phyla, i.e., Bacteroidetes, Thermotogae, Defferibacteres, Firmicutes and Proteobacteria, suggesting that phylotype richness is low in oil reservoirs. One sequence of Bacteriodetes-affiliated bacteria which showed 99% similarity with Bacteriodales bacterium 5bM was retrieved from DGGE results of all oilfields. This result showed that, Bacteriodetes can grow well in Indonesia, Japan and China oilfield, making it the best bacterial candidate for MEOR field test. Results showed in this study revealed that finger printing is a considerable technique for microbial screening prior to MEOR field test application..
10. Evan Rosyadi Ogara, Yuichi Sugai, Kyuro Sasaki, Ferian Anggara, The Effect of Coal Characteristics on Adsorption and Desorption Gas at Indonesia Low Rank Coal, International Symposium on Earth Science and Technology 2017, 472-477, 2017.11.
11. Yuichi Sugai, Junpei Mikumo, Keita Komatsu, Kyuro Sasaki, Experimental Investigation on the Availability of Yeast Cell Wall as an Interfacial Tension Reducer for Enhanced Oil Recovery, Journal of Petroleum & Environmental Biotechnology, 10.4172/2157-7463.1000329, 8, 3, 1-6, 2017.06, We studied on the availability of residue of squeezed beer yeast whose principal component is yeast cell wall for enhanced oil recovery as an interfacial tension reducer. The cell wall solution was hydrothermally treated in order to elute amphiphilic substances such as phospholipids, proteins, and fatty acids from the cell wall to the solution under different conditions such as concentration of the cell wall, temperature and time of the hydrothermal treatment, and salinity. The cell wall solution which was hydrothermally treated with crude oil was also applied to the measurement of interfacial tension between the solution and crude oil. The interfacial tension was reduced with decrease in salinity and increase in concentration of the cell wall and temperature of the hydrothermal treatment. The time of hydrothermal treatment didn't have much influence on the interfacial tension reduction. The capability of the cell wall solution which had been hydrothermally treated with crude oil to reduce the interfacial tension became larger than that of the cell wall solution which had been hydrothermally treated without crude oil. It was suggested that those interfacial tension reductions were brought by phospholipids and proteins eluted from the cell wall. Core flooding experiments were carried out by injecting the cell wall solution which had been hydrothermally treated with and without crude oil after the water flooding as the primary oil recovery. 2.0% and 1.2% of original oil in place was additionally recovered by injecting the cell wall solution which had been hydrothermally treated with and without crude oil respectively. These results support an advantage of process injecting the cell wall solution without hydrothermal treatment into high temperature oil reservoir. The injection of the cell wall solution can be a promising EOR which has both high cost performance and low environmental load..
12. San Yee Khaing, Sugeng Sapto Surjono, Jarot Setyowiyoto, Yuichi Sugai, Facies and Reservoir Characteristics of the Ngrayong Sandstone in the Rembang Area, Northeast Java (Indonesia), Open Journal of Geology, 10.4236/ojg.2017.75042, 7, 5, 608-620, 2017.05, The Rembang area is a well-known prospective region for oil and gas exploration in Northeast Java, Indonesia. In this study, the reservoir characteristics of the Ngrayong Sandstone were investigated based on outcrops in the Rembang area. Petrological, mineralogical, petrophysical and sedimentological facies analyses were conducted. These sandstones are grain- and matrix supported, and composed of very fine to medium, sub-angular to poorly-rounded, moderately to very well-sorted sand grains. These sandstones are mainly composed of quartz, orthoclase, plagioclase, and micas with minor amounts of clay minerals, and therefore are predominantly classified as sub-lithic arenite and sub-felds pathicarenite. Petrographic observations and grain size data indicate that these sandstones are texturally quite mature, based on their good -sorting and the occurrence of minor amounts of matrix clays. Common clays in the samples include illite, smectite, kaolinite, and gibbsite. The porosity of the Ngrayong sandstones ranges from 25.97% to 40.21%, and the permeability ranges from 94.6 to 3385 millidarcies. Thus, these sandstones exhibit well to excellent reservoir qualities. Eight lithofacies were identified from five measured stratigraphic sections, and are dominated by foreshore and tide-dominated shoreface facies. The Ngrayong sequence shows a single transgressiveregressive cycle. Cross-bedded sandstone and massive sandstone are identified as the most promising potential reservoir facies based on their characteristics in outcrops, their lateral and vertical distributions, their sedimentological characteristics and their petrophysical properties..
13. Minoru Saito,Yuichi Sugai,Kyuro Sasaki,Yoshifumi Okamoto,Chencan Ouyang, Experimental and Numerical Studies on EOR Using a Biosurfactant, the Abu Dhabi International Petroleum Exhibition and Conference 2016, SPE-183496-MS, 2016.11, The EOR potential of a biosurfactant was evaluated through core flooding experiments and numerical simulation in this study. The biosurfactant which was called surfactin was generated by a microorganism belonging to Bacillus species. The EOR potential of surfactins has been already reported by previous papers, however, that of surfactins can be different depending on their making process such as the conditions of incubation, extraction, purification, etc. This study used a surfactin which was made by Kaneka corporation's original techniques.
Core flooding experiments were carried out under ambient temperature and pressure to evaluate the EOR potential of the surfactin. Berea sandstone cores whose permeability was 50 md were used in this study. The surfactin solution was injected into cores after water flooding. 3 experiments were carried out by injecting surfactin solution whose surfactin concentration was 0.3 %, 0.03 % and 0.003 % respectively. An experiments were carried out by injecting the culture solution which had been diluted so that the surfactin concentration was 0.3 %. 4 experiments were carried out by injecting sodium dodecyl sulfate (SDS) solution which had been supplemented with a slight amount of surfactin or the culture solution. An injection was continued until oil was not produced completely.
Higher oil recovery was obtained by injecting higher concentration of surfactin. 13.6 % of original oil in place (OOIP) was recovered by injecting 0.3 % of pure surfactin solution, whereas 6.3 % of OOIP was recovered by injecting 0.3 % of pure SDS solution. 0.27 % of SDS solution which was supplemented with surfactin whose concentration was 0.03 % could recover 14.7 % of OOIP. 23.9 % of OOIP could be recovered by injecting the culture solution which was diluted by 16 times so that the surfactin concentration was 0.3 %. Enhancement of oil recovery which was obtained by injecting SDS solution supplemented with the culture solution was a little lower than that with pure surfactin.
The EOR potential of surfactin is quite higher than that of SDS. It was shown that the surfactin can be useful as a cosurfactant for SDS. Culture solution of the microorganism demonstrated much higher EOR potential than pure surfactin, therefore, it may include effective components other than the surfactin. Utilization of the culture solution is economically advantageous..
14. Yuichi Sugai, Keita Komatsu, Kyuro Sasaki, Estimation of IFT Reduction by a Biomass Material and Potential of Its Utilization for EOR, Society of Petroleum Engineers (SPE) Asia Pacific Oil and Gas Conference and Exhibition, SPE-176490-MS, 2015.10, Surfactant injection is one of the most effective EOR techniques. Chemical surfactants however pose a few problems such as their high cost and low-degradability. We study on the utilization of biomass such as agricultural fertilizer mainly comprising the residue of squeezed beer yeast for EOR as an alternative of chemical surfactants because crude oil can be completely miscible with the fertilizer solution. The fertilizer can be stably supplied at a low cost because it is a waste of beer brewing industry and is only used for an animal feed additive so far. Its retail price is approximately 1 USD/kg in Japan.
We semi-quantitatively estimated the interfacial tension (IFT) between the fertilizer solution and crude oil by the oil displacement test. Concentration of the fertilizer was varied between 10 to 50 g/L. The fertilizer solution to which sodium chloride was added at a concentration of 10 to 40 g/L was hydrothermally treated at 60, 80, 100 or 120 ºC for 10, 20, 30, 45 or 60 minutes respectively before the tests. The fertilizer solution to which crude oil was added at a ratio of 1 % was also hydrothermally treated at 120 ºC for 20 minutes. Solution of surfactin which was a commercial biosurfactant was used as a
standard of the IFT.
The IFT was reduced with the decrease in salinity and increase in concentration of the fertilizer and temperature of the hydrothermal treatment. Time of the hydrothermal treatment was preferably 30 minutes or less for the IFT reduction. The capability of 50 g/L of fertilizer solution to reduce the IFT was almost same as the capability of 0.2 g/L of the surfactin solution. Because the fertilizer solution comes into contact with residual oil under high temperature in oil reservoir, IFT between the solution and crude oil can be expected to be reduced in-situ.
Core flooding experiments were carried out by injecting the fertilizer solution after the water flooding as the primary oil recovery. 1.2 % of original oil in place was additionally recovered by injecting 50 g/L of the fertilizer solution after the water flooding. The fertilizer should be biodegradable because it is a microbially-derived substance. In addition, because the IFT reduction was observed after the hydrothermal treatment of the fertilizer solution, the fertilizer should be effective even in the reservoir whose temperature is high such as 120 ºC at which chemical surfactants may be deactivated. From those results, the injection of the fertilizer solution can be a promising EOR which has both high cost performance, low environmental load and high versatility..
15. Yuichi Sugai, Very Susant, Kyuro Sasaki, Ryo Mori, Spectrophotometric determination of pH change of formation water under high CO2 pressure using a mixed pH indicator, Journal of MMIJ(資源・素材学会), 131, 8,9, 518-523, 2015.08, In geologic CO2 sequestration, the pH of formation water may be decreased due to CO2 dissolution, which may cause the change of porosity and permeability of reservoir rock. The pH changes of formation water are widely varied depending on CO2 pressure and the content of substances having pH buffering action, therefore, it is important to determine the wide range of pH change of various types of formation water under the various CO2 pressure conditions.
We considered a determination method of pH change of various types of formation water under the various CO2 pressure conditions based on the spectrophotometry using a windowed high-pressure cell and a mixed pH indicator consisting of 4 single pH indicators. The well-defined absorption peaks were found at the wavelength of 614 nm or 444 nm when the pH of the solution was ≥5.6 or <5.6 respectively, therefore, two different calibration curves were derived from the absorbance of standard pH buffer solutions at each wavelength. The validity of this method was confirmed by an experimental result that the pH change of deionized water under 0.1 MPa CO2 pressure had been determined accurately by this method.
We carried out experiments on this method using the real formation water samples which contained bicarbonate ion having pH buffering action with different concentration under various CO2 pressure. The results of the experiments demonstrated that this method is capable of determining the pH change of various types of formation water under various CO2 pressure conditions.
.
16. Yuichi Sugai, Keita Komatsu, Kyuro Sasaki, Kristian Mogensen, Martin Vad Bennetzen, Microbial-Induced Oil Viscosity Reduction by Selective Degradation of Long-Chain Alkanes, Abu Dhabi International Petroleum Exhibition and Conference, SPE-171850-MS, 2014.11.
17. Isty Adhitya Purwasena, Yuichi Sugai, Kyuro Sasaki, Estimation of the potential of an anaerobic thermophilic oil-degrading bacterium as a candidate for MEOR, Journal of Petroleum Exploration and Production Technology (Springer), 10.1007/s13202-013-0095-5, 4, 2, 189-200, 2014.06, We investigated the decrease in oil viscosity caused by the biodegradation of crude oil by a bacterium (AR80) isolated from an oil reservoir, and estimated the potential for this bacterium for use in microbial enhanced oil recovery (MEOR). AR80 degraded long-chain n-alkanes preferentially, and anaerobically increased the ratio between the short-chain and long-chain n-alkane concentrations in the crude oil. The long-chain n-alkane metabolism by AR80 decreased the oil viscosity. AR80 grew well in a reservoir of brine supplemented with yeast extract, and decreased the oil viscosity to approximately 60% of its original value. Adding a small amount of yeast extract (0.05 g/L) was necessary to stimulate the AR80 activity. MEOR can, therefore, be achieved using AR80 without incurring excessive costs. AR80 can grow at temperatures up to 80 °C, and it grows well at between 50 °C and 70 °C. AR80 can grow at a salinity of up to 90 g/L, and it grows well at a salinity of less than 30 g/L. The AR80 activity was not affected very much by high pressures (such as 6.0 MPa). Core flooding experiments were performed by injecting AR80 (in brine supplemented with yeast extract) into Berea sandstone cores. Gas chromatography analysis of the effluent oil suggested that long-chain n-alkanes in the residual oil were preferentially degraded by the AR80 in the porous rocks. The core flooding experiments showed that the AR80 activity in the porous rocks caused the oil recovery to be enhanced, so AR80 could be a suitable candidate for MEOR..
18. Yuichi Sugai, Yukihiro Owaki, Kyuro Sasaki, Fuminori Kaneko, Takuma Sakai, Numerical Prediction of Reservoir Souring Based on the Growth Kinetics of Sulfate-reducing Bacteria Indigenous to an Oilfield, Society of Petroleum Engineers (SPE) International Oilfield Corrosion Conference and Exhibition, 10.2118/169629-MS, SPE-169629-MS, 2014.05.
19. Isty Adhitya Purwasena, Yuichi Sugai, Kyuro Sasaki, Petrotoga japonica sp. nov., a thermophilic, fermentative bacterium isolated from Yabase Oilfield in Japan, Archives of Microbiology (Springer), 10.1007/s00203-014-0972-4, 196, 5, 313-321, 2014.05.
20. Yuichi Sugai, Tayfun Babadagli, Kyuro Sasaki, Consideration of an effect of interfacial area between oil and CO2 on oil swelling, Journal of Petroleum Exploration and Production Technology (Springer), 10.1007/s13202-013-0085-7, 4, 105-112, 2014.03, Oil swelling is an important phenomenon in CO2–EOR. According to various studies in the past, the degree of oil swelling depends on the partial pressure of CO2, temperature, and oil composition. However, we expect that other factors, such as oil saturation, capillary pressure, and grain size of reservoir rock must be also considered in evaluating oil swelling because they may influence the interfacial area between oil and CO2, which affects the dissolubility of CO2 in oil. Therefore, we had made clear the effect of the interfacial area on oil swelling in this study.
Oil and CO2 were injected into a small see–through windowed high–pressure cell and oil swelling was observed under a microscope. The swelling factor increased with the increase of the specific interfacial area between oil and CO2. Moreover, oil swelling in porous media was observed by using micro–models which had been made of 2 different diameter glass beads. Swelling factor in fine beads micro–model became larger than that in coarse beads micro–model whose interfacial area between oil and CO2 was smaller than that of fine beads micro–model. Therefore, the swelling factor is expected to be larger with an increase in the interfacial area in porous media. These results suggest that the oil swelling should be expressed as a function of oil saturation, capillary pressure, and grain size of reservoir rock which are related to the interfacial area as well as the partial pressure of CO2, temperature, and oil composition.
.
21. Isty A. Purwasena, Yuichi Sugai, Kyuro Sasaki, Utilization of Natural Reservoir Brine in Enrichment Culture Medium: An Alternative Approach for Isolation of Anaerobic Bacteria from an Oil Reservoir, Petroleum Science and Technology (Taylor & Francis), 10.1080/10916466.2011.615365, 32, 7, 783-789, 2014.02, The successful enrichment, isolation, and cultivation of prokaryotes are considerably dictated by the selection of appropriate growth media and incubation conditions. In this study, the utilization of natural reservoir brine to enrich and isolate anaerobic thermophilic bacteria from an oil reservoir was observed. The genetic diversity of the bacterial population present in the brine water was subsequently evaluated using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). In addition, indigenous bacteria that grew in high CO2 concentrations were isolated for examination. We compared the effects of two sterilization methods (filtration and autoclaving) and three gas combinations (pure N2, CO2/N2 (1:9), and pure CO2) injected into the headspace of the medium solution on the cultures. The result demonstrated that the diverse gas composition of the headspace of enrichment culture medium consisting of filtered brine could be one approach to stimulating the growth of physiologically distinct types of microorganisms..
22. 藤井 孝志, 菅井 裕一, 佐々木 久郎, 橋田 俊之, 當舎 利行, 中尾 信典, 超臨界CO2注入に伴う来待砂岩および飯館花崗岩の浸透率の変化, Journal of MMIJ(資源・素材学会), 129, 12, 701-706, 2013.12.
23. Yuichi Sugai, Kyuro Sasaki, Ryo Wakizono, Yasunori Higuchi, Noriyuki Muraoka, Considerations on the possibility of microbial clogging of re-injection wells of the wastewater generated in a water-dissolved natural gas field, International Biodeterioration & Biodegradation (Elsevier), http://dx.doi.org/10.1016/j.ibiod.2012.10.003, 81, 35-41, 2013.07, Brine produced from water-dissolved natural gas reservoirs should be returned to the reservoirs after the resources are recovered to prevent land subsidence. However, the ability to re-inject the brine gradually decreases and is only rectified by carrying out backwashing treatment of re-injection wells. Because the brine contains high levels of iodine also, it is also recovered from the brine using sulfuric acid and oxidizing agents. These chemicals may stimulate the growth of microorganisms that may cause the clogging. In this study, we used column experiments to investigate the possibility of the microbial clogging.
Significant clogging was observed on the columns that were treated by the brine containing both indigenous microorganisms and dissolved oxygen. In particular, iodide-oxidizing bacteria were detected from the columns and original brine dominantly; therefore, it was assumed to have an important influence on the clogging. Iodine that was produced by iodide-oxidizing bacteria corroded iron in the sand under the presence of dissolved oxygen. Eluted Iron formed ferric hydroxide colloid in the brine and it caused the clogging of the pore spaces.
We also demonstrated that deoxidized brine inhibited the iodide-oxidizing bacteria from becoming dominant and the column from the clogging through the column experiments. From these results, we can suggest removing dissolved oxygen as the most feasible countermeasures for the clogging..
24. Yuichi Sugai, Kyuro Sasaki, Keigo Yoshimura, Toshinori Yukitake, Shigenori Muta, Pilot study on the construction of several temperature-controlled multi-purpose rooms in a disused tunnel, Tunnelling and Underground Space Technology (Elsevier), 10.1016/j.tust.2012.06.009, 32, 180-189, 2012.11, Throughout the world, schemes for putting to use abandoned underground spaces are being pursued. We describe one such pilot scheme involving the utilization of a disused tunnel of an uncompleted railway line that has been revamped as a facility housing temperature-controlled multi-purpose rooms. In all, four rooms were constructed and installed with both indoor and outdoor air conditioning units. Testing of the facility was conducted over a 1-year period to establish operating criteria and to monitor for operating stability. The four rooms were finally maintained at different constant-temperature regimes: cold (5ºC), cool (13ºC), mild (21ºC), and warm (32ºC) with such low power consumption of 0.80 kW because of the nature of the subterranean site. Compared with typical surface facilities, this facility offers an obvious advantage in lower energy consumption. Monitoring of the humidity in the rooms revealed that preventing evaporation from the bare soil surface in the tunnel was the more important factor in controlling humidity in this facility.
The heat transfer analysis of this facility was carried out through the computational analysis using a computational model constructed in this study. Computational analysis showed that the heat insulation property of the tunnel wall was reinforced by prolonged operation and the cost of operating facility became lower with the operation time. In addition, we demonstrated the procedure to estimate the overall heat transmission coefficients of the tunnel wall which was a great help in the design of similar facilities in underground spaces.
The different rooms in the facility are expected to be used for manufacturing fermented foods and drinks depending on temperature and humidity requirements. Not only running costs but also initial costs are expected to be lower than those for surface facilities; for this reason, our system has been demonstrated to be economically viable as well as environment friendly..
25. Ryo Mori, Yuichi Sugai, Kyuro Sasaki, Kazuhiro Fujiwara, Takamichi Nakamura, Experimental and Numerical Studies on the Microbial Restoration of Natural Gas Deposits in Depleted Oil Reservoirs Storing CO2, Society of Petroleum Engineers (SPE) Asia Pacific Oil and Gas Conference and Exhibition, SPE-158875-MS, 2012.10, We investigated the microbial conversion of CO2 into CH4 in depleted oil reservoirs by the interaction between indigenous oil-degrading hydrogen-producing bacteria and indigenous hydrogenotrophic methanogens that have been found in oil reservoirs universally. In this study, we investigated the influence of crude oil, yeast extract, bicarbonate and CO2 on the growth and gas production of those bacteria through the incubation experiments of isolated strains under reservoir conditions. The yeast extract was estimated to be the most influential factor on the growth and gas production of oil-degrading hydrogen-producing bacteria. Methanogen was unaffected by the crude oil, the yeast extract and bicarbonate, however, both CO2 and H2 are assumed to be the influential factors on it because they are the energy sources of methanogen.
In addition, we also investigated their growth kinetics that were needed to construct a numerical simulator of the microbial conversion of CO2 into CH4 in depleted oil reservoirs. The specific growth rate of oil-degrading hydrogen-producing bacteria was increased as the yeast extract concentration increased while that of the methanogen was constant regardless of the yeast extract concentration. These results indicate that the growth of methanogens is unaffected by the yeast extract that is injected into reservoirs to stimulate the growth of ODHPB. The growth yield of HYH-8 and HYH-10 was 5.5x1010 cells/g-(yeast extract) and 3.5x1011 cells/g-(yeast extract) respectively..
26. 菅井裕一,佐々木久郎,山野上淳一, ガス-水相対浸透率の高精度測定のための気液混合微少流量計の開発, Journal of MMIJ(資源・素材学会), 128, 4,5, 198-208, 2012.03.
27. Yuichi Sugai, Isty A. Purwasena, Kyuro Sasaki, Kazuhiro Fujiwara, Yoshiyuki Hattori, Komei Okatsu, Experimental studies on indigenous hydrocarbon-degrading and hydrogen-producing bacteria in an oilfield for microbial restoration of natural gas deposits with CO2 sequestration, Journal of Natural Gas Science and Engineering (Elsevier), 10.1016/j.jngse.2012.01.011, 5, 31-41, 2012.03, Sequestration of carbon dioxide (CO2) into depleted oil reservoirs may be a method of reducing CO2 emissions. We focus on microbial restoration of natural gas deposits with CO2 sequestration via in situ microbial conversion of CO2 into methane (CH4) by hydrogenotrophic methanogens (HM) that universally inhabit oil reservoirs. The means of supplying HM with H2 for their CH4 production is central to this process. This study considers the potential of this process by evaluating the H2 productivity of hydrocarbon-degrading and hydrogen-producing bacteria (HD–HPB) that inhabit oil reservoirs.
Reservoir brine was extracted from 10 producing wellheads in the Yabase Oilfield of Japan. Indigenous bacteria in the brine samples were incubated with sterile oil under anaerobic conditions with 10%-CO2 (N2 balanced) at 50 °C and 75 °C. Production of H2 and CH4 and consumption of CO2 were observed in almost all the brine at both temperature, especially, larger amount of gases were produced at 50 °C. Those gases production was significantly stimulated with the additional yeast extract, on the other hand, it became lower under high pressure condition.
Nutrient agar inoculated with raw brine was incubated under anaerobic conditions at 50 °C and 75 °C. Microbial single colonies formed in the nutrient agar media after 2 weeks were selected and inoculated into sterile brine including sterile oil. More than 20 isolates were isolated and incubated in the brine media and 14 strains were observed to produce H2 after 3 months incubation. The maximum rate of H2 production by HD–HPB was 0.38 NmL/L-medium/day.
These results suggest that in situ microbial conversion of sequestrated CO2 and H2 generated by HD–HPB into CH4 using HM can be expected in many oilfields universally. Moreover, the most capable HD–HPB isolated in this study can be injected into reservoirs to stimulate the restoration of natural gas deposits with CO2 sequestration..
28. Ryo Wakizono, Yuichi Sugai, Kyuro Sasaki, Yasunori Higuchi, Noriyuki Muraoka, Investigation of Indigenous Bacteria in Water-dissolved Natural Gas Fields for Preventing Microbial Clogging of Injection Wells, Society of Petroleum Engineers (SPE) Asia Pacific Oil and Gas Conference and Exhibition, SPE-145990-MS, 2011.09, The brine that has been produced from water-dissolved natural gas reservoirs should be returned into reservoirs after the resources have been extracted to prevent the subsidence. However, the re-injectivity of the brine declines gradually; therefore, re-injection wells should be maintained by backwashing treatments. Colloidal materials like biofilms can be observed in solid materials that have been produced by the backwashing from the re-injection wells.
Because the brine contains not only dissolved natural gas but also high levels of iodine, the iodine is also extracted from the brine chemically using sulfuric acid and oxidizing agent; therefore, re-injected brine contains sulfate and dissolved oxygen abundantly. These chemicals may stimulate the metabolites of microorganisms that have influences on the clogging; therefore, we considered the influences of these materials on microorganisms that may cause the clogging in this study.
Column experiments were carried out using sand and brine that were collected in the gas field. The columns that the brine including indigenous microorganisms, dissolved oxygen and sulfate was injected into were clogged significantly. Iodide-oxidizing bacteria, iron-oxidizing bacteria and sulfate-reducing bacteria were found specifically in clogged columns, suggesting these microorganisms had influences on the clogging. In particular, Iodide-oxidizing bacteria were also found in original brine; therefore, it was assumed to have an important influence on the clogging.
Iodide-oxidizing bacteria convert iodide into iodine that corrodes iron in the sand under the presence of dissolved oxygen. Iron (II) ion that has been eluted from the sand is oxidized to iron (III) ion by iron-oxidizing bacteria under the presence of dissolved oxygen. Iron (III) ion forms ferric hydroxide colloid in the brine and it causes the clogging of the porous media.
From these mechanisms of the clogging, we can suggest removing dissolved oxygen as the most feasible countermeasures for the clogging..
29. Ryo Mori, Yuichi Sugai, Kyuro Sasaki, Kazuhiro Fujiwara, Evaluation of the Potential of Microbial Restoration of Natural Gas Deposit with CO2 Sequestration by Investigating Indigenous Bacteria in a High CO2 Content Oilfield, Society of Petroleum Engineers (SPE) Asia Pacific Oil and Gas Conference and Exhibition, SPE-145898-MS, 2011.09, We investigated the in situ microbial conversion of CO2 into CH4 by oil-degrading and H2-producing bacteria and hydrogenotrophic methanogens. CO2 is injected into depleted oil reservoirs as a method of carbon capture and storage (CCS). The bacteria involved in CO2 conversions are affected by high CO2 conditions, which cause a reduction in the pH level of the reservoir brine. Therefore, we assessed the efficacy of this microbial conversion process under high partial CO2 pressure by investigating the microbial communities present in high/low CO2 content reservoirs, the pH reduction of brine under high partial pressure of CO2, and the production of H2 and CH4 by indigenous bacteria in high CO2 content reservoirs. Thermotoga sp. and Thermoanaerobacter sp., which have previously been shown to produce hydrogen from crude oil by Fujiwara et al.1), were found to be the dominant species in the high CO2 content reservoir. Moreover, Methanobacterium sp. and Methanothermobacter sp., which are well-known hydrogenotrophic methanogens, were also detected in the reservoir. These results indicate that the microorganisms needed for this microbial conversion process can inhabit reservoirs where CO2 has been injected for CCS.
The pH of brine with bicarbonate levels > 0.1 mol/L was found to be maintained at pH 7.0–8.0, which is a favorable pH for the growth of a variety of microorganisms. Neutral pH levels were maintained even under CO2 partial pressure as high as 5.0 MPa, suggesting that the microbial conversion process could easily be applied in reservoirs whose brine is abundant in bicarbonate.
Enrichment culture experiments in brine were carried out under high CO2 partial pressure (3.0 MPa) at 75°C. Production of both H2 and CH4 was detected in brine with pH buffering action, as well as in brine with significantly reduced pH levels due to high CO2 partial pressure. Therefore, the microbial conversion process may also be expected to occur in normal reservoirs with poor acid neutralizing capacity..
30. Isty A. Purwasena, Yuichi Sugai, Kyuro Sasaki, Estimation of the Potential of an Oil-Viscosity-Reducing Bacterium Petrotoga sp. Isolated from an Oil Field for MEOR, Society of Petroleum Engineers (SPE) Annual Technical Conference and Exhibition, SPE-137568-MS, 2010.09.
31. 菅井裕一、佐々木久郎、新見敏也、藤原和弘、向谷司、鹿野早苗、服部嘉行、岡津弘明, 枯渇油ガス田におけるCO2のメタン変換を目的とした地下微生物に関する基礎的検討, Journal of MMIJ(資源・素材学会), 125, 12, 595-604, 2009.12.
32. Isty Adhitya Purwasena, Yuichi Sugai, Kyuro Sasaki, Estimation of the Potential of an Oil-Viscosity-Reducing Bacteria, Petrotoga sp., Isolated from an Oilfield for MEOR, Proceedings of International Petroleum Technology Conference 2009 (IPTC2009), IPTC-13861-MS, 2009.12.
33. Yuichi Sugai, Toshiya Niimi, Kyuro Sasaki, Yoshiyuki Hattori, Sanae Kano, Tsukasa Mukaidani, Kazuhiro Fujiwara and Komei Okatsu, Screening of Oil-Degrading and Hydrogen-Producing Microorganisms for Microbial Conversion of CO2 into CH4 in Oil Reservoir, Proceedings of CIPC/SPE GTS 2008 Joint Conference, SPE-115009-MS, 2008.06.
34. Yuichi Sugai, Hong Chengxie, Tadashi Chida, Heiji Enomoto, Simulation Studies on the Mechanisms and Performances of MEOR using Polymer Producing Microorganism Clostridium sp. TU-15A, Proc. of Society of Petroleum Engineers (SPE) Asia Pacific Oil and Gas Conference and Exhibition, SPE-110173-MS, 2007.10.
35. 菅井裕一, 佐々木 久郎, 高畑重幸, 中秀男, 緑色凝灰岩を利用した機能性塗り壁材の特性, 空気調和・衛生工学会論文集, 123, 1-10, 2007.06.
36. 菅井裕一、佐々木久郎、高畑重幸、中秀男, 十和田石砕石の臭気緩和資材ならびに堆肥化促進資材としての可能性, 骨材資源, 第147号、153-161, 2005.12.
37. 菅井裕一、佐々木久郎、松葉谷治、中秀男、田中富士夫, 比内緑色凝灰岩のpH調整作用と微生物活性化効果に関する検討, 資源と素材, 第121巻、第10,11合併号、513-520, 2005.11.
38. 菅井裕一、木下睦、湯本徹也、榎本兵治、洪承燮、藤原和弘、大野健二, 非水溶性ポリマー生産微生物CJF-002による油層内流体のプロファイル・モディフィケーションに関する室内実験研究, 石油技術協会誌, 第70巻、第4号、315-327, 2005.07.
39. 菅井裕一、洪承燮、千田佶、榎本兵治, 水溶性ポリマー生産微生物を用いたMEORの数値実験, 石油技術協会誌, 第69巻、第5号、563-573, 2004.09.
40. Y.SUGAI, J.FANGMING, H.ENOMOTO and T.MORIYA, Application of Membrane Separation Method to Concentrate Products on the Process Producing Environmentally Adaptable Deicer by means of Wet Oxidation of Organic Wastes, RESOURCES PROCESSING, Vol.51、No.3、148-157, 2004.09.
41. 菅井裕一、洪承燮、千田佶、榎本兵治, 水溶性ポリマー生産微生物を用いたMEORにおける油層内挙動と石油増進回収機構に関するシミュレーション研究, 石油技術協会誌, 第69巻、第4号、335-347, 2004.07.
42. 菅井裕一、洪承燮、千田佶、榎本兵治, 水溶性ポリマー生産微生物を用いたMEORのための数学モデルの構築, 石油技術協会誌, 第69巻、第3号、261-271, 2004.05.
43. 菅井裕一、洪承燮、千田佶、榎本兵治、矢澤仁徳, 水溶性ポリマー生産微生物TU-15Aによる石油の増進回収に関する室内実験研究, 石油技術協会誌, 第67巻、第5号、491-500, 2002.09.
44. 菅井裕一、洪承燮、池田修一郎、千田佶、榎本兵治、矢澤仁徳, MEORを目的とした水溶性ポリマー生産微生物のスクリーニング, 石油技術協会誌, 第67巻、第3号、277-286, 2002.05.
45. Yuichi Sugai, Atsushi Kishita, Hong Chengxie, Heiji Enomoto, Tadashi Chida, S.C.ZHOU, Laboratory Investigation of Polymer Producer TU-15A for MEOR Field Tests, Proc. of Society of Petroleum Engineers (SPE) Asia Pacific Oil and Gas Conference and Exhibition, SPE-54381-MS, 1999.04.
主要総説, 論評, 解説, 書評, 報告書等
1. 菅井裕一, Very Susant, 佐々木 久郎, 水素製造施設から排出されるCO2の地中貯留を想定した漏洩モニタリング, ペトロテック(石油学会), 2015.06.
2. 菅井裕一, 微生物EOR~「その他のEOR」からの脱却を目指して~, 石油技術協会誌, 2013.11.
3. 菅井 裕一, 平成24年度日本海洋石油資源開発株式会社受託研究「硫酸還元菌の増殖および硫化水素生成挙動の数値モデル化とシミュレーション研究」成果報告書, 2013.03.
4. 佐々木 久郎, 菅井 裕一, 産学連携研究 九州大学地球資源システム工学部門 資源開発工学研究室とJAPEXとの共同研究 -原油のガス溶解度およびガス拡散係数の測定と排油挙動解析-, 石油技術協会誌, 2012.05.
5. 藤原和弘,菅井裕一, 石油・天然ガス開発技術に関する委託研究「地中メタン再生技術の実用化研究」-地中メタン再生技術の実用化に不可欠な各種の室内実験データの収集-平成21年度成果報告書, 独立行政法人 石油天然ガス・金属鉱物資源機構, 2010.03.
6. Isty A. Purwasena, Yuichi Sugai, Kyuro Sasaki, Evaluation of Reservoir Condition Effects on the Reduction of Oil Viscosity by a Petrotoga strain Isolated from an Oilfield for MEOR
, 石油技術協会誌, 2010.09.
7. 菅井裕一, 微生物を利用した石油の増進回収技術, バイオインダストリー, 2009.05.
8. 藤原和弘、菅井裕一, 石油・天然ガス開発技術に関する委託研究「地中メタン再生技術の実用化研究」-地中メタン再生技術の実用化に不可欠な各種の室内実験データの収集-平成20年度成果報告書, 独立行政法人 石油天然ガス・金属鉱物資源機構, 2009.03.
9. 藤原和弘、菅井裕一、榎本兵治, 微生物攻法(MEOR)研究の現状と展望-技術開発の将来展望と課題-, 石油技術協会誌, 2008.11.
10. 藤原和弘、菅井裕一、崔吉、榎本兵治, 微生物攻法(MEOR)研究の現状と展望-実用技術化に向けての取り組み-, 石油技術協会誌, 2008.07.
11. 藤原和弘、菅井裕一、榎本兵治, 微生物攻法(MEOR)研究の現状と展望-その概要と有用微生物について-, 石油技術協会誌, 2008.05.
12. 藤原和弘、菅井裕一, 石油・天然ガス開発技術に関する委託研究「地中メタン再生を担う原油分解水素・メタン生成菌群の探索」平成19年度成果報告書, 独立行政法人 石油天然ガス・金属鉱物資源機構, 2008.03.
13. 菅井裕一、佐々木久郎, 平成19年度石油・天然ガス基礎研究「有機質栄養源を必要としない独立栄養細菌を用いたMEORの可能性評価」, 独立行政法人 石油天然ガス・金属鉱物資源機構, 2007.12.
14. 中秀雄,高畑重幸,佐々木久郎,菅井裕一, 十和田石の石粉および粉砕粒を利用した機能性壁材の開発, 平成17年度中野産業株式会社・九州大学大学院工学研究院共同研究報告書, 2006.03.
15. 中秀男,高畑重幸,佐々木久郎,菅井裕一, 十和田石採石廃材と微生物を複合した環境浄化資材の開発
, 経済産業省 平成16年鉱山探鉱等促進事業費補助金 副産物用途開発等調査・開発事業, 2005.03.
主要学会発表等
1. San Yee Khaing, Yuichi Sugai, Kyuro Sasaki, Novel Hydrometallurgical Method for Gold Leaching from Ore Using Iodide-Oxidising Bacteria, International Symposium on Earth Science and Technology 2018, 2018.11.
2. Jumpei Mikumo, Yuichi Sugai, Kyuro Sasaki, Investigation of a novel enhanced oil recovery technique using yeast residue, International Symposium on Earth Science and Technology 2018, 2018.11.
3. Nao Miyazaki, Yuichi Sugai, Kyuro Sasaki, Yoshifumi Okamoto, Chencan Ouyang, Dual role of citric acid as a binding inhibitor of anionic surfactant with bivalent cations and co-surfactant on bio-surfactant EOR, Abu Dhabi International Petroleum Exhibition and Conference 2018, 2018.11.
4. Masaki Uematsu, Yuichi Sugai, Kyuro Sasaki, Ronald Nguele, Investigation of the potential of polyvinyl alcohol as an inhibitor of spontaneous combustion of low rank coal, 7th World Conference on Applied Sciences, Engineering & Management, 2018.10.
5. Vo Thanh Hung, Yuichi Sugai, Kyuro Sasaki, An Object-Based Modeling and Simulation of CO2 Plume Dynamic in Saline Formation in Nam Vang Field, Cuu Long Basin, Vietnam, The 24th Formation Evaluation Symposium of Japan, 2018.10.
6. Yuichi Sugai, Challenges to Advance Microbial EOR Technique to a Practical Technique, Rundown Seminar International on "Maximizing More Barrels in Brownfield Rejunevation Through Enhanced Oil Recovery", 2018.08.
7. Masaki Uematsu, Yuichi Sugai, Kyuro Sasaki, The Developing Equipment for Evaluation to Coal Spontaneous Combustion
, Mining in Asia International Symposium, 2018.07.
8. San Yee Khaing, Yuichi Sugai, Kyuro Sasaki, Isolation and Culturing of Iodide-Oxidising Bacteria(IOB) from Brine, Mining in Asia International Symposium, 2018.07.
9. Eric Owusu Ansah, Yuichi Sugai, Kyuro Sasaki, Numerical Simulation of an Oil Viscosity Reduction Microbe for Enhanced Oil Recovery, 80th EAGE Conference & Exhibition 2018, 2018.06.
10. 田原史康、菅井裕一、佐々木久郎, 表層型メタンハイドレート層からのメタンガス回収手法の検討, 平成30年度石油技術協会春季講演会, 2018.06.
11. 宮崎菜央、菅井裕一、佐々木久郎、岡本圭史、欧陽琛璨, バイオサーファクタントの石油増進回収法への適用に関する検討, 平成30年度石油技術協会春季講演会, 2018.06.
12. 森藤弘貴,菅井裕一,佐々木久郎, コールベッドメタンの増進回収を目的としたCO2-CH4混合系における石炭のガス吸着挙動の検討, 平成30年度石油技術協会春季講演会, 2018.06.
13. 森藤弘貴、菅井裕一、佐々木久郎, 石炭に対するCO2およびCH4の動的吸脱着測定, 資源・素材学会九州支部平成30年度若手研究者および技術者の研究発表会, 2018.06.
14. 田原史康、菅井裕一、佐々木久郎, 表層型メタンハイドレート開発手法の検討, 資源・素材学会九州支部平成30年度若手研究者および技術者の研究発表会, 2018.06.
15. 宮崎菜央、菅井裕一、佐々木久郎、岡本圭史、欧陽チェンツァン, 石油増進回収を目的としたバイオサーファクタントの適用条件の検討, 資源・素材学会九州支部平成30年度若手研究者および技術者の研究発表会, 2018.06.
16. Evan Rosyadi Ogara, Yuichi Sugai, Kyuro Sasaki, Ferian Anggara, The Effect of Coal Characteristics on Adsorption and Desorption Gas at Indonesia Low Rank Coal, International Symposium on Earth Science and Technology 2017, 2017.12.
17. Gen Murakami,Yuichi Sugai,Kyuro Sasaki, Preliminary Study on In-situ Realtime Quantitation of Target Bacteria on the Principle of Flow Cytometry, 22th International Biohydrometallurgy Symposium, 2017.09.
18. 植松雅貴, 菅井裕一, 佐々木 久郎, 熱流束測定による石炭の自然発火性の評価方法に関する検討, 資源・素材&EARTH2017(札幌), 2017.09.
19. 嶋谷典高, 菅井裕一, 佐々木 久郎, コールベッドメタンの増進回収を目的としたCO2およびCH4の吸脱着挙動の検討, 資源・素材&EARTH2017(札幌), 2017.09.
20. Jumpei Tamai,Yuichi Sugai,Kyuro Sasaki, Measurement of the IFT between Oil and Water in which CO2 is dissolved, 6th World Conference on Applied Sciences, Engineering & Technology, 2017.08.
21. Noritaka Shimatani,Yuichi Sugai,Kyuro Sasaki, Basic Research of Enhanced Coalbed Methane Recovery by Injecting Air, 6th World Conference on Applied Sciences, Engineering & Technology, 2017.08.
22. 三雲惇平,菅井裕一,佐々木久郎, 酵母残渣の加熱溶出液による水–油界面張力低下とそのEOR効果の検討, 平成29年度石油技術協会春季講演会, 2017.06.
23. 三雲惇平,菅井裕一,佐々木 久郎, 酵母残渣の加熱溶出液を用いた石油増進回収技術に関する基礎的検討, 資源・素材学会九州支部平成29年度若手研究者および技術者の研究発表会, 2017.06.
24. 植松雅貴, 菅井裕一, 佐々木 久郎, 熱流束測定による石炭の酸化反応の評価手法に関する検討, 資源・素材学会九州支部平成29年度若手研究者および技術者の研究発表会, 2017.06.
25. 菅井裕一, 佐々木 久郎, 飯野宏高, コールベッドメタンの増進回収におけるCO2利用の優位性に関する一考察, 平成29年度資源・素材学会春季大会, 2017.03.
26. Minoru Saito, Yuichi Sugai, Kyuro Sasaki, Yoshifumi Okamoto, Chencan Ouyang, Experimental and Numerical Studies on EOR Using a Biosurfactant, The Abu Dhabi International Petroleum Exhibition & Conference 2016, 2016.11.
27. 菅井裕一, 嶋谷典高, 佐々木 久郎, 低温条件下における石炭の酸化に関する検討, 資源・素材2016(盛岡), 2016.09.
28. エバン ロシャディ オガラ, 菅井裕一, フェリアン アンガラ, 佐々木 久郎, 石炭へのCO2およびCH4の吸脱着の測定, 資源・素材2016(盛岡), 2016.09.
29. Yuichi Sugai, Challenges to Advance Microbial Enhanced Oil Recovery Technique to a Practical Technique, ASEAN MICROBIAL BIOTECHNOLOGY CONFERENCE 2016, 2016.08.
30. 齋藤稔, 菅井裕一, 佐々木 久郎, 岡本圭史, 欧陽琛璨, サーファクチンの石油増進回収効果の検討, 平成28年度石油技術協会春季講演会, 2016.06.
31. 嶋谷典高, 菅井裕一, 佐々木 久郎, 空気圧入によるコールベッドメタンの増進回収を目的とした石炭の低温酸化反応に関する検討, 平成28年度石油技術協会春季講演会, 2016.06.
32. 村上源, 菅井裕一, 佐々木 久郎, 地下微生物の原位置リアルタイムモニタリングを目的とした基礎的研究, 平成28年度石油技術協会春季講演会, 2016.06.
33. 玉井惇平, 菅井裕一, 佐々木 久郎, ガスの溶解が水-油界面張力に及ぼす影響の検討, 平成28年度石油技術協会春季講演会, 2016.06.
34. 村上源, 菅井裕一, 佐々木 久郎, 地下微生物のin-situモニタリング手法に関する基礎的検討, 資源・素材学会九州支部平成28年度若手研究者および技術者の研究発表会, 2016.06.
35. 嶋谷典高, 菅井裕一, 佐々木 久郎, 石炭の低温酸化反応に及ぼす諸条件の検討, 資源・素材学会九州支部平成28年度若手研究者および技術者の研究発表会, 2016.06.
36. 玉井惇平, 菅井裕一, 佐々木 久郎, ガス溶解下における水-油界面張力の測定, 資源・素材学会九州支部平成28年度若手研究者および技術者の研究発表会, 2016.06.
37. 菅井裕一, CO2を利用したEORおよびECBMRを目的とした高圧CO2雰囲気下における水・石油・石炭のその場観察, 日本地球惑星科学連合2016年大会, 2016.05.
38. 菅井裕一, 玉井惇平, 佐々木 久郎, 二酸化炭素の溶解による水-油界面張力の変化の測定, 資源・素材学会平成28年度春季大会, 2016.03.
39. 嶋谷典高, 菅井裕一, 佐々木 久郎, 炭層への空気圧入による低温酸化反応に関する検討, 資源・素材学会平成28年度春季大会, 2016.03.
40. 村上源, 菅井裕一, 佐々木 久郎, 地下微生物のin-situモニタリングに関する基礎的検討, 資源・素材学会平成28年度春季大会, 2016.03.
41. Yuichi Sugai, Keita Komatsu, Kyuro Sasaki, Estimation of IFT Reduction by a Biomass Material and Potential of Its Utilization for EOR, SPE Asia Pacific Oil and Gas Conference and Exhibition, 2015.10, Surfactant injection is one of the most effective EOR techniques. Chemical surfactants however pose a few problems such as their high cost and low-degradability. We study on the utilization of biomass such as agricultural fertilizer mainly comprising the residue of squeezed beer yeast for EOR as an alternative of chemical surfactants because crude oil can be completely miscible with the fertilizer solution. The fertilizer can be stably supplied at a low cost because it is a waste of beer brewing industry and is only used for an animal feed additive so far. Its retail price is approximately 1 USD/kg in Japan.
We semi-quantitatively estimated the interfacial tension (IFT) between the fertilizer solution and crude oil by the oil displacement test. Concentration of the fertilizer was varied between 10 to 50 g/L. The fertilizer solution to which sodium chloride was added at a concentration of 10 to 40 g/L was hydrothermally treated at 60, 80, 100 or 120 ºC for 10, 20, 30, 45 or 60 minutes respectively before the tests. The fertilizer solution to which crude oil was added at a ratio of 1 % was also hydrothermally treated at 120 ºC for 20 minutes. Solution of surfactin which was a commercial biosurfactant was used as a standard of the IFT.
The IFT was reduced with the decrease in salinity and increase in concentration of the fertilizer and temperature of the hydrothermal treatment. Time of the hydrothermal treatment was preferably 30 minutes or less for the IFT reduction. The capability of 50 g/L of fertilizer solution to reduce the IFT was almost same as the capability of 0.2 g/L of the surfactin solution. Because the fertilizer solution comes into contact with residual oil under high temperature in oil reservoir, IFT between the solution and crude oil can be expected to be reduced in-situ.
Core flooding experiments were carried out by injecting the fertilizer solution after the water flooding as the primary oil recovery. 1.2 % of original oil in place was additionally recovered by injecting 50 g/L of the fertilizer solution after the water flooding.
The fertilizer should be biodegradable because it is a microbially-derived substance. In addition, because the IFT reduction was observed after the hydrothermal treatment of the fertilizer solution, the fertilizer should be effective even in the reservoir whose temperature is high such as 120 ºC at which chemical surfactants may be deactivated. From those results, the injection of the fertilizer solution can be a promising EOR which has both high cost performance, low environmental load and high versatility..
42. 飯野宏高, 菅井裕一, 佐々木久郎, CO2の炭層圧入における石炭の膨潤に関する検討, 資源・素材2015(松山), 2015.09.
43. 菅井裕一, Susanto Very, 佐々木久郎, Tayfun Babadagli, 高圧CO2雰囲気下における水および油の性状変化に関する検討, 資源・素材2015(松山), 2015.09.
44. 齋藤稔, 菅井裕一, 佐々木 久郎, 山口裕之, 川村太郎, 佐藤朋之, 山下信彦, 田丸温, 田中勝哉, バイオスティミュレーション型微生物EORに関するコア掃攻実験, 平成27年度資源・素材学会九州支部春季講演会, 2015.06.
45. 飯野宏高, 菅井裕一, 佐々木 久郎, CO2炭層圧入を目的とした石炭の膨潤特性の検討, 平成27年度資源・素材学会九州支部春季講演会, 2015.06.
46. 菅井裕一, 小松圭太, Kyuro Sasaki, Kristian Mogensen, Martin Vad Bennetzen, 北海油田における MEORの適用に関する基礎的研究, 平成27年度石油技術協会春季講演会開発・生産部門シンポジウム, 2015.06.
47. 齋藤稔, 菅井裕一, 佐々木久郎, バイオスティミュレーション型微生物EORに関するコア掃攻実験, 平成27年度石油技術協会春季講演会, 2015.06.
48. 飯野宏高, 菅井裕一, 佐々木久郎, CO2の炭層圧入を目的とした石炭の膨潤特性の検討, 平成27年度石油技術協会春季講演会, 2015.06.
49. 菅井裕一, 佐々木 久郎, SALMAWATI, CCSにおけるCO2の漏洩モニタリングを目的とした地表CO2濃度の深度分布の調査, 資源・素材学会平成27年度春季大会, 2015.03.
50. Yuichi Sugai, Keita Komatsu, Kyuro Sasaki, Kristian Mogensen, Martin Vad Bennetzen, Microbial-Induced Oil Viscosity Reduction by Selective Degradation of Long-Chain Alkanes, Abu Dhabi International Petroleum Exhibition and Conference 2014, 2014.11, Application of a thermophilic anaerobic bacterium which degrades long-chain alkanes of crude oil preferentially and induces oil viscosity reduction to MEOR in our target oilfield was evaluated in this study. Although the salinity of formation-water in our target reservoir is approximately 10 % which is considerably higher than the optimum salinity for the bacterium, the bacterium can grow well and induce oil viscosity reduction in the formation-water which was diluted with sea-water whose salinity was approximately 4 % and contained yeast extract as a nitrogen source. Oil viscosity was reduced to 70 percent of its original viscosity after two-week incubation of the bacterium in the culture medium consisting of sea-water supplemented with 1.0 g/L of yeast extract.
The performance of MEOR using this bacterium was evaluated by numerical simulation using two dimensional oil-water two-phase flow model. This model consists of 6 compositions: degraded oil, undegraded oil, brine, bacterium, sodium chloride and yeast extract. Undegraded oil and yeast extract are carbon source and nitrogen source for the bacterial growth respectively. Growth rate of the bacterium is calculated by Monod equation depending on the variables of the concentration of yeast extract and sodium chloride. Conversion of undegraded oil into degraded oil is depended on the proliferation of the bacterium. Growth of the bacterium is stopped by deficiency of either yeast extract or undegraded oil. Oil viscosity is reduced as the percentage of degraded oil in oil phase increases. Residual oil saturation is improved by oil viscosity reduction and enhancement of oil recovery can be obtained.
According to the numerical experiments, growth of the bacterium and oil viscosity reduction were found only around the injection well because the bacterium consumed whole yeast extract around there. Recovery factor therefore can be increased by increase of injection volume of yeast extract. As a result, enhancement of oil recovery reached to 5 % by 1.0 pore volume injection of sea-water containing the bacterium and 1.0 g/L of yeast extract. 100 bbl of oil was recovered additionally by using 1.0 tons of yeast extract in that case..
51. 菅井裕一, 佐々木久郎, 川崎航, 内藤由和, 川村太郎, 福馬聡之, 土壌CO2フラックスの長期連続測定法の開発, 資源・素材2014(熊本), 2014.09.
52. 大脇幸博, 菅井裕一, 佐々木久郎, 琉球列島に分布する水溶性天然ガスかん水中の微生物調査, 資源・素材2014(熊本), 2014.09.
53. 小松圭太, 菅井裕一, 佐々木久郎, 石油分解菌を用いたMEORにおける油層内塩分濃度の影響に関する考察, 平成26年度石油技術協会春季講演会, 2014.06.
54. 小松圭太, 菅井裕一, 佐々木 久郎, 高塩濃度油層における微生物利用石油増回収法の検討, 平成26年度資源・素材学会九州支部春季講演会, 2014.05.
55. Yuichi Sugai, Yukihiro Owaki, Kyuro Sasaki, Fuminori Kaneko, Takuma Sakai, Numerical Prediction of Reservoir Souring Based on the Growth Kinetics of Sulfate-reducing Bacteria Indigenous to an Oilfield, SPE International Oilfield Corrosion Conference and Exhibition, 2014.05.
56. 菅井裕一, 佐々木久郎, 山城輝久, Very Susanto, CCSにおける水素を指標とした二酸化炭素漏洩予測法の検討, 平成26年度資源・素材学会春季大会, 2014.03.
57. 菅井裕一, 地下微生物群によるCO2のCH4変換に関する数値モデルの構築, 海底下の炭化水素資源・炭素循環と地球生命工学シンポジウム, 2014.01.
58. 菅井裕一, 佐々木 久郎, 山城輝久, Very Susanto, 水素製造施設から排出されるCO2の地中貯留を想定した漏洩モニタリング手法, 第43回石油・石油化学討論会, 2013.11.
59. 菅井裕一, 佐々木 久郎, 森亮, 藤原和弘, 中村孝道, 地下微生物群によるCO2のCH4変換の数式化, 資源・素材2013(札幌), 2013.09.
60. 菅井裕一, 佐々木 久郎, Very Susanto, 山城輝久, 渕上雄貴, 福馬聡之, 内藤由和, 川村太郎, CO2の漏洩モニタリング手法に関するパイロット試験, 資源・素材2013(札幌), 2013.09.
61. 菅井裕一, 微生物EOR~「その他のEOR」からの脱却を目指して~, 平成25年度石油技術協会春季講演会開発・生産部門シンポジウム, 2013.06.
62. 菅井 裕一, 渕上 雄貴, 佐々木 久郎, 福馬 聡之, 内藤 由和, 九大ナチュラルアナログテストフィールドにおけるトレーサー試験, 平成25年度資源・素材学会春季大会, 2013.03.
63. 菅井 裕一, 若手研究者は我が国の資源戦略にどう寄与できるのか?, 「我が国の資源戦略に寄与する資源開発技術の調査研究会」講演会, 2012.10.
64. Yuichi Sugai, Ryo Mori, Kyuro Sasaki, Kazuhiro Fujiwara, Estimation of the Potential of Microbial Restoration of Natural Gas Deposit with CO2 Sequestration, International Symposium on Earth Science and Technology 2012, 2012.09.
65. 菅井 裕一, 佐々木 久郎, Very Susanto, 山城 輝久, CO2を主成分とする混合ガスの地中における流動と分離について, 資源・素材2012(秋田), 2012.09.
66. 菅井 裕一, Isty Adhitya Purwasena, 佐々木 久郎, 石油資化性微生物を用いたMEORの数値シミュレーション研究, 平成24年度石油技術協会春季講演会, 2012.06.
67. 菅井 裕一, 脇園 遼, 佐々木 久郎, 樋口 康則, 村岡 典幸, 水溶性天然ガスかん水の還元性に及ぼす微生物の影響, 平成24年度石油技術協会春季講演会, 2012.06.
68. 菅井 裕一, 佐々木 久郎, Very Susanto, 山城 輝久, CO2地下貯留を想定した浅層花崗岩層におけるCO2 ガス拡散挙動のモニタリング, 平成24年度資源・素材学会春季大会, 2012.03.
69. 菅井裕一、佐々木久郎、吉村啓吾、雪竹俊範、牟田茂典, 未利用トンネルを利用したエコ貯蔵設備の温度分布について, 資源・素材2011(堺), 2011.09.
70. 菅井裕一,佐々木久郎, 石油資源の新たな生産手法に関する研究について, 資源・素材2010(福岡), 2010.09.
71. 菅井裕一,佐々木久郎,藤原和弘,服部嘉行,太田垣寛,岡津弘明, 枯渇油ガス田に貯留したCO2 の微生物によるCH4 変換に関する研究, 資源・素材2010(福岡), 2010.09.
72. Yuichi SUGAI, Experimental and Numerical Evaluation of MEOR Using a Talented Water-soluble Polymer Producing Microorganism, Clostridium sp. TU-15A, BIT's 1st Annual World Congress of Petroleum Microbiology, 2010.07.
73. 菅井裕一,佐々木久郎,新見敏也,藤原和弘,服部嘉行,太田垣寛,岡津弘明, 地下貯留層におけるCO2のCH4変換に有効な微生物の棲息挙動に関する検討, 平成22年度石油技術協会春季講演会, 2010.06.
74. 菅井裕一、佐々木久郎、吉村啓吾、井上和彦, 未利用トンネルの食品貯蔵庫としての利用可能性評価, 資源・素材学会春季講演会, 2010.03.
75. 菅井裕一、脇園遼、佐々木久郎、樋口康則, 水溶性天然ガスかん水の還元性に及ぼす微生物の影響, 資源・素材学会春季講演会, 2010.03.
76. 菅井裕一、佐々木久郎、吉村啓吾、井上和彦, 未利用地下トンネル空間の貯蔵への活用, 資源・素材2009(札幌), 2009.09.
77. 菅井裕一、岡麻知子、佐々木久郎, 微生物EOR に有用な独立栄養細菌および原油資化性細菌のスクリーニング, 石油技術協会春季講演会, 2009.06.
78. Yuichi Sugai, Toshiya Niimi, Kyuro Sasaki, Yoshiyuki Hattori, Tsukasa Mukaidani, Kazuhiro Fujiwara, Komei Okatsu, Basic Studies on Oil-Degrading and Hydrogen-Producing microorganisms for Microbial Conversion of CO2 into CH4 in Oil Reservoir, The 2nd International Symposium of Novel Carbone Resource Science, 2009.03.
79. Yuichi SUGAI, Tayfun BABADAGLI and Kyuro SASAKI, Measurement of Swelling of Crude Oil due to Carbon Dioxide, International Symposium on Earth Science and Technology 2008, 2008.12.
80. 菅井裕一,佐々木久郎,新見敏也,服部嘉行,鹿野早苗,向谷 司,藤原和弘,岡津弘明, 地下におけるCO2のメタン変換を目的とした地下微生物に関する研究, 資源・素材2008(仙台), 2008.10.
81. Yuichi Sugai, Toshiya Niimi, Kyuro Sasaki, Yoshiyuki Hattori, Sanae Kano, Tsukasa Mukaidani, Kazuhiro Fujiwara, Komei Okatsu, Screening of oil-degrading and hydrogen-producing microorganisms for microbial conversion of CO2 into CH4 in oil reservoir, CIPC/SPE GTS 2008 Joint Conference , 2008.06.
82. 菅井裕一,佐々木久郎,水谷隆也, PVT試験装置を用いた油含浸コアへの溶媒ガス溶解度の測定, 石油技術協会, 2008.06.
83. Yuichi SUGAI, Machiko OKA and Kyuro SASAKI, Screening of Effective Thermophilic Microorganisms for Microbial Enhanced Oil Recovery, 2nd International Conference and Workshop on Earth Resources Technology, 2008.04.
84. Yuichi Sugai, Hong Chengxie, Tadashi Chida and Heiji Enomoto, Simulation Studies on the Mechanisms and Performances of MEOR using Polymer Producing Microorganism Clostridium sp. TU-15A, 2007 SPE Asia Pacific Oil & Gas Conference and Exhibition, 2007.10.
85. 菅井裕一、佐々木久郎, 環境にやさしい炭化水素エネルギー資源の開発法について, 資源・素材学会, 2007.09.
86. 菅井裕一、有浦智紘、佐々木久郎, PVT試験装置を用いたプロパンの原油への溶解度測定, 石油技術協会, 2007.05.
87. Yuichi Sugai, Laboratory Experiments and Field Tests of Microbial Enhanced Oil Recovery by using Polymer Producing Microorganisms, MEOR seminar in SQU, 2007.01.
88. 菅井裕一,岡麻知子,佐々木久郎, 微生物EORの適用範囲拡大を目的とした有用高温微生物の探索, 石油学会, 2006.11.
89. 菅井裕一、谷谷良平、佐々木久郎、中秀夫、高畑重幸, 比内緑色凝灰岩を担持体とした微生物資材の有用性評価, 資源・素材学会, 2006.03.
90. Yuichi SUGAI, Kyuro SASAKI, EFFECTS OF A GREEN TUFF ON ACTIVATING MICROORGANISMS, 3rd International Workshop on Earth Science and Technology, 2005.12.
91. 菅井裕一、佐々木久郎、中秀夫、高畑重幸, 比内緑色凝灰岩を散布した鶏舎内の環境測定, 資源・素材学会, 2005.09.
92. 菅井裕一、佐々木久郎、高畑重幸、中秀夫、田中富士夫, 比内緑色凝灰岩と有用微生物とを複合した堆肥化促進資材の開発, 資源・素材学会, 2005.03.
93. Yuichi SUGAI, Introduction of Enhanced Oil Recovery Technique by using Microorganisms, 2nd International Workshop on Earth Science and Technology, 2004.12.
94. 菅井裕一、佐々木久郎、中秀夫、田中富士夫, 緑色凝灰岩の特性と有効活用法の開発, 資源・素材学会, 2004.09.
95. 菅井裕一、佐々木久郎, 十和田石の製品廃石材の有効活用法の開発, 環境資源工学会, 2004.06.
96. 菅井裕一、湯本徹也、木下睦、榎本兵治、永瀬圭司, ネットワークモデルによる非水溶性ポリマー生産細菌CJF-002の評価, 石油技術協会, 2002.05.
作品・ソフトウェア・データベース等
1. 佐々木久郎、菅井裕一、SALMAWATI、川崎航、栗山毅士, 表層土壌CO2ガスフラックスモニタリングポスト, 2016.10
CCSを安全に操業するため、CO2が確実に地中貯留されていることをモニターする土壌CO2ガスフラックス測定装置.
特許出願・取得
特許出願件数  6件
特許登録件数  1件
学会活動
所属学会名
Society of Petroleum Engineers, SPE
社団法人 資源・素材学会
環境資源工学会
社団法人 石油学会
石油技術協会
学協会役員等への就任
2019.04~2021.03, 一般社団法人資源・素材学会, 運営委員.
2017.03~2019.03, 資源・素材学会石炭等エネルギー開発利用部門委員会, 副委員長.
2016.03, Journal of MMIJ論文誌委員会, 委員.
2015.05~2015.09, 公益社団法人日本工学教育協会九州工学教育協会, 第63回年次大会実行委員.
2014.04~2015.03, 海洋資源開発・利用創出研究会, メンバー.
2014.03~2015.12, 資源・素材学会編集委員会, 委員.
2014.03~2018.03, 資源・素材学会地球環境工学部門委員会, 幹事.
2013.04, 石油技術協会, 生産技術委員.
2010.03~2012.03, 資源・素材学会石炭等エネルギー開発利用部門委員会, 幹事.
2008.04, Cooperative International-Network for Earth Science and Technology, CINEST, 運営委員.
2007.04, 資源・素材学会九州支部, 幹事.
2007.04, 環境資源工学会, 評議員.
2006.04~2015.03, 資源・素材学会九州支部, 常議員.
学会大会・会議・シンポジウム等における役割
2018.11.29~2018.11.30, International Symposium on Earth Science and Technology 2018, 事務局(Secretariat).
2018.09.10~2018.09.12, 資源・素材2018(福岡), 実行委員.
2018.06.13~2018.06.14, 平成30年度石油技術協会春季講演会, 司会(Moderator).
2018.06.01~2018.06.01, 資源・素材学会九州支部平成30年度若手研究者および技術者の研究発表会, 司会.
2018.03.27~2018.03.29, 平成30年度資源・素材学会春季講演会, 司会(Moderator).
2017.11.30~2017.12.01, International Symposium on Earth Science and Technology 2017, 事務局(Secretariat).
2017.09.26~2017.09.28, 資源・素材&EARTH2017(札幌), 司会(Moderator).
2017.06.14~2017.06.15, 平成29年度石油技術協会春季講演会, 司会(Moderator).
2016.12.08~2016.12.09, International Symposium on Earth Science and Technology 2016, 事務局(Secretariat).
2016.09.13~2016.09.15, 資源・素材2016(盛岡), 司会(Moderator).
2016.06.08~2016.06.09, 平成28年度石油技術協会春季講演会, 司会(Moderator).
2016.03.28~2016.03.30, 平成28年度資源・素材学会春季講演会, 司会(Moderator).
2015.12.03~2015.12.04, International Symposium on Earth Science and Technology 2015, 事務局(Secretariat).
2015.09.08~2015.09.10, 資源・素材2015(松山), 司会(Moderator).
2015.06.10~2015.06.11, 平成27年度石油技術協会春季講演会, 座長(Chairmanship).
2015.06.12~2015.06.12, 資源・素材学会九州支部春季講演会, 座長(Chairmanship).
2015.03.27~2015.03.29, 平成27年度資源・素材学会春季講演会, 座長(Chairmanship).
2014.12.04~2014.12.05, International Symposium on Earth Science and Technology 2014, 座長(Chairmanship).
2014.09.15~2014.09.17, 資源・素材2014(熊本), 座長(Chairmanship).
2014.06.04~2014.06.05, 平成26年度石油技術協会春季講演会, 座長(Chairmanship).
2014.05.30~2014.05.30, 資源・素材学会九州支部春季講演会, 座長(Chairmanship).
2013.12.03~2013.12.03, International Symposium on Earth Science and Technology 2013, 座長(Chairmanship).
2013.11.15~2013.11.15, 第43回石油・石油化学討論会, 座長(Chairmanship).
2013.09.03~2013.09.03, 資源・素材2013(札幌), 座長(Chairmanship).
2013.06.28~2013.06.28, 平成25年度石油技術協会春季講演会, 座長(Chairmanship).
2013.05.31~2013.05.31, 資源・素材学会九州支部春季講演会, 座長(Chairmanship).
2013.01.11~2013.01.11, Kick-off Seminar on ASEAN-Japan Build-up Cooperative Education Program for Global Human Resource Development in Earth Resources Engineering, 座長(Chairmanship).
2012.09.18~2012.09.19, International Symposium on Earth Science and Technology 2012, 座長(Chairmanship).
2012.09.11~2012.09.13, 資源・素材2012(秋田), 座長(Chairmanship).
2012.05.25~2012.05.25, 資源・素材学会九州支部春季講演会, 座長(Chairmanship).
2011.12.06~2011.12.07, International Symposium on Earth Science and Technology 2011, 座長(Chairmanship).
2011.09.26~2011.09.29, 資源・素材2011(堺), 座長(Chairmanship).
2011.06.03~2011.06.03, 資源・素材学会九州支部春季講演会, 座長(Chairmanship).
2010.12.07~2010.12.08, International Symposium on Earth Science and Technology 2010, 座長(Chairmanship).
2010.12.02~2010.12.02, 第2回メタンハイドレート総合シンポジウム(CSMH-2), 座長(Chairmanship).
2010.09.13~2010.09.15, 資源・素材2010(福岡), 座長(Chairmanship).
2010.07.28~2010.07.30, BIT's 1st Annual World Congress of Petroleum Microbiology, 座長(Chairmanship).
2010.06.11~2010.06.11, 資源・素材学会九州支部春季講演会, 座長(Chairmanship).
2010.01.30~2010.01.30, Global COE: Novel Carbon Resource Sciences Forum I, アドバイザー.
2009.12.08~2009.12.09, International Symposium on Earth Science and Technology 2009, 座長(Chairmanship).
2009.12.05~2009.12.05, Global COE: Novel Carbon Resource Sciences Forum I and III, アドバイザー.
2009.09.08~2009.09.10, 資源・素材学会2009(札幌), 座長(Chairmanship).
2009.08.22~2009.08.22, Global COE: Novel Carbon Resource Sciences Forum I, アドバイザー.
2009.05.29~2009.05.29, 資源・素材学会九州支部春季講演会, 座長(Chairmanship).
2009.03.25~2009.03.28, 資源・素材学会春季講演会, 座長(Chairmanship).
2009.03.10~2009.03.11, The 2nd International Symposium od Novel Carbon Resources Science, 座長(Chairmanship).
2008.10.07~2008.10.09, 資源・素材2008(仙台), 座長(Chairmanship).
2007.09.25~2007.09.27, 資源・素材2007(名古屋), 座長(Chairmanship).
2007.03.29~2007.03.31, 資源・素材学会春季講演会, 座長(Chairmanship).
2006.12.01~2006.12.02, 4th International Workshop on Earth Science and Technology, 座長(Chairmanship).
2006.06.02~2006.06.02, 資源・素材学会九州支部春季講演会, 座長(Chairmanship).
2006.03.27~2006.03.29, 資源・素材学会春季講演会, 座長(Chairmanship).
2005.12.01~2005.12.02, 3rd International Workshop on Earth Science and Technology, 座長(Chairmanship).
2004.12.01~2004.12.02, 2nd International Workshop on Earth Science and Technology, 座長(Chairmanship).
2017.03.27~2017.03.29, 平成29年度資源・素材学会春季大会, 企画セッション「低炭素社会構築のためのCCS」の企画・運営.
2016.12.08~2016.12.09, International Symposium on Earth Science and Technology 2016, Secretariat.
2016.09.13~2016.09.15, 資源・素材2016(盛岡), 企画セッション「低炭素社会構築のためのCCS」の企画・運営.
2016.06.08~2016.06.09, 平成28年度石油技術協会春季講演会, 採点委員.
2016.06.03~2016.06.03, 資源・素材学会九州支部平成28年度若手研究者および技術者の研究発表会, 評価委員.
2015.04.01~2015.12.27, International Symposium on Earth Science and Technology 2015, Secretariat.
2014.04.01~2014.12.27, International Symposium on Earth Science and Technology 2014, Secretariat.
2013.04.01~2013.12.27, International Symposium on Earth Science and Technology 2013, Secretariat.
2012.12.01~2013.01.12, Kick-off Seminar on ASEAN-Japan Build-up Cooperative Education Program for Global Human Resource Development in Earth Resources Engineering, Organizing Committee.
2012.09.18~2012.09.19, International Symposium on Earth Science and Technology 2012, Secretariat.
2011.12.06~2011.12.07, International Symposium on Earth Science and Technology 2011, Secretariat.
2010.12.07~2010.12.08, International Symposium on Earth Science and Technology 2010, Secretariat.
2010.06.08~2010.06.10, 石油技術協会定時総会, 準備委員会委員.
2010.09.13~2010.09.15, 資源・素材2010(福岡), 実行委員.
2009.12.08~2009.12.09, International Symposium on Earth Science and Technology 2009, Secretariat.
2008.12.01~2008.12.02, International Symposium on Earth Science and Technology 2008, Secretariat.
2007.12.01~2007.12.02, 5th International Symposium on Earth Science and technology, Secretariat.
2006.12.01~2006.12.02, 4th International Workshop on Earth Science and Technology , Secretariat.
2006.09.11~2006.09.13, 資源・素材2006(福岡), 実行委員会事務局.
学会誌・雑誌・著書の編集への参加状況
2017.03, Journal of MMIJ, 国内, 編集委員.
2016.04~2016.10, International Symposium on Earth Science and Technology 2016, 国際, 編集委員.
2015.04~2015.10, International Symposium on Earth Science and Technology 2015, 国際, 編集委員.
2014.04~2014.10, International Symposium on Earth Science and Technology 2014, 国際, 編集委員.
2013.04~2013.10, International Symposium on Earth Science and Technology 2013, 国際, 編集委員.
2012.04~2012.10, International Symposium on Earth Science and Technology 2012, 国際, 編集委員.
2011.08~2011.12, International Symposium on Earth Science and Technology 2011, 国際, 編集委員.
2010.08~2010.12, International Symposium on Earth Science and Technology 2010, 国際, 編集委員.
2009.08~2009.12, International Symposium on Earth Science and Technology 2009, 国際, 編集委員.
2008.08~2008.12, International Symposium on Earth Science and Technology 2008, 国際, 編集委員.
2007.08~2007.12, 5th International Workshop on Earth Science and Technology, 国際, 編集委員.
2006.08~2006.12, 4th International Workshop on Earth Science and Technology, 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2018年度 11 
2017年度
2016年度
2015年度
2014年度 10 
2013年度
2012年度
2011年度
2010年度
2009年度
2008年度
2007年度
2006年度
2005年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
Abu Dhabi National Exhibition Centre, UnitedArabEmirates, 2018.11~2018.11.
Abu Dhabi National Exhibition Centre, UnitedArabEmirates, 2018.10~2018.11.
Universitas Islam Riau, Indonesia, 2018.08~2018.08.
Dagon University, Phayaungtaung Gold Mine, Myanmar, 2018.04~2018.04.
TU Bergakademie Freiberg, Germany, 2017.09~2017.09.
Universitas Muhammadiyah Ponorogo, Indonesia, 2017.08~2017.08.
Abu Dhabi National Exhibition Centre, UnitedArabEmirates, 2016.11~2016.11.
The Sanur Paradise Plaza Hotel, Indonesia, 2016.08~2016.08.
Chulalongkorn University, Thailand, 2016.07~2016.07.
the Bali Nusa Dua Convention Center (SPE 2015 Asia Pacific Oil & Gas Conference and Exhibition), Indonesia, 2015.10~2015.10.
Abu Dhabi National Exhibitions Centre, UnitedArabEmirates, 2014.11~2014.11.
遼寧工程技術大学, China, 2014.07~2014.07.
Sultan Qaboos University, Petroleum Development of Oman, Oman, 2014.06~2014.06.
Aberdeen Exhibition and Conference Centre, UnitedKingdom, 2014.05~2014.05.
Maersk Oil Research & Technology Centre, カタール石油開発株式会社, Qatar, 2014.04~2014.04.
University of Leeds, UnitedKingdom, 2014.03~2014.03.
PT. BUKIT ASAM Coal Mine, Indonesia, 2013.10~2013.10.
University of Regina, SaskPower, Canada, 2013.09~2013.09.
Chulalongkorn University (世界展開力キックオフセミナー), Thailand, 2013.01~2013.01.
Perth Convention and Exhibition Centre (SPE 2012 Asia Pacific Oil & Gas Conference and Exhibition), Australia, 2012.10~2012.10.
Institute Teknologi Bandung (International Symposium on Earth Science and Technology 2012), Indonesia, 2012.09~2012.09.
BMO Centre at Stampede Park (SPE Heavy Oil Conference), Canada, 2012.06~2012.06.
Sejong University, Korea, 2011.08~2011.08.
BMO Centre at Stampede Park (Canadian Unconventional Resources and International Petroleum Conference 2010), University of Calgary, Canada, 2010.10~2010.10.
中国石油天然气股份有限公司吉林油田分公司, China, 2010.08~2010.08.
Dalian Municipal Party Committee Hotel (BIT's 1st Annual World Congress of Petroleum Microbiology 2010), China, 2010.07~2010.07.
Sejong University, Korea, 2010.04~2010.04.
Korea National Oil Corporation Ltd., Korea, 2010.04~2010.04.
Sultan Quaboos University, Oman, 2009.12~2009.12.
Japan Canada Oil Sands Limited, Syncrude Canada Ltd., Sherritt Coal, Teck Coal Limited, Canada, 2009.09~2009.09.
中国石油天然气股份有限公司吉林油田分公司, China, 2009.08~2009.08.
Datong Coal Mine, China, 2009.03~2009.03.
Institute Technologi Bandung (The 2nd International Symposium of Novel Carbon Resource Science), Indonesia, 2009.03~2009.03.
Korea Research Institute of Chemical Technology, Korea, 2008.10~2008.10.
University of Calgary, Canada, 2008.09~2008.09.
University of Alberta, Canada, 2008.07~2008.09.
University of Alberta, Canada, 2008.06~2008.06.
TELUS Convention Centre (CIPC/SPE GTS Joint Conference), Canada, 2008.06~2008.06.
Sejong University, Korea, 2008.05~2008.05.
Korea National Oil Corporation Ltd., Korea, 2008.05~2008.05.
Chulalongkorn University (2nd International Conference and Workshop on Earth Resources Technology), Thailand, 2008.03~2008.04.
Petroleum Development of Oman (PDO), Oman, 2008.02~2008.02.
Sultane Quaboos University (SQU), Oman, 2008.02~2008.02.
Institut Teknologi Bandung (ITB), Indonesia, 2007.11~2007.11.
PT Antam Tbk., Indonesia, 2007.10~2007.11.
Jakarta Convention Center (SPE 2007 Asia Pacific Oil and Gas Conference and Exhibition), Indonesia, 2007.10~2007.11.
Sultan Quaboos University, Oman, 2007.09~2007.09.
中国石油天然气股份有限公司吉林油田分公司, China, 2007.08~2007.08.
TELUS Convention Centre (Canadian International Petroleum Conference 2007), Canada, 2007.06~2007.06.
Muswellbrook Coal Company Limited, Liddell Coal Operations, Australia, 2007.03~2007.03.
Sultan Quaboos University, Oman, 2007.01~2007.01.
University of Zambia, Zambia, 2006.08~2006.08.
Abu Dhabi Oil Co. Ltd., Kuwait University, UnitedArabEmirates, Kuwait, 2006.03~2006.03.
University of Alberta, University of Calgary, Canada, 2005.03~2005.03.
Sfax University, Tunisia, 2004.05~2004.05.
Bio Furture Ltd., SEER Centre, Ireland, Scotland, 2004.08~2004.08.
Jakarta Convention Centre (SPE 1999 Asia Pacific Oil and Gas Conference and Exhibition), Indonesia, 1999.04~1999.04.
中国石油天然気股分有限公司吉林油田分公司, China, 1998.07~2001.03.
外国人研究者等の受入れ状況
2018.07~2018.08, 2週間以上1ヶ月未満, Institut Teknologi Bandung, Indonesia, .
2017.07~2017.08, 2週間以上1ヶ月未満, Institut Teknologi Bandung, Indonesia, .
2015.02~2015.02, 2週間未満, Sultan Qaboos University, Oman, 民間・財団.
2015.02~2015.02, 2週間未満, Sultan Qaboos University, Oman, 民間・財団.
2014.07~2014.08, 2週間以上1ヶ月未満, Institute Technology of Bandung, Indonesia, .
2013.05~2013.06, 2週間以上1ヶ月未満, Institute Technology of Bandung, Indonesia, .
2010.07~2010.08, 2週間以上1ヶ月未満, Sultan Qaboos University, Oman, 外国政府・外国研究機関・国際機関.
2006.12~2006.12, 2週間未満, Sultan Qaboos University, Oman, 石油天然ガス・金属鉱物資源機構(JOGMEC).
受賞
第36回論文賞, 社団法人資源・素材学会, 2011.03.
第36回奨励賞, 社団法人資源・素材学会, 2011.03.
平成22年度春季講演会優秀発表賞, 石油技術協会, 2010.06.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2016年度~2017年度, 挑戦的萌芽研究, 代表, 酵母細胞壁を用いた石油増進回収技術の創出.
2015年度~2018年度, 基盤研究(B), 代表, 地下微生物の定量的in-situリアルタイムモニタリング技術の開発.
2013年度~2015年度, 基盤研究(B), 分担, 低品位炭の自然発火防止に関わる海外オンサイト試験.
2013年度~2015年度, 挑戦的萌芽研究, 代表, 熱攻法シミュレータを用いた地下微生物利用技術の汎用シミュレータの開発.
2012年度~2013年度, 挑戦的萌芽研究, 分担, ホール素子を用いた高温・高圧流体の粘度測定センサーの開発.
2012年度~2014年度, 基盤研究(B), 分担, CO2地中貯留リスク評価のための花崗岩層のガス移流拡散フィールド試験.
2009年度~2011年度, 若手研究(B), 代表, CO2とCO2資化菌を併用した新規EORの開発―CO2-MEORのフィールド試験.
2007年度~2007年度, 萌芽研究, 分担, フラクチャー型コアの相対浸透率測定を目的とした水-ガス混合微小流量計の開発.
2006年度~2007年度, 若手研究(B), 代表, 温度圧力可変培養器を用いた資源開発に有用な耐熱性・耐圧性微生物のスクリーニング.
2006年度~2006年度, 基盤研究(C), 分担, アフリカ・ザンビアにおける資源生産と環境保全に関する技術動向調査.
2004年度~2006年度, 基盤研究(B), 分担, デュアル水平坑井を用いたメタンハイドレート層からのメタン生産プロセスの開発.
2002年度~2003年度, 基盤研究(B), 分担, 有機廃棄物の水熱反応資源化で生成した有用物質の超臨界二酸化炭素による分離に関する研究.
競争的資金(受託研究を含む)の採択状況
2011年度~2011年度, 平成23年度メタンハイドレート開発促進事業, 分担, 東部南海トラフ濃集帯の複数水平坑井熱水圧入法の生産性評価.
2011年度~2012年度, 平成23年度 石油・天然ガス基礎研究委託事業, 分担, CO2溶解・溶出による重質油フォーミィーオイル生成と排油機構の解明.
2008年度~2008年度, 財団法人新井科学技術振興財団助成金, 代表, 独立栄養細菌および石油資化性細菌を用いた微生物EOR有用微生物のスクリーニング .
2007年度~2007年度, 財団法人日本鉱業振興会少壮研究者海外科学技術調査助成, 代表, バイオマイニングに有用な微生物探索研究のための鉱物試料採取.
2007年度~2007年度, 平成19年度 石油・天然ガス基礎研究委託事業, 分担, 水蒸気圧入などの熱攻法と溶媒ガス圧入の併用による重質油の採油増進挙動予測のためのPVT試験および数値シミュレーション.
2007年度~2007年度, 平成19年度 石油・天然ガス基礎研究委託事業, 代表, 有機質栄養源を必要としない独立栄養細菌を用いたMEORの可能性評価.
2003年度~2003年度, 新井科学技術振興財団研究助成金, 代表, 緑色凝灰岩の微生物活性化効果に着目した有効利用法の開発.
2002年度~2003年度, 石油・天然ガス開発・利用促進型大型研究(石油公団), 分担, 非在来型炭化水素資源の高品質化を目的とした水熱反応プロセスへのソノケミストリの適用に関する研究.
共同研究、受託研究(競争的資金を除く)の受入状況
2015.04~2019.03, 代表, サーファクチンを用いた石油増進回収技術に関するコア試験.
2015.04~2017.07, 代表, 申川コアを用いたバイオスティミュレーション型微生物EORに関するコア掃攻実験およびシミュレーション研究.
2014.04~2016.03, 連携, シラスバルーンによる鶏糞の発酵促進メカニズムの検討.
2014.04~2015.03, 代表, 微生物利用EOR(MEOR)促進技術の開発.
2014.02~2014.03, 代表, 琉球列島に分布する島尻層群のかん水中の微生物種の分析及びかん水成分の分析.
2012.04~2013.03, 分担, 高圧下でのCO2溶解量の推算精度の向上(フェーズ2).
2012.11~2013.03, 代表, 硫酸還元菌の増殖および硫化水素生成挙動の数値モデル化とシミュレーション研究.
2010.08~2013.03, 代表, 中国での石炭起源のCO2のCCS-EOR適応に関する調査研究の一部.
2010.06~2011.03, 代表, 枯渇油田を利用した地中メタン再生技術に関する研究の一部.
2009.06~2011.03, 分担, 東部南海トラフ濃集帯の複数水平坑井熱水圧入法 の生産性評価.
2008.11~2010.03, 代表, 地中メタン再生技術の実用化研究の一部.
2008.07~2011.03, 分担, 唐津市未利用トンネルにおける恒温空間の構築と評価および実用化.
2008.05~2009.03, 分担, 熱併給発電設備と放射状複数水平坑井群の組み合わせによる生産システムの開発.
2007.07~2008.06, 分担, メタンハイドレート層への複数水平坑井群による熱水圧入による生産システム構築と評価.
2007.12~2008.03, 分担, SO2などが混合されたCO2の炭層内吸着挙動に関する基礎データの取得.
2007.08~2008.03, 代表, 地中メタン再生を担う原油分解水素・メタン生成菌群の探索.
2006.09~2007.03, 分担, 熱電併給装置を組み合わせた水平坑井群からの熱水圧入によるガス生産システムの評価.
2005.04~2006.03, 分担, 十和田石の石粉および粉砕粒を利用した機能性壁材の開発.
2005.01~2005.03, 代表, 十和田石採石廃材と微生物を複合した環境浄化資材に用いる微生物の安全性評価
.
2004.04~2005.03, 分担, 十和田石採石廃材と微生物を複合した環境浄化資材の開発
.
2003.04~2004.03, 分担, 重質油生産性向上と微生物による臭気減少効果向上に関する研究.
2003.04~2004.03, 分担, 十和田石の地域内循環を考慮した有効利用に関する研究.
2002.10~2003.03, 代表, MEORに有用な高温微生物の探索に関する研究.
寄附金の受入状況
2018年度, 株式会社東邦アーステック, 水溶性天然ガス貯留層内の微生物調査.
2018年度, 株式会社合同資源, 水溶性天然ガス貯留層内の泥岩層におけるメタンの吸脱着挙動に関する研究.
2016年度, 株式会社合同資源, 水溶性天然ガス貯留層内の各種微生物調査.
2014年度, 公益財団法人新井科学技術振興財団, 公益財団法人新井科学技術振興財団国際交流等助成.
2013年度, Maersk Oil Research & Technology Centre, Fundamental study on Microbial EOR using an oil-degrading and oil-viscosity-reducing microorganism
– Consideration for suitable substrate conditions and effects of the reservoir conditions on the microorganism –
.
2013年度, 合同資源産業株式会社, 水溶性天然ガス貯留層内の硫酸還元菌の棲息状況調査と排かん水の還元に伴う硫化水素の生成予測シミュレーション
.
2012年度, 株式会社APS, 十和田石とその土着微生物によるホルムアルデヒドの吸着・分解効果の検討.
2012年度, 合同資源産業株式会社, 微生物が関わる排かん水還元井の還元能力低下メカニズムに関する現場試験ならびにヨウ素含有廃液からのヨウ素の回収に有用な微生物の検討.
2011年度, 株式会社APS, Collimonas sp. のIn Situ Bioleachingへの適用可能性に関する基礎的研究.
2011年度, 合同資源産業株式会社, ヨウ素抽出かん水の還元に及ぼす脱溶存酸素の影響評価ならびにヨウ素含有廃液からの揮発性有機ヨウ素化合物の選択的回収を目的とした有用微生物のスクリーニング.
2010年度, 株式会社APS, 養鶏敷料堆肥中の窒素分析および有用微生物の分析と分離研究.
2010年度, 合同資源産業株式会社, ヨウ素抽出かん水の効率的な還元を目的とした微生物の利用と制御に関する研究.
2009年度, 合同資源産業株式会社, ヨウ素生産プロセスにおけるかん水の還元能力に関わるかん水棲息微生物に関する基礎的研究.
学内資金・基金等への採択状況
2017年度~2018年度, 平成29年度工学研究新分野開拓助成, 代表, ヨウ素酸化細菌を用いた金の原位置回収技術の開発.
2012年度~2012年度, 社会連携事業経費, 分担, 地域環境を考慮した高効率養鶏システムの構築.
2010年度~2011年度, 九州大学教育研究プログラム・研究拠点形成プロジェクト(P&P), 分担, 地球温暖化防止CO2地中貯留ナチュラルアナログテストフィールドプロジェクト.
2010年度~2010年度, 社会連携事業経費, 分担, 唐津市におけるハム製造と熟成に関わる地下トンネル利用の実用化.
2009年度~2009年度, 社会連携事業経費, 分担, 唐津市未利用トンネルに構築した貯蔵空間の経済性と衛生環境の向上.
2008年度~2008年度, 社会連携事業経費, 分担, 唐津市未利用トンネルにおける恒温空間の構築.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」