九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
鈴木 淳史(すずき あつし) データ更新日:2024.04.10



主な研究テーマ
器官発生や再生、疾患の制御メカニズムに関する研究
キーワード:幹細胞、肝臓、分化、ダイレクトリプログラミング
2007.10.
研究業績
主要著書
1. 堀澤 健一、鈴木 淳史, ダイレクトリプログラミング:再生医療の新展開 「ダイレクトリプログラミングを用いたがん細胞制御と腫瘍抑制」, エヌ・ティー・エス, 2020.08.
2. 三浦 静、鈴木 淳史, ダイレクトリプログラミング:再生医療の新展開 「ダイレクトリプログラミングによる腸幹/前駆細胞の作製」, エヌ・ティー・エス, 2020.08.
3. 鈴木 淳史, ダイレクトリプログラミング:再生医療の新展開 「ダイレクトリプログラミングによる肝細胞の作製」, エヌ・ティー・エス, 2020.08.
4. 鈴木 淳史, ダイレクトリプログラミング:再生医療の新展開 「ダイレクトリプログラミング研究の現状と未来展望(序論)」, エヌ・ティー・エス, 2020.08.
5. Shizuka Miura, Atsushi Suzuki, Intestinal Stem Cells: Direct Lineage Reprogramming of Mouse Fibroblasts to Acquire the Identity of Fetal Intestine-Derived Progenitor Cells, Methods in Molecular Biology, Springer Protocols, 10.1007/978-1-0716-0747-3_14, 2020.07, [URL], Intestinal organoids are useful models for studying the characteristics of intestinal diseases and their treatment. However, a major limiting factor in their usability is the need for donor tissue fragments or pluripotent stem cells to generate the organoids. Here, we describe an approach to generate intestinal organoids from fibroblasts, a new source. We used direct reprogramming technology to generate cells with the properties of fetal intestine-derived progenitor cells (FIPCs) from mouse embryonic fibroblasts (MEFs). These induced FIPCs (iFIPCs) can give rise to cells resembling intestinal stem cells (ISCs), henceforth referred to as induced ISCs (iISCs). These iFIPCs and iISCs form spherical and budding organoids, respectively, similar to FIPCs and ISCs. These induced intestinal organoids could be used for studies on intestinal diseases and regenerative therapy..
主要原著論文
1. Masaki Kawamata, Hiroshi I Suzuki, Ryota Kimura, Atsushi Suzuki, Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs, Nature Biomedical Engineering, 10.1038/s41551-023-01011-7, 7, 5, 672-691, 2023.04, [URL], The precise regulation of the activity of Cas9 is crucial for safe and efficient editing. Here we show that the genome-editing activity of Cas9 can be constrained by the addition of cytosine stretches to the 5'-end of conventional single-guide RNAs (sgRNAs). Such a 'safeguard sgRNA' strategy, which is compatible with Cas12a and with systems for gene activation and interference via CRISPR (clustered regularly interspaced short palindromic repeats), leads to the length-dependent inhibition of the formation of functional Cas9 complexes. Short cytosine extensions reduced p53 activation and cytotoxicity in human pluripotent stem cells, and enhanced homology-directed repair while maintaining bi-allelic editing. Longer extensions further decreased on-target activity yet improved the specificity and precision of mono-allelic editing. By monitoring indels through a fluorescence-based allele-specific system and computational simulations, we identified optimal windows of Cas9 activity for a number of genome-editing applications, including bi-allelic and mono-allelic editing, and the generation and correction of disease-associated single-nucleotide substitutions via homology-directed repair. The safeguard-sgRNA strategy may improve the safety and applicability of genome editing..
2. Takeshi Goya, Kenichi Horisawa, Miyako Udono, Yasuyuki Ohkawa, Yoshihiro Ogawa, Sayaka Sekiya, Atsushi Suzuki, Direct conversion of human endothelial cells into liver cancer-forming cells using nonintegrative episomal vectors, Hepatology Communications, 10.1002/hep4.1911, 2022.02, [URL], Liver cancer is an aggressive cancer associated with a poor prognosis. Development of therapeutic strategies for liver cancer requires fundamental research using suitable experimental models. Recent progress in direct reprogramming technology has enabled the generation of many types of cells that are difficult to obtain and provide a cellular resource in experimental models of human diseases. In this study, we aimed to establish a simple one-step method for inducing cells that can form malignant human liver tumors directly from healthy endothelial cells using nonintegrating episomal vectors. To screen for factors capable of inducing liver cancer-forming cells (LCCs), we selected nine genes and one short hairpin RNA that suppresses tumor protein p53 (TP53) expression and introduced them into human umbilical vein endothelial cells (HUVECs), using episomal vectors. To identify the essential factors, we examined the effect of changing the amounts and withdrawing individual factors. We then analyzed the proliferation, gene and protein expression, morphologic and chromosomal abnormality, transcriptome, and tumor formation ability of the induced cells. We found that a set of six factors, forkhead box A3 (FOXA3), hepatocyte nuclear factor homeobox 1A (HNF1A), HNF1B, lin-28 homolog B (LIN28B), MYCL proto-oncogene, bHLH transcription factor (L-MYC), and Kruppel-like factor 5 (KLF5), induced direct conversion of HUVECs into LCCs. The gene expression profile of these induced LCCs (iLCCs) was similar to that of human liver cancer cells, and these cells effectively formed tumors that resembled human combined hepatocellular-cholangiocarcinoma following transplantation into immunodeficient mice. Conclusion: We succeeded in the direct induction of iLCCs from HUVECs by using nonintegrating episomal vectors. iLCCs generated from patients with cancer and healthy volunteers will be useful for further advancements in cancer research and for developing methods for the diagnosis, treatment, and prognosis of liver cancer..
3. Hiroki Inada, Miyako Udono, Kanae Matsuda-Ito, Kenichi Horisawa, Yasuyuki Ohkawa, Shizuka Miura, Takeshi Goya, Junpei Yamamoto, Masao Nagasaki, Kazuko Ueno, Daisuke Saitou, Mikita Suyama, Yoshihiko Maehara, Wataru Kumamaru, Yoshihiro Ogawa, Sayaka Sekiya, Atsushi Suzuki, Direct reprogramming of human umbilical vein- and peripheral blood-derived endothelial cells into hepatic progenitor cells, Nature Communications, 10.1038/s41467-020-19041-z, 11, 1, 5292, 2020.10, [URL], Recent advances have enabled the direct induction of human tissue-specific stem and progenitor cells from differentiated somatic cells. However, it is not known whether human hepatic progenitor cells (hHepPCs) can be generated from other cell types by direct lineage reprogramming with defined transcription factors. Here, we show that a set of three transcription factors, FOXA3, HNF1A, and HNF6, can induce human umbilical vein endothelial cells to directly acquire the properties of hHepPCs. These induced hHepPCs (hiHepPCs) propagate in long-term monolayer culture and differentiate into functional hepatocytes and cholangiocytes by forming cell aggregates and cystic epithelial spheroids, respectively, under three-dimensional culture conditions. After transplantation, hiHepPC-derived hepatocytesand cholangiocytes reconstitute damaged liver tissues and support hepatic function. The defined transcription factors also induce hiHepPCs from endothelial cells circulating in adult human peripheral blood. These expandable and bipotential hiHepPCs may be useful in the study and treatment of human liver diseases..
4. Kenichi Horisawa, Miyako Udono, Kazuko Ueno, Yasuyuki Ohkawa, Masao Nagasaki, Sayaka Sekiya, Atsushi Suzuki, The dynamics of transcriptional activation by hepatic reprogramming factors, Molecular Cell, 10.1016/j.molcel.2020.07.012, 79, 4, 660-676, 2020.08, [URL], Specific combinations of two transcription factors (Hnf4a plus Foxa1, Foxa2, or Foxa3) can induce direct conversion of mouse fibroblasts into hepatocyte-like cells. However, the molecular mechanisms underlying hepatic reprogramming are largely unknown. Here, we show that the Foxa protein family members and Hnf4a sequentially and cooperatively bind to chromatin to activate liver-specific gene expression. Although all Foxa proteins bind to and open regions of closed chromatin as pioneer factors, Foxa3 has the unique potential of transferring from the distal to proximal regions of the transcription start site of target genes, binding RNA polymerase II, and co-traversing target genes. These distinctive characteristics of Foxa3 are essential for inducing the hepatic fate in fibroblasts. Similar functional coupling of transcription factors to RNA polymerase II may occur in other contexts whereby transcriptional activation can induce cell differentiation..
5. Shizuka Miura, Atsushi Suzuki, Induction of steatohepatitis and liver tumorigenesis by enforced Snail expression in hepatocytes, The American Journal of Pathology, 10.1016/j.ajpath.2020.02.005, 190, 6, 1271-1283, 2020.06, [URL], Snail is a transcription factor that regulates many cellular events involved in development, homeostasis, and disease. In hepatocellular carcinoma (HCC), Snail induces epithelial-to-mesenchymal transition that confers invasive properties on tumor cells during HCC progression and malignancy. Snail activation observed in HCC mouse models suggests its involvement in not only progression, but also onset of HCC. However, it remains unclear whether Snail directly contributes to HCC initiation or whether it supports HCC initiation promoted by other oncogenes. In this study, we generated mouse models for liver-specific and hepatocyte-specific overexpression of Snail to reveal the independent roles of Snail in liver homeostasis and disease. Our data demonstrated that enforced Snail expression resulted in liver and hepatocyte enlargement, inflammatory cell infiltration in the liver, lipid accumulation in hepatocytes, substantial increases in serum alanine transaminase and bile acids, yellow discoloration of tissues caused by bilirubin accumulation, and liver tumorigenesis. Snail overexpression suppressed mRNA expression of the tight junction components claudins and occludin and that of proteins associated with bile acid metabolism, leading to disruption of the biliary canaliculus formed among hepatocytes and excretion of abnormal amounts of unusual bile acids from hepatocytes. In conclusion, enforced Snail expression in hepatocytes is sufficient for induction of steatohepatitis and liver tumorigenesis through disruption of the biliary canaliculus and bile acid homeostasis in the liver..
6. Maiko Terada, Masaki Kawamata, Ryota Kimura, Sayaka Sekiya, Go Nagamatsu, Katsuhiko Hayashi, Kenichi Horisawa, Atsushi Suzuki, Generation of Nanog reporter mice that distinguish pluripotent stem cells from unipotent primordial germ cells, Genesis, 10.1002/dvg.23334, 57, 11-12, e23334, 2019.11.
7. Yasuo Takashima, Kenichi Horisawa, Miyako Udono, Yasuyuki Ohkawa, Atsushi Suzuki, Prolonged inhibition of hepatocellular carcinoma cell proliferation by combinatorial expression of defined transcription factors, Cancer Science, 10.1111/cas.13798, 109, 11, 3543-3553, 2018.11, [URL], Hepatocellular carcinoma (HCC) accounts for a large proportion of liver cancer cases and has an extremely poor prognosis. Therefore, novel innovative therapies for HCC are strongly desired. As gene therapy tools for HCC, 2 hepatic transcription factors (TF), HNF4A and HNF1A, have been used to suppress proliferation and to extinguish cancer-specific characteristics of target cells. However, our present data demonstrated that single transduction of HNF4A or HNF1A had only a limited effect on suppression of HCC cell proliferation. Thus, in this study, we examined whether combinations of TF could show more effective antitumor activity, and found that combinatorial transduction of 3 hepatic TF, HNF4A, HNF1A and FOXA3, suppressed HCC cell proliferation more stably than single transduction of these TF. The combinatorial transduction also suppressed cancer-specific phenotypes, such as anchorage-independent growth in culture and tumorigenicity after transplantation into mice. HCC cell lines transduced with the 3 TF did not recover their proliferative property after withdrawal of anticancer drugs, indicating that combinatorial expression of the 3 TF suppressed the growth of all cell subtypes within the HCC cell lines, including cancer stem-like cells. Transcriptome analyses revealed that the expression levels of a specific gene set involved in cell proliferation were only decreased in HCC cells overexpressing all 3 TF. Moreover, combined transduction of the 3 TF could facilitate hepatic differentiation of HCC cell lines. Our strategy for inducing stable inhibition and functional differentiation of tumor cells using a defined set of TF will become an effective therapeutic strategy for various types of cancers..
8. Junpei Yamamoto, Miyako Udono, Shizuka Miura, Sayaka Sekiya, Atsushi Suzuki, Cell aggregation culture induces functional differentiation of induced hepatocyte-like cells through activation of Hippo signaling, Cell Reports, 10.1016/j.celrep.2018.09.010, 25, 1, 183-198, 2018.10, [URL], Recent progress in direct lineage reprogramming has enabled the generation of induced hepatocyte-like (iHep) cells and revealed their potential as an alternative to hepatocytes for medical applications. However, the hepatic functions of iHep cells are insufficient compared with those of primary hepatocytes. Here, we show that cell-aggregate formation can rapidly induce growth arrest and hepatic maturation of iHep cells through activation of Hippo signaling. During formation of iHep cell aggregates, Yap inactivation is induced by actin reorganization and intercellular adhesion, leading to upregulation of Hnf1α expression in the absence of the Yap/Tead/Chd4 transcriptional repressor unit. Hnf1α then acts as a central transcription factor that regulates liver-enriched gene expression in iHep cell aggregates and induces functional differentiation of iHep cells. Moreover, iHep cell aggregates efficiently reconstitute injured liver tissues and support hepatic function after transplantation. Thus, iHep cell aggregates may provide insights into basic research and potential therapies for liver diseases. Yamamoto et al. show that cell-aggregate formation induces functional differentiation of hepatocyte-like cells, designated iHep cells, which are directly induced from mouse fibroblasts. Hepatic maturation of iHep cells is regulated by activation of Hippo signaling that leads to upregulation of Hnf1α expression for induction of liver-enriched gene expression..
9. Shizuka Miura, Atsushi Suzuki, Generation of Mouse and Human Organoid-Forming Intestinal Progenitor Cells by Direct Lineage Reprogramming, Cell Stem Cell, 10.1016/j.stem.2017.08.020, 21, 4, 456-471.e5, 2017.10, [URL], Intestinal organoids hold great promise as a valuable tool for studying and treating intestinal diseases. The currently available sources of human intestinal organoids, tissue fragments or pluripotent stem cells, involve invasive procedures or complex differentiation protocols, respectively. Here, we show that a set of four transcription factors, Hnf4α, Foxa3, Gata6, and Cdx2, can directly reprogram mouse fibroblasts to acquire the identity of fetal intestine-derived progenitor cells (FIPCs). These induced FIPCs (iFIPCs) form spherical organoids that develop into adult-type budding organoids containing cells with intestinal stem cell properties. The resulting stem cells produce all intestinal epithelial cell lineages and undergo self-renewing cell divisions. After transplantation, the induced spherical and budding organoids can reconstitute colonic and intestinal epithelia, respectively. The same combination of four defined transcription factors can also induce human iFIPCs. This alternative approach for producing intestinal organoids may well facilitate application for disease analysis and therapy development. Miura and Suzuki describe direct conversion of mouse fibroblasts to cells resembling fetal intestine-derived progenitor cells that can give rise to intestinal stem cell organoids and reconstitute injured colonic tissues after transplantation. They also show that a similar approach can work to make human induced intestinal progenitor cells..
10. Sayaka SEKIYA, Shizuka MIURA, Kanae MATSUDA-ITO, Atsushi SUZUKI, Myofibroblasts Derived from Hepatic Progenitor Cells Create the Tumor Microenvironment, Stem Cell Reports, 10.1016/j.stemcr.2016.11.002, 7, 6, 1130-1139, 2016.12, 本研究では、成体マウス肝前駆細胞が、肝細胞や胆管上皮細胞だけでなく、筋線維芽細胞にも分化できることを見出した。通常、培養下における筋線維芽細胞への分化頻度はとても低いが、p53欠損肝前駆細胞から形成される腫瘍では、ドナー細胞由来の筋線維芽細胞が数多く観察され、上皮系腫瘍組織を取り囲む間質組織として「腫瘍微小環境」の様態を呈していた。したがって、p53を欠損した肝前駆細胞は、自らが腫瘍を形成するだけでなく、腫瘍形成をサポートする微小環境をも自ら作り出していることが判明した。.
11. Maiko TERADA, Kenichi HORISAWA, Shizuka MIURA, Yasuo TAKASHIMA, Yasuyuki OHKAWA, Sayaka SEKIYA, Kanae MATSUDA-ITO, Atsushi SUZUKI, Kupffer cells induce Notch-mediated hepatocyte conversion in a common mouse model of intrahepatic cholangiocarcinoma, Scientific Reports, 10.1038/srep34691, 6, 2016.10, 本研究では、肝内胆管がんにおける肝細胞の運命転換において、肝臓中に存在するマクロファージであるクッパー細胞が障害部位に集積し、肝細胞を刺激してNotchシグナルの活性化を促していることを明らかにした。.
12. Yasuo Takashima, Maiko Terada, Miyako Udono, Shizuka Miura, Junpei Yamamoto, Atsushi Suzuki, Suppression of lethal-7b and miR-125a/b Maturation by Lin28b Enables Maintenance of Stem Cell Properties in Hepatoblasts, Hepatology, 10.1002/hep.28548, 64, 1, 245-260, 2016.07, [URL], In liver development, hepatoblasts that act as hepatic stem/progenitor cells proliferate and differentiate into both hepatocytes and cholangiocytes to form liver tissues. Although numerous factors contribute to this event, little is known about the roles of microRNAs in hepatoblast proliferation and differentiation. In this study, we focused on the lineage-28 (Lin28) family proteins, which are required for microRNA regulation in pluripotent stem cells and cancer cells, and investigated their roles as regulatory factors for the properties of hepatoblasts. Conclusion: Lin28b was specifically expressed in hepatoblasts, and its suppression induced growth arrest and cholangiocyte differentiation of hepatoblasts; mechanistically, Lin28b positively regulates the expression of Lin28b itself and cell cycle–related proteins in hepatoblasts by suppressing the maturation of target microRNAs, lethal-7b and miR-125a/b, enabling maintenance of the stem cell properties of hepatoblasts, such as their capabilities for proliferation and bi-lineage differentiation, during liver development. (Hepatology 2016;64:245–260)..
13. Yasuo TAKASHIMA, Maiko TERADA, Masuyo KAWABATA, Atsushi SUZUKI, Dynamic three-dimensional morphogenesis of intrahepatic bile ducts in mouse liver development, Hepatology, 10.1002/hep.27436, 61, 3, 1003-1011, 2015.03, 肝臓の発生では、肝幹細胞(肝芽細胞)から分化した胆管上皮細胞が門脈周囲にductal plateと呼ばれる細胞層を形成し、発生プログラムにしたがって徐々に肝内胆管を形成していく。肝内胆管は肝臓内で管構造を形成するため、その形態形成過程を詳しく調べるには、肝発生初期から胆管上皮細胞を連続的かつ立体的に解析する必要がある。しかしながら、肝内胆管の発生は、これまで主に組織切片を用いた二次元平面で解析されており、三次元形態形成過程の解析や形態計測学に基づいた定量的な解析は行われていなかった。そこで我々は、マウスの胎仔から成体に至るまでの肝内胆管の立体構造をコンピューター上で再構築することでモデル化し、成長する管構造の長さや枝の数、結合予測値、門脈からの離散距離といった形態計測学的な事項について解析を行い、肝内胆管の発生過程を詳細かつ定量的に調べた。その結果、三次元再構築モデルを用いた時空間的な観察と形態計測学的解析による定量的な解析によって、立体的かつ動的な胆管形成モデルを構築することに成功した。.
14. Shizuka MIURA, Atsushi SUZUKI, Rapid cell-fate conversion of mouse fibroblasts into hepatocyte-like cells, Inflammation and Regeneration, http://doi.org/10.2492/inflammregen.34.211, 34, 5, 211-216, 2014.12, これまでの研究で、我々はマウスの線維芽細胞にHnf4αとFoxa(Foxa1、Foxa2、Foxa3のいずれかひとつ)という肝細胞分化に関連した2種類の転写因子を導入することで、線維芽細胞を直接肝細胞の性質を有する細胞(iHep細胞)へと変化させることに成功した。本研究では、線維芽細胞からiHep細胞へのリプログラミングと細胞増殖の関係を明らかにすべく、リプログラミング過程における細胞増殖の様子を動画解析するとともに、遺伝子・タンパク質の経時的発現解析を行った。その結果、線維芽細胞にiHep細胞誘導因子を導入すると、わずか48時間でiHep細胞が出現し、増殖を開始することが明らかとなった。.
15. Shizuka MIURA, Atsushi SUZUKI, Acquisition of lipid metabolic capability in hepatocyte-like cells directly induced from mouse fibroblasts, Frontiers in Cell and Developmental Biology, 10.3389/fcell.2014.00043, 2, 43, 1-6, 2014.08, これまでの研究で、我々はマウスの線維芽細胞にHnf4αとFoxa(Foxa1、Foxa2、Foxa3のいずれかひとつ)という肝細胞分化に関連した2種類の転写因子を導入することで、線維芽細胞を直接肝細胞の性質を有する細胞(iHep細胞)へと変化させることに成功した。そこで本研究では、iHep細胞の脂質代謝に関する機能を解析した。その結果、iHep細胞は肝細胞と同様に中性脂肪の合成や蓄積と分泌が可能であり、既知の脂肪酸合成阻害薬にも反応できることが示された。.
16. Sayaka SEKIYA, Atsushi SUZUKI, Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver, American Journal of Pathology, 184, 5, 1468-1478, 2014.05, 本研究では、慢性的な肝障害によって門脈周囲に出現する偽胆管様構造(細胆管反応)の由来を明らかにすべく、誘導型Cre/loxPシステムを用いた細胞系譜追跡実験を行った。その結果、偽胆管を形成する細胞は、胆管上皮細胞の特徴をもつにも関わらず、Notchシグナルを介した肝細胞の運命転換によって、肝細胞から生じることが判明した。以上の結果は、慢性的な障害に対して再生を繰り返し行う肝臓では、正常な再生応答から逸脱した特殊な状況に陥ることによって肝細胞の分化状態が破綻し、肝細胞が胆管上皮細胞の特徴を有する偽胆管細胞に変化することを示している。我々は、このような現象を「疾患関連リプログラミング」と呼び、癌などの難治性疾患との関係に注目している。.
17. Sayaka SEKIYA, Atsushi SUZUKI, Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes, The Journal of Clinical Investigation, 122, 11, 3914-3918, 2012.11, 肝内胆管がんは、肝臓に発生する悪性腫瘍の中で2番目に多く、その発症率や死亡率は近年世界的に増加している。ウイルス性肝炎に起因する肝細胞がんとは異なり、その発症原因は不明で、放射線療法や化学療法による治療効果は低く、肝切除が唯一の治療法ともいえる。肝内胆管がんとは、肝臓内で胆管を形成する胆管上皮細胞から発生する悪性腫瘍と定義されているが、ウイルス性肝炎の患者にも肝内胆管がんの発生がしばしば見られることから、肝細胞の形質転換に由来する可能性も排除できない。そこで我々は、肝内胆管がんが従来の考え通りに胆管上皮細胞から生じるのか、それとも実際は肝細胞から生じる腫瘍なのかを検証すべく、それぞれの細胞を特異的に標識し、それらの子孫を正確に追跡できる遺伝子改変マウスを作製した。そして、作製したマウスに肝内胆管がんを発症させ、形成された肝内胆管がんが肝細胞と胆管上皮細胞のどちらを起源としているのかを調べた。その結果、これまでの常識を覆し、肝内胆管がんが、胆管上皮細胞ではなく肝細胞から生じる腫瘍であることを発見した。さらに、肝内胆管がんの形成過程において、肝細胞が胆管上皮細胞に似た細胞へと変化するためには、肝細胞におけるNotchシグナルの活性化が重要なことも明らかにした。.
18. Sekiya S. and Suzuki A., Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors, Nature, 10.1038/nature10263, 475, 7356, 390-393, 2011.06, 肝細胞は多くの転写因子の働きによって胎生期に肝前駆細胞から分化するのが普通だが、稀に、障害を受けた膵臓の外分泌細胞や骨髄などに含まれる間葉系幹細胞から肝細胞が分化することがある。また、骨髄移植後に血液細胞が肝細胞と融合し、肝細胞として肝臓組織を構築することもある。これらの事象は、肝細胞以外の細胞を肝細胞に変化させる因子の存在を示唆しており、ある環境下ではそれらの因子が活性化して肝細胞以外の細胞を肝細胞に変化させていると考えられる。したがって、もし、このような肝細胞の運命決定因子を同定することができれば、それらを使って皮膚の線維芽細胞を肝細胞へと直接変化させることが可能になるかもしれない。そこで今回、我々は、肝細胞の運命決定を担う特定因子を同定し、マウスの線維芽細胞から肝細胞を直接作り出すことを試みた。その結果、線維芽細胞にHnf4αとFoxa(Foxa1、Foxa2、Foxa3のいずれかひとつ)という肝細胞分化に関連した2種類の転写因子を導入することで、線維芽細胞を肝細胞の性質をもった細胞(iHep細胞)へと直接変化させることに成功し、肝細胞の運命決定因子を同定した。作製したiHep細胞は肝細胞の形態的特徴や遺伝子・タンパク質発現を有し、肝細胞特有の機能をもったまま培養下での増殖や維持、凍結保存が可能であった。また、肝機能不全で死に至る高チロシン血症モデルマウスの肝臓へiHep細胞を移植すると、肝細胞として障害を受けた肝臓組織を機能的に再構築し、マウスの致死率を大幅に減少させることが可能であった。本法では、わずか2種類の転写因子を線維芽細胞に発現させるだけで、人工多能性幹細胞(iPS細胞)を経由することなく、線維芽細胞から直接肝細胞を作製可能なことから、移植医療や創薬研究、バイオ人工肝臓の開発などへの応用が期待される。.
19. Sekiya S. and Suzuki A., Glycogen synthase kinase 3β-dependent Snail degradation directs hepatocyte proliferation in normal liver regeneration, Proc Natl Acad Sci USA, 108, 27, 11175-11180, 2011.06.
主要総説, 論評, 解説, 書評, 報告書等
1. 川又 理樹、鈴木 淳史, バーコード標識が蛍光標識局在を変化させる新規Lineage Tracing技術, Precision Medicine, 2023.07.
2. Kenichi HORISAWA, Atsushi SUZUKI, The role of pioneer transcription factors in the induction of direct cellular reprogramming, Regenerative Therapy, https://doi.org/10.1016/j.reth.2023.06.002, 2023.06, [URL].
3. 堀澤 健一、鈴木 淳史, ダイレクトリプログラミングと転写制御, 生体の科学, https://doi.org/10.11477/mf.2425201683, 2023.06.
4. 鈴木 淳史, 肝臓と腸におけるダイレクトリプログラミング誘導法の開発, 再生医療, 2022.01.
5. 鈴木 淳史, 肝臓における幹細胞システムの特殊性とリプログラミング, 生体の科学, https://doi.org/10.11477/mf.2425201326, 2021.04.
6. Kenichi HORISAWA, Atsushi SUZUKI, Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries, Proceedings of the Japan Academy, Ser. B, Physical and Biological Sciences, 10.2183/pjab.96.012, 2020.04, [URL].
7. Shizuka Miura, Atsushi Suzuki, Brief summary of the current protocols for generating intestinal organoids, Development Growth and Differentiation, 10.1111/dgd.12559, 2018.08, [URL], The intestine has fundamental functions for the maintenance of homeostasis, including food digestion and nutrient/water absorption. Although the lumen of the intestine is always exposed to pathogens, intestinal epithelial cells form monolayer sheets that act as an epithelial barrier to prevent the invasion of pathogens. Thus, disruption of the intestinal epithelial barrier causes inflammatory bowel diseases. To investigate the details of these intractable intestinal diseases, it is necessary to analyze the characteristics of intestinal epithelial cells in vitro. However, it is difficult to maintain and propagate intestinal epithelial cells in culture. Recently, intestinal organoid culture systems have been established, in which differentiated intestinal epithelial lineage cells can be continuously produced from intestinal stem cells and form epithelial organoids with crypt-like structures in long-term culture. Moreover, intestinal epithelial organoids can be generated not only from intestinal tissue-derived cells, embryonic stem cells, and induced pluripotent stem cells, but also by inducing direct conversion of nonintestinal somatic cells into intestinal epithelial cells. These intestinal organoids can be used in basic studies for understanding the mechanisms underlying intestinal development and diseases and will be applied in future transplantation therapy and drug discovery to treat intestinal diseases..
8. 鈴木 淳史, Notchシグナルを介した肝細胞の分化転換による肝内胆管癌の発生, The Liver Cancer Journal, 2017.12.
9. 三浦 静、鈴木 淳史, ダイレクトリプログラミング法によるオルガノイドの形成能をもつマウスおよびヒトの腸前駆細胞の作製, ライフサイエンス新着論文レビュー, 2017.10, [URL].
10. 鈴木 淳史, 肝再生医療への応用に向けた人工肝細胞の作製, 小児外科, 2017.05.
11. Masaki KAWAMATA, Atsushi SUZUKI, Cell fate modification toward the hepatic lineage by extrinsic factors, The Journal of Biochemistry, 2017.04.
12. Takeshi GOYA, Atsushi SUZUKI, Novel methods for the treatment of liver fibrosis using in vivo direct reprogramming technology, Stem Cell Investigation, 2016.12.
13. Kenichi HORISAWA, Atsushi SUZUKI, Cell-based regenerative therapy for liver disease, Innovative Medicine: Basic Research and Development, Springer Japan (Tokyo), 2015.12.
14. 鈴木 淳史, iPS細胞を経由しないダイレクトリプログラミング: 線維芽細胞から肝細胞へ, 腎と透析, 2015.12.
15. 鈴木 淳史, 皮膚細胞から肝細胞を直接誘導する技術, 日本臨牀増刊号「再生医療」, 2015.06.
16. Atsushi SUZUKI, Evidence of cell-fate conversion from hepatocytes to cholangiocytes in the injured liver: in vivo genetic lineage-tracing approaches, Current Opinion in Gastroenterology, 2015.05.
17. 堀澤 健一, 鈴木 淳史, 世界のダイレクトリプログラミング研究の動向, 細胞工学別冊「ダイレクトリプログラミング」, 2015.04.
18. 関谷 明香, 鈴木 淳史, マウスiHep細胞の作製方法, 細胞工学別冊「ダイレクトリプログラミング」, 2015.04.
19. 鈴木 淳史, 序論ーダイレクトリプログラミングとは?, 細胞工学別冊「ダイレクトリプログラミング」, 2015.04.
20. 鈴木 淳史, ダイレクトリプログラミングによる肝細胞の作製, 肝胆膵, 2015.03.
21. Atsushi SUZUKI, Liver regeneration: a unique and flexible reaction depending on the type of injury, Genes to Cells, 2015.02.
22. 鈴木 淳史, 医療応用へ向けた肝細胞の直接誘導技術, 実験医学増刊「再生医療2015 幹細胞と疾患iPS細胞の研究最前線」, 2015.01.
23. Atsushi SUZUKI, Direct reprogramming, Inflammation and Regeneration, 2014.12.
24. 鈴木 淳史, 皮膚細胞から肝細胞へのダイレクトリプログラミング, 細胞, 2014.05.
25. 鈴木 淳史, Direct reprogramming 〜皮膚線維芽細胞から肝細胞へ, 感染・炎症・免疫, 2014.04.
26. 鈴木 淳史, 細胞のロバストな振る舞い:再生,発がん,リプログラミング, 細胞工学, 2014.01.
27. 鈴木 淳史, 細胞運命の直接転換 ─ダイレクトリプログラミング─, The Frontiers in Life Sciencesシリーズ「幹細胞研究と再生医療」, 2013.12.
28. 鈴木 淳史, 肝細胞分化の人為的な誘導と疾患による破綻, 実験医学「細胞の運命決定とリプログラミング」, 2013.08.
29. 鈴木 淳史, 概論ー細胞運命制御機構の解明から医療応用へ, 実験医学「細胞の運命決定とリプログラミング」, 2013.08.
30. Atsushi SUZUKI, Artificial induction and disease-related conversion of the hepatic fate, Current Opinion in Genetics & Development, 2013.05.
31. 鈴木 淳史, 肝内胆管癌がNotchシグナルを介した肝細胞の分化転換から生じることを発見, 分子消化器病, 2013.03.
32. Yasuo TAKASHIMA, Atsushi SUZUKI, Regulation of organogenesis and stem cell properties by T-box transcription factors, Cellular and Molecular Life Sciences, 2013.03.
33. 鈴木淳史, 肝細胞分化を誘導するマスター因子の同定, 生化学, 2012.08.
34. 鈴木淳史, 特定因子による細胞運命の直接転換, 実験医学増刊「幹細胞のメディカルサイエンス」, 2012.06.
35. 鈴木淳史, 肝再生の仕組みに関する新知見 — 増殖を求め続ける肝細胞と負の制御, 医学のあゆみ, 2012.03.
36. 鈴木淳史, 特定因子による皮膚細胞から肝細胞への直接変換, 分子消化器病, 2011.12.
37. 鈴木淳史, がん幹細胞とエピジェネティクス — 環境の変化がいざなう細胞運命のリプログラミング, 実験医学増刊「がん幹細胞 — ステムネス, ニッチ, 標的治療への理解」, 2011.12.
38. 鈴木淳史, 特定因子による皮膚細胞から肝細胞への直接変換, 肝細胞研究会ホットトピックス, 2011.11, [URL].
39. 鈴木淳史, 転写因子による肝組織発生の制御機構, 肝胆膵, 2009.10.
40. 鈴木淳史、関谷明香, マウスの皮膚細胞から肝細胞を直接作製することに成功, 新着論文レビュー, 2011.07, [URL].
41. 鈴木淳史, 肝細胞分化関連遺伝子の導入による皮膚細胞からの肝細胞作製技術, 再生医療, 2009.08.
42. 鈴木淳史, 肝細胞分化関連遺伝子の導入による皮膚細胞からの肝細胞作製技術, 再生医療, 2008.08.
主要学会発表等
1. 唐澤 皐月、川又 理樹、三浦 静、鈴木 淳史, ダイレクトリプログラミング因子を用いた肝線維化治療における最適条件の解明, 第22回日本再生医療学会総会, 2023.03.
2. 三浦 静、堀澤 健一、鈴木 淳史, ダイレクトリプログラミングで作製された腸上皮オルガノイドの単一細胞プロファイリング, 第22回日本再生医療学会総会, 2023.03.
3. 鈴木 陵雅、堀澤 健一、三浦 静、大川 恭行、鈴木 淳史, 誘導腸前駆細胞におけるリプログラミング機構の解明, 第45回日本分子生物学会年会, 2022.11.
4. 川又 理樹、鈴木 洋、鈴木 淳史, プロモーター編集による新規グラデーションRainbow多細胞追跡技術の開発, 第45回日本分子生物学会年会ワークショップ「細胞ヘテロ可塑性 / 生体の頑強性と柔軟性を支える細胞不均一性と可塑性の理解に向けて」, 2022.11.
5. Kawamata M., Suzuki H.I., Suzuki A., Rational optimization of versatile genome editing applicability by tuning CRISPR-Cas9 activity, The 31th Hot Spring Harbor International Symposium “Expanding views on Systems biology and Immunology”, 2022.11.
6. 唐澤 皐月、川又 理樹、三浦 静、鈴木 淳史, 転写因子発現による肝線維化治療における最適な標的細胞の同定, 第29回肝細胞研究会, 2022.08.
7. 三浦 静、辻野 智史、堀澤 健一、井上 和也、唐澤 皐月、鈴木 淳史, 培養下における肝細胞から腸幹/前駆細胞への運命転換, 第29回肝細胞研究会, 2022.08.
8. 堀澤 健一、三浦 静、荒木 啓充、三浦 史仁、伊藤 隆司、鈴木 淳史, 誘導腸幹細胞の線維芽細胞からの直接誘導過程におけるエピジェネティックリモデリングの解析, 第15回日本エピジェネティクス研究会年会, 2022.06.
9. 川又 理樹、鈴木 洋、鈴木 淳史, DNA barcodeを介した勾配蛍光誘導による次世代型二重標識Lineage tracing技術の開発, 日本ゲノム編集学会第7回大会, 2022.06.
10. 河野 雄紀、三浦 静、川又 理樹、堀澤 健一、吉丸 耕一朗、松浦 俊治、田尻 達郎、鈴木 淳史, ダイレクトリプログラミングにより作製したヒト肝前駆細胞による肝線維化の抑制, 第59回日本小児外科学会学術集会, 2022.05.
11. 三浦 静、辻野 智史、堀澤 健一、井上 和也、唐澤 皐月、鈴木 淳史, 培養下における肝細胞から腸幹/前駆細胞への運命転換, 第21回日本再生医療学会総会, 2022.03.
12. 鈴木 淳史, ダイレクトリプログラミング技術を用いた基礎研究の推進と医療展開, 第21回日本再生医療学会総会シンポジウム「多能性幹細胞からの組織構築」, 2022.03.
13. 河原 真代、三浦 静、鈴木 陵雅、鈴木 淳史, ヒト誘導肝前駆細胞と他細胞の共培養による凝集体形成, 第21回日本再生医療学会総会, 2022.03.
14. 河野 雄紀、鈴木 淳史, ダイレクトリプログラミングにより作製したヒト肝前駆細胞による肝線維化の抑制, 第21回日本再生医療学会総会, 2022.03.
15. Atsushi SUZUKI, Direct reprogramming technology for basic research and clinical applications, The 30th Hot Spring Harbor International Symposium Chromatin Potential in Development and Differentiation “New Technologies Meet Biology”, 2022.01.
16. Kawamata M., Suzuki H.I., Suzuki A., Development of CRISPR-Based Rainbow/Barcode Dual Labeling System, The 30th Hot Spring Harbor International Symposium Chromatin Potential in Development and Differentiation “New Technologies Meet Biology”, 2022.01.
17. Atsushi SUZUKI, Direct reprogramming technology for basic research and clinical applications, 2021 Cold Spring Harbor Asia (CSHA) meeting on Liver Development, Metabolism, Disease & Cancer, 2021.12.
18. 堀澤 健一、鈴木 淳史, 肝細胞ダイレクトリプログラミング過程における転写因子のダイナミクス解析, 第44回日本分子生物学会年会, 2021.12.
19. 川又 理樹、鈴木 洋、鈴木 淳史, Development of a Novel Rainbow/Barcode Dual Labeling System Using CRISPR-Cas9, 第44回日本分子生物学会年会ワークショップ「Investigating cellular diversity by multi-scale single cell analyses」, 2021.12.
20. Inada H., Udono M., Matsuda K., Horisawa K., Ogawa Y., Tanaka Y., Suzuki A., Generation of cystic fibrosis disease model by using direct reprogramming technology, The 72nd Annual Meeting of the American Association for the Study of Liver Diseases (AASLD), 2021.11.
21. 鈴木 淳史, ダイレクトリプログラミングによるヒト肝前駆細胞の作製, 第62回日本先天代謝異常学会学術集会, 2021.11.
22. 稲田 浩気、鵜殿 美弥子、松田 花菜江、堀澤 健一、小川 佳宏、田中 靖人、鈴木 淳史, ダイレクトリプログラミング法によるヒト血管内皮細胞から肝前駆細胞への分化誘導, 第28回肝細胞研究会, 2021.09.
23. 川又 理樹、鈴木 洋、鈴木 淳史, 活性調節型CRISPR-Cas9による安全で効率的な遺伝子治療技術の開発, 日本ゲノム編集学会第6回総会, 2021.06.
24. Atsushi SUZUKI, Direct reprogramming to hepatic and intestinal lineages, The 18th Stem Cell Research Symposium, 2021.05.
25. 合谷 孟、堀澤 健一、鵜殿 美弥子、小川 佳宏、鈴木 淳史, ダイレクトリプログラミングによるヒト肝癌モデルの作成, 第118回日本内科学会総会・講演会, 2021.04.
26. 堀澤 健一、鈴木 淳史, 肝細胞誘導転写因子のダイナミクス解析, 第14回日本エピジェネティクス研究会年会, 2021.03.
27. 鈴木 淳史, 実用性の高い肝細胞リプログラミング技術の開発, 第20回日本再生医療学会総会, 2021.03.
28. 鈴木 淳史, ダイレクトリプログラミングによる細胞創生と医療応用, 第26回関東ハートセミナー, 2021.02.
29. Shizuka Miura, Kenichi Horisawa, Atsushi SUZUKI, Generation of mouse and human intestinal progenitor cells using direct reprogramming technology, Exchange Program Seminar between France and Japan, Frontiers of stem cell and organoid technology, From Basic to Bedside, 2021.01.
30. Atsushi SUZUKI, Generation of expandable and bipotential human hepatic progenitor cells by direct lineage reprogramming, The 5th Symposium of the Inter-University Research Network for Trans-Omics Medicine “The Future of Trans-Omics in the Age of COVID-19”, 2021.01.
31. 堀澤健一、鈴木淳史, 肝細胞へのダイレクトリプログラミングにおける転写因子機能の解析, 第38回染色体ワークショップ・第19回核ダイナミクス研究会, 2021.01.
32. Atsushi SUZUKI, Generation of expandable and bipotential human hepatic progenitor cells by direct lineage reprogramming, 第43回日本分子生物学会年会, 2020.12.
33. 鈴木 淳史, Generation of functional hepatocytes by direct lineage reprogramming, 第63回日本糖尿病学会, 2020.10.
34. 鈴木 淳史, ダイレクトリプログラミングによる腸上皮幹/前駆細胞の作出, 第19回日本再生医療学会総会, 2020.05.
35. 鈴木 淳史, ダイレクトリプログラミングによる機能性肝細胞の作出, 第19回日本再生医療学会総会, 2020.05.
36. 川又 理樹、木村 亮太、鈴木 淳史, CRISPR-Cas9の活性調節によるアレル選択的ゲノム編集法の開発, 第42回日本分子生物学会年会, 2019.12.
37. 鵜殿 美弥子、堀澤 健一、村山 僚、鈴木 淳史, 由来の異なる組織由来iHep細胞における遺伝子発現の比較解析, 第42回日本分子生物学会年会, 2019.12.
38. 鈴木 淳史, 転写因子が引き起こすエピジェネティックリモデリングと細胞運命転換, 第42回日本分子生物学会年会, 2019.12.
39. 鈴木 淳史, ダイレクトリプログラミングによる機能性肝細胞の作出と肝再生医療, 第31回JBICバイオ関連基盤技術研究会, 2019.11.
40. 稲田 浩気、鈴木 淳史, ダイレクトリプログラミングによるヒト肝前駆細胞の作製, PHILOSOPHY, 2019.10.
41. Atsushi SUZUKI, Generation of induced intestinal stem and progenitor cells by direct lineage reprogramming, The Copenhagen Bioscience Conference on Intestinal Organoids - from stem cells to metabolism and microbiome interactions, 2019.09, Under normal physiological conditions, the fates of cells that compose various parts of organs are determined during development and never change to those of other cell types. However, recent advances in the induction of cellular reprogramming provide a great chance for generation of a completely different cell type from an original cell source by artificially modulating the gene expression pattern of cells. For example, hepatocytes normally only reside in the liver. However, we have succeeded in the induction of the hepatic program in mouse fibroblasts by expressing a set of defined transcription factors. These induced hepatocyte-like cells (iHepCs) have hepatocyte-specific properties and functionally restore damaged hepatic tissues after transplantation. In a recent study, we also found a specific combination of transcription factors that can directly induce conversion of mouse fibroblasts to organoid-forming fetal intestinal progenitor cells (FIPCs), which are designated induced FIPCs (iFIPCs). Under three-dimensional culture conditions, iFIPCs give rise to cells with intestinal stem cell properties, which can produce all intestinal epithelial cell lineages and be maintained with self-renewing cell divisions, and functionally reconstitute injured colonic tissues after transplantation. Moreover, the same set of transcription factors can be used for the generation of human iFIPCs. Thus, the direct reprogramming technology that enables the production of induced intestinal organoids may provide insights into potential therapies and drug discovery research for intestinal diseases..
42. 堀澤 健一、三浦 静、鈴木 淳史, 肝再生に伴う脂質代謝変動のリピドーム解析, 新学術領域研究「細胞ダイバース」第4回公開シンポジウム, 2019.06.
43. 従野 雅義、堀澤 健一、鈴木 淳史, 肝細胞へのダイレクトリプログラミングを阻害する転写因子の同定, 新学術領域研究「クロマチン潜在能」第1回クロマチン潜在能ワークショップ, 2019.06.
44. 堀澤 健一、三浦 静、鈴木 淳史, 部分肝切除後の肝再生に伴う代謝変動のメタボローム解析, 新学術領域研究「クロマチン潜在能」第1回クロマチン潜在能ワークショップ, 2019.06.
45. 鈴木 淳史, 肝再生の制御機構と肝再生不全に基づく疾患の発症機構の解明, 新学術領域研究「クロマチン潜在能」第2回領域会議, 2019.06.
46. Atsushi SUZUKI, Direct reprogramming to hepatic and intestinal lineages, International Symposium: Principles of pluripotent stem cells underlying plant vitality, 2019.05.
47. 鈴木 淳史, ダイレクトリプログラミングによる肝細胞誘導の標準化, 第18回日本再生医療学会総会, 2019.03.
48. 従野 雅義、堀澤 健一、鈴木 淳史, 肝細胞へのダイレクトリプログラミングを阻害する転写因子の同定, 新学術領域研究「細胞ダイバース」第2回若手ワークショップ, 2019.02.
49. Atsushi SUZUKI, Direct reprogramming to hepatic and intestinal lineages, International Symposium on Epigenome 2019, 2019.02.
50. 三浦 静、鈴木 淳史, 肝臓におけるSnailの過剰発現は肝細胞癌を誘導する, 新学術領域研究「細胞ダイバース」第3回公開シンポジウム, 2019.01.
51. 鈴木 淳史, Direct reprogramming to hepatic and intestinal lineages, 第41回日本分子生物学会年会, 2018.11.
52. Atsushi SUZUKI, Direct reprogramming to hepatic and intestinal lineages, 2018 The 14th Annual Meeting of TSSCR: From Pluripotency to 3D Organoid and Personalized Medicine, 2018.10.
53. 鈴木 淳史, 転写因子が引き起こすエピジェネティックリモデリングと細胞運命転換, 日本人類遺伝学会第63回大会, 2018.10.
54. 後藤 那奈子、鵜殿 美弥子、鈴木 淳史, 線維芽細胞の不均一性がiHep細胞誘導に与える影響, 第25回肝細胞研究会, 2018.07.
55. 従野 雅義、堀澤 健一、鈴木 淳史, 肝細胞へのダイレクトリプログラミングを阻害する転写因子の同定, 第25回肝細胞研究会, 2018.07.
56. 三浦 静、鈴木 淳史, 肝細胞におけるsnailの過剰発現は肝細胞癌を誘導する, 第25回肝細胞研究会, 2018.07.
57. 鈴木 淳史, ダイレクトリプログラミングによる腸上皮オルガノイドの作製, 第18回GIリサーチフォーラム, 2018.07.
58. 鈴木 淳史, 肝臓の組織形成メカニズム, 新学術領域研究「細胞ダイバース」第2回公開シンポジウム, 2018.06.
59. 井上 和也、三浦 静、鈴木 淳史, 肝臓におけるp53遺伝子欠損肝幹細胞の挙動と腫瘍形成, 新学術領域研究「細胞競合」第6回領域会議, 2018.06.
60. 鈴木 淳史, Direct reprogramming to hepatic and intestinal lineages, 第33回九州免疫血液研究会, 2018.04.
61. 三浦 静、鈴木 淳史, ダイレクトリプログラミングによるオルガノイド形成能を有するマウスおよびヒト腸前駆細胞の作製, 第17回日本再生医療学会総会, 2018.03.
62. 鈴木 淳史, ダイレクトリプログラミングによる腸前駆細胞の作製, 第7回Hepato-Diabetology Conference, 2018.02.
63. 三浦 静、鈴木 淳史, ダイレクトリプログラミングによるオルガノイド形成能を有するマウスおよびヒト腸前駆細胞の作製, 新学術領域「幹細胞老化と疾患」「細胞競合」総括班主催「若手の会」, 2018.02.
64. Atsushi SUZUKI, Direct reprogramming to hepatic and intestinal lineages, The 27th Hot Spring Harbor International Symposium “Frontiers in Stem Cell Research and Reprogramming”, 2017.10.
65. 鈴木 淳史, 肝臓:幹細胞システムの解明に向けて, 第122回日本解剖学会総会・学術集会, 2017.03.
66. 鈴木 淳史, 細胞の運命決定とリプログラミング, 東京大学・化学生命工学専攻講演会「化学と生命のかけはし」, 2017.03.
67. 山本 純平, 鈴木 淳史, 凝集塊形成によるiHep細胞の成熟化, 第16回日本再生医療学会総会, 2017.03.
68. 鈴木 淳史, Stem cell behavior in liver regeneration and diseases, 第39回日本分子生物学会年会, 2016.12.
69. 鈴木 淳史, 転写因子が引き起こす細胞運命の直接転換, 第89回日本生化学会大会, 2016.09.
70. 寺田 茉衣子, 堀澤 健一, 三浦 静, 高島 康郎, 大川 恭行, 関谷 明香, 松田 花菜江, 鈴木 淳史, 肝内胆管がんモデルマウスにおいて、クッパー細胞がNotchシグナルを活性化し、肝細胞の分化転換を誘導する, 第23回肝細胞研究会, 2016.07.
71. 鈴木 淳史, ダイレクトリプログラミングによる肝細胞の作製とその応用, 第23回HAB研究機構学術年会, 2016.05.
72. Atsushi SUZUKI, Regulation of stem cell properties in liver development, The 14th Stem Cell Research Symposium, 2016.05.
73. Atsushi SUZUKI, Stem cell systems in the liver, Keystone Symposia “Stem Cells and Regeneration in the Digestive Organs”, 2016.03.
74. Shizuka MIURA, Atsushi SUZUKI, Overexpression of transcription factor Snail induces liver tumor formation, Keystone Symposia “Stem Cells and Regeneration in the Digestive Organs”, 2016.03.
75. 鈴木 淳史, 細胞運命転換による肝内胆管がんの発症メカニズム, 平成27年度「がん研究分野の特性等を踏まえた支援活動」公開シンポジウム, 2016.02.
76. 鈴木 淳史, 細胞運命の直接転換 ~皮膚から肝臓をつくる~, 生化若手の会 九州支部 冬のセミナー, 2016.01.
77. 鈴木 淳史, 肝臓の疾患における細胞運命転換のメカニズム, 第38回日本分子生物学会年会, 2015.12.
78. 寺田 茉衣子, 関谷 明香, 鈴木 淳史, 肝内胆管がん発症過程における肝細胞のNotchシグナル活性化機序, 第38回日本分子生物学会年会, 2015.12.
79. Atsushi SUZUKI, A challenge to medical innovation from biological aspects, Tsukuba Global Science Week 2015, 2015.09.
80. Atsushi SUZUKI, Generation of functional hepatocyte-like cells by direct reprogramming technology, The Second International Meeting for Epithelial Tubulology, 2015.08.
81. 鈴木 淳史, Direct reprogrammingによる肝細胞の直接誘導, 第51回日本肝臓学会総会, 2015.05.
82. 鈴木 淳史, Direct reprogrammingによる肝細胞の直接誘導, 遺伝子・デリバリー研究会 第15回シンポジウム, 2015.05.
83. 鈴木 淳史, ダイレクトリプログラミングによる肝細胞の作製とその応用, 第101回日本消化器病学会総会, 2015.04.
84. 鈴木 淳史, 肝臓の形成と病態のメカニズム ~肝障害・肝腫瘍における細胞分化の新たな知見~, 第14回肝細胞イメージングカンファレンス, 2015.03.
85. 山本 純平, 鈴木 淳史, ダイレクトリプログラミングによって誘導された肝細胞様細胞の成熟化, 第14回日本再生医療学会総会, 2015.03.
86. 三浦 静, 鈴木 淳史, iHep細胞研究から見出された肝細胞分化の新規制御機構, 第14回日本再生医療学会総会, 2015.03.
87. 鈴木 淳史, Direct reprogrammingによる肝細胞の直接誘導, 第14回日本再生医療学会総会, 2015.03.
88. 鈴木 淳史, Direct reprogrammingによる肝細胞の直接誘導, 第2回細胞凝集研究会, 2014.12.
89. 高島 康郎, 寺田 茉衣子, 川畑 万寿代, 鈴木 淳史, 3Dイメージングと形態計測学による肝内胆管の形態形成過程の解析, 新学術領域「上皮管腔形成」若手主催研究会「In vitro培養系を用いた上皮管腔構造の解析検討会」, 2014.11.
90. 鈴木 淳史, 線維芽細胞から肝細胞へのダイレクトリプログラミング, 第87回日本生化学会大会, 2014.10.
91. 鈴木 淳史, 肝細胞分化の人為的な誘導と疾患による破綻, 福岡臨床肝臓懇話会, 2014.10.
92. 鈴木 淳史, Genetic cell lineage tracing in liver regeneration and cancer, 2014 International Symposium of Materials on Regenerative Medicine (2014 ISOMRM), 2014.08.
93. 鈴木 淳史, 「ダイレクトリプログラミング」の現状と展望, 第35回日本炎症・再生医学会, 2014.07.
94. 高島 康郎, 寺田 茉衣子, 鈴木 淳史, マイクロRNAによる肝芽細胞の増殖制御, 第21回肝細胞研究会, 2014.06.
95. 山本 純平, 関谷 明香, 鈴木 淳史, 凝集塊形成によるiHep細胞の成熟化, 第21回肝細胞研究会, 2014.06.
96. 三浦 静, 関谷 明香, 鈴木 淳史, iHep細胞研究から見出された肝細胞分化の新規制御機構, 第21回肝細胞研究会, 2014.06.
97. 鈴木 淳史, Direct reprogramming of fibroblasts to hepatocyte-like cells, THE UEHARA MEMORIAL FOUNDATION SYMPOSIUM 2014 Innovative Medicine : Basic Research and Development, 2014.06.
98. 鈴木 淳史, 線維芽細胞から肝細胞へのダイレクトリプログラミング, 第66回日本細胞生物学会大会, 2014.06.
99. 高島 康郎, 寺田 茉衣子, 鈴木 淳史, The Lin28/let-7 axis regulates proliferation of hepatoblasts, 第12回幹細胞シンポジウム, 2014.05.
100. 寺田 茉衣子, 関谷 明香, 鈴木 淳史, Generation of a mouse model capable of visualizing pluripotent cells in Nanog-expressing cells, 第12回幹細胞シンポジウム, 2014.05.
101. 鈴木 淳史, Regulation of stem cell properties in liver development, 47th Annual Meeting of JSDB(第47回日本発生生物学会大会), 2014.05.
102. 鈴木 淳史, 「ダイレクトリプログラミング」、その現状と課題, 第13回日本再生医療学会総会シンポジウム「Direct Reprogrammingの最近の進歩」, 2014.03.
103. 鈴木 淳史, 肝臓における幹細胞研究の進展と次世代医療への挑戦, 2014 肝免疫フォーラム, 2014.02.
104. Atsushi SUZUKI, Artificial induction and disease-related conversion of the hepatic fate, Kyushu University / Academia Sinica Bilateral Mini-Symposium on Cancer and Stem Cell, 2014.01.
105. 三浦 静, 鈴木 淳史, iHep 細胞を用いた脂質代謝機能の解析, 第36回日本分子生物学会年会, 2013.12.
106. 鵜殿 美弥子, 鈴木 淳史, 線維芽細胞以外の細胞を用いた肝細胞への直接転換, 第36回日本分子生物学会年会, 2013.12.
107. 鈴木 淳史, マウス線維芽細胞から肝細胞へのダイレクトリプログラミング, 第36回日本分子生物学会年会ワークショップ「細胞系譜とエピゲノムダイナミクス」, 2013.12.
108. 鈴木 淳史, 肝臓における幹細胞研究の進展と次世代医療への挑戦, 第8回信州肝胆膵外科先端医療研究会, 2013.11.
109. Atsushi SUZUKI, Artificial induction and disease-related conversion of the hepatic fate, The 7th International Conference on Cell Therapy, 2013.10.
110. Atsushi SUZUKI, Artificial induction and disease-related conversion of the hepatic fate, CSHA/ISSCR Joint Meeting on Stem Cells in Science and Medicine, 2013.10.
111. 鈴木 淳史, Prospective isolation and in vivo genetic lineage tracing of hepatic oval cells, 第86回日本生化学会大会, 2013.09.
112. 鈴木 淳史, 特定因子による皮膚細胞から肝細胞への直接転換, 第34回日本炎症・再生医学会, 2013.07.
113. 鈴木 淳史, Direct reprogramming of fibroblasts to hepatocyte-like cells, 第8回研究所ネットワーク国際シンポジウム, 2013.06.
114. Atsushi SUZUKI, Direct reprogramming of mouse fibroblasts to hepatocyte-like cells, The First International Meeting for Epithelial Tubulology, 2013.06.
115. Atsushi SUZUKI, Direct reprogramming of fibroblasts to hepatocyte-like cells, 23rd Conference of the Asia Pacific Association for the study of the Liver (APASL Liver Week 2013), 2013.06.
116. 鈴木 淳史, マウス線維芽細胞から肝細胞へのダイレクトリプログラミング, 第7回日本エピジェネティクス研究会, 2013.05.
117. 鈴木 淳史, 特定因子による皮膚細胞から肝細胞への直接転換, 第35回日本分子生物学会年会ワークショップ「転写因子による細胞運命の直接転換」, 2012.12.
118. 高島 康郎, 鈴木 淳史, ヘテロクロニック遺伝子群による肝芽細胞の増殖の制御, 第35回日本分子生物学会年会, 2012.12.
119. 寺田 茉衣子, 関谷 明香, 高島 康郎, 鈴木 淳史, Nanog-RFP1マウスの作製と解析, 第35回日本分子生物学会年会, 2012.12.
120. 三浦 静, 関谷 明香, 鈴木 淳史, 肝細胞誘導におけるリプログラミング過程の観察と解析, 第35回日本分子生物学会年会, 2012.12.
121. Atsushi SUZUKI, Directed cell fate reprogramming of mouse fibroblasts to hepatocyte-like cells, ISSCR-Roddenberry International Symposium on Cellular Reprogramming, 2012.10.
122. Atsushi SUZUKI, Directed cell fate reprogramming of mouse fibroblasts to hepatocyte-like cells, Asia-Pacific Developmental Biology Conference 2012, 2012.10.
123. Atsushi SUZUKI, Directed cell fate reprogramming of mouse fibroblasts to hepatocyte-like cells, 第33回日本炎症・再生医学会(International Symposium), 2012.07.
124. 三浦静、関谷明香、大城戸絵理、鈴木淳史, 肝細胞誘導におけるリプログラミング過程の観察と解析, 第19回肝細胞研究会, 2012.06.
125. 高島康郎、鈴木淳史, 肝芽細胞におけるRNA結合タンパク質とマイクロRNAによる細胞増殖の制御, 第19回肝細胞研究会, 2012.06.
126. 鈴木淳史, 肝臓の再生と疾患に関わる肝細胞の運命転換, 第19回肝細胞研究会, 2012.06.
127. 鈴木淳史, 肝臓における幹細胞研究の進展と次世代医療への挑戦, 第4回福北肝臓癌研究会, 2012.06.
128. 鈴木淳史, 特定因子による皮膚細胞から肝細胞への直接転換, 第11回日本再生医療学会総会, 2012.06.
129. 鈴木淳史, Directed cell fate reprogramming of fibroblasts to hepatocytes by defined factors, 第45回日本発生生物学会・第64回日本細胞生物学会合同大会, 2012.05.
130. Atsushi Suzuki, Induction of functional hepatocytes from mouse fibroblasts, 47th annual meeting of the European Association for the Study of the Liver (The International Liver Congress by EASL), 2012.04.
131. 高島康郎、鈴木淳史, Lin28b は肝芽細胞の増殖を制御する, 第34回日本分子生物学会年会, 2011.12.
132. 鈴木淳史, 細胞運命の人為的制御 ~皮膚から肝臓をつくる~, 先端医療・バイオニックMEMS 共創フォーラム, 2011.12.
133. Atsushi Suzuki, Induction of functional hepatocytes from fibroblasts by defined factors, 2011 International Forum for Stem Cell Translational Research, 2011.10.
134. 鈴木淳史, 肝臓の再生機構と発癌, 第70回日本癌学会学術総会, 2011.10.
135. 鈴木淳史, 肝幹細胞のプロスペクティブな解析: 生体外の解析から生体内の解析へ, 日本遺伝学会第83回大会, 2011.09.
136. Atsushi Suzuki, Induction of functional hepatocytes from fibroblasts by defined factors, The 7th FAOPS Congress, 2011.09.
137. 鈴木淳史, 肝オーバル細胞の分離と系譜解析, 第69回日本癌学会学術総会, 2010.09.
138. 鈴木淳史, 肝オーバル細胞の分離と系譜解析, 第20回日本サイトメトリー学会, 2010.06.
139. Atsushi Suzuki, Induction of functional hepatocytes from fibroblasts by defined factors, 43rd Annual Meeting for the Japanese Society of Developmental Biologists jointly sponsored by the Asia-Pacific Developmental Biology Network (JSDB-APDBN) meeting, 2010.06.
140. 鈴木淳史、関谷明香、久保山宏美、郡島英理子, 遺伝学的手法を用いた肝オーバル細胞の系譜解析, 第17回肝細胞研究会, 2010.06.
141. 鈴木淳史、関谷明香, 遺伝学的手法を用いた肝オーバル細胞の系譜解析, 第9回日本再生医療学会総会, 2010.03.
142. 鈴木淳史, 肝幹細胞の性状解析とiPS細胞研究への展開, 生物工学会(セルプロセッシング計測評価研究部会)・化学工学会(バイオ部会)共催シンポジウム, 2009.10.
143. Atsushi Suzuki, Novel functions of T-box proteins in controlling hepatic stem cell fate, The 3rd Global COE International Symposium “Stem Cells and Regenerative Medicine”, 2009.02.
144. Atsushi Suzuki, Novel functions of T-box proteins, TBX And Liver Stem Cells, The 59th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD), 2008.11.
145. Atsushi Suzuki, Prospective isolation and clonal identification of hepatic stem cells, The Joint Symposium of the 3rd International Symposium of Institutes Network and Hot Spring Harbor-Global COE Symposium, 2008.02.
146. 鈴木淳史, 肝臓における幹細胞システムの多様性, 第8回日本再生医療学会総会, 2009.03.
147. 鈴木淳史, Tbx3は肝幹細胞の増殖と分化を制御する肝発生に必須の因子である, 第15回肝細胞研究会, 2008.06.
148. 鈴木淳史, Tbx3は肝幹細胞の増殖と分化を制御する肝発生に必須の因子である, 第6回幹細胞シンポジウム, 2008.05.
学会活動
所属学会名
International Society for Stem Cell Research (ISSCR)
日本癌学会
肝細胞研究会
日本再生医療学会
日本分子生物学会
学協会役員等への就任
2021.01~2022.12, 日本分子生物学会, キャリアパス委員.
2019.01~2020.12, 日本分子生物学会, キャリアパス委員.
2018.05~2019.12, 日本分子生物学会, 第42回日本分子生物学会年会プログラム委員.
2012.07, 肝細胞研究会, 世話人.
2009.06~2012.06, 肝細胞研究会, 世話人.
学会大会・会議・シンポジウム等における役割
2022.11.30~2022.12.02, 第45回日本分子生物学会年会, キャリアパス委員会主催ランチョンセミナー・パネリスト(キャリアパス委員).
2022.11.16~2022.11.17, The 31st Hot Spring Harbor International Symposium titled "Expanding views on Systems biology and Immunology", 座長(Chairmanship).
2022.09.29~2022.10.01, 第81回日本癌学会学術総会, 若手研究者支援プロジェクト委員会主催ランチョンセミナー「がん治療の種を育てよう〜若手研究者活躍のための支援のあり方を考える」・パネリスト.
2022.08.25~2022.08.26, 第29回肝細胞研究会, 座長(Chairmanship).
2021.12.06~2021.12.10, 2021 Cold Spring Harbor Asia (CSHA) meeting on Liver Development, Metabolism, Disease & Cancer, 座長(Chairmanship).
2021.12.01~2021.12.03, 第44回日本分子生物学会年会, 高校生ポスターディスカッサー.
2021.12.01~2021.12.03, 第44回日本分子生物学会年会, 一般ポスターディスカッサー.
2021.12.01~2021.12.03, 第44回日本分子生物学会年会, キャリアパス委員会主催ランチョンセミナー・司会(キャリアパス委員).
2021.09.10~2021.09.11, 第28回肝細胞研究会, 座長(Chairmanship).
2020.12.15~2020.12.16, 第27回肝細胞研究会, 座長(Chairmanship).
2020.12.02~2020.12.04, 第43回日本分子生物学会年会, 高校生ポスターディスカッサー.
2020.12.02~2020.12.04, 第43回日本分子生物学会年会, キャリアパス委員会主催ランチョンセミナー・パネリスト(キャリアパス委員).
2020.05.18~2020.05.29, 第19回日本再生医療学会総会シンポジウム「ダイレクトリプログラミングの進展と新しい再生医療技術開発」, 座長(Chairmanship).
2020.02.06~2020.02.07, The 29th Hot Spring Harbor International Symposium "Cutting Edge of Technical Innovations in Trans-Omics", 座長(Chairmanship).
2019.12.03~2019.12.06, 第42回日本分子生物学会年会, 高校生ポスターディスカッサー.
2019.12.03~2019.12.06, 第42回日本分子生物学会年会, 一般ポスターディスカッサー.
2019.12.03~2019.12.06, 第42回日本分子生物学会年会ワークショップ「生体環境を利用した臓器・組織の作製およびその展望」, オーガナイザー.
2019.12.03~2019.12.06, 第42回日本分子生物学会年会, キャリアパス委員会主催ランチョンセミナー・パネリスト(キャリアパス委員).
2019.12.03~2019.12.06, 第42回日本分子生物学会年会, プログラム委員.
2019.10.13~2019.10.14, PHILOSOPHY, 座長(Chairmanship).
2018.10.18~2018.10.19, The 13th International Symposium of the Institute Network for Biomedical Sciences, 座長(Chairmanship).
2018.07.12~2018.07.13, 第25回肝細胞研究会, 座長(Chairmanship).
2017.11.28~2017.11.29, 12th International Symposium of the Institute Network, 座長(Chairmanship).
2017.10.31~2017.11.01, The 27th Hot Spring Harbor International Symposium “Frontiers in Stem Cell Research and Reprogramming”, 主催者(代表).
2015.12.01~2015.12.04, 第38回日本分子生物学会年会ワークショップ「細胞運命変換」, 座長(Chairmanship).
2015.08.22~2015.08.23, The Second International Meeting for Epithelial Tubulology, 座長(Chairmanship).
2015.06.04~2015.06.05, 第22回肝細胞研究会, 座長(Chairmanship).
2015.03.19~2015.03.21, 第14回日本再生医療学会総会(一般演題), 座長(Chairmanship).
2015.03.19~2015.03.21, 第14回日本再生医療学会総会(シンポジウム), 座長(Chairmanship).
2014.06.11~2014.06.13, 第66回日本細胞生物学会大会, 座長(Chairmanship).
2014.05.30~2014.05.31, 第12回幹細胞シンポジウム, 座長(Chairmanship).
2014.05.27~2014.05.30, 第47回日本発生生物学会大会, 座長(Chairmanship).
2014.03.04~2014.03.06, 第13回日本再生医療学会総会, 座長(Chairmanship).
2013.09.26~2013.09.27, 第20回肝細胞研究会, 座長(Chairmanship).
2013.07.02~2013.07.03, 第34回日本炎症・再生医学会, 座長(Chairmanship).
2013.06.22~2013.06.23, The First International Meeting for Epithelial Tubulology, 座長(Chairmanship).
2012.12.11~2012.12.14, 第35回日本分子生物学会年会ワークショップ「転写因子による細胞運命の直接転換」, 座長(Chairmanship).
2012.07.05~2012.07.06, 第33回日本炎症・再生医学会(International Symposium), 座長(Chairmanship).
2012.02.28~2012.02.29, 福島県立医科大学次世代医学セミナー, 座長(Chairmanship).
2012.01.21~2012.01.21, GCOE国際シンポジウム・若手発表会, 座長(Chairmanship).
2011.12.13~2011.12.16, 第34回日本分子生物学会年会, 座長(Chairmanship).
2011.09.11~2011.09.14, The 7th FAOPS Congress, 座長(Chairmanship).
2010.06.18~2010.06.19, 第17回肝細胞研究会, 座長(Chairmanship).
2015.12.01~2015.12.04, 第38回日本分子生物学会年会ワークショップ「細胞運命変換」, オーガナイザー.
2015.03.19~2015.03.21, 第14回日本再生医療学会総会シンポジウム「リプログラミングと多能性幹細胞」, オーガナイザー.
2014.07.18~2014.07.19, 新学術領域研究「上皮管腔組織形成」 第4回領域会議・全体会議, オーガナイザー.
2014.06.11~2014.06.13, 第66回日本細胞生物学会大会 テクニカルシンポジウム2「細胞の運命転換技術と応用」, オーガナイザー.
2014.05.27~2014.05.30, 第47回日本発生生物学会大会シンポジウム「Decoding and Handling the Stem Cell System」, オーガナイザー.
2014.03.04~2014.03.06, 第13回日本再生医療学会総会シンポジウム「Direct Reprogrammingの最近の進歩」, オーガナイザー.
2013.07.02~2013.07.03, 第34回日本炎症・再生医学会(シンポジウム), オーガナイザー.
2012.12.11~2012.12.14, 第35回日本分子生物学会年会ワークショップ「転写因子による細胞運命の直接転換」, オーガナイザー.
2012.07.05~2012.07.06, 第33回日本炎症・再生医学会(International Symposium), オーガナイザー.
2012.02.28~2012.02.29, 福島県立医科大学次世代医学セミナー「細胞・組織の可塑性-再生医学の実現に向けた細胞分化の制御」, オーガナイザー.
学会誌・雑誌・著書の編集への参加状況
2019.11, ダイレクトリプログラミング:再生医療の新展開, 国内, 監修.
2014.06, 細胞工学別冊「ダイレクトリプログラミング」, 国内, 監修.
2013.12, Frontiers in Cell and Developmental Biology, 国際, Associate Editor.
2013.09~2014.11, Inflammation and Regeneration, 国際, Guest Editor.
2013.03, 実験医学「細胞の運命決定とリプログラミング」, 国内, 企画.
その他の研究活動
海外渡航状況, 海外での教育研究歴
Salk Institute, UnitedStatesofAmerica, 2002.09~2005.03.
受賞
2021年度日本再生医療学会賞(基礎部門), 日本再生医療学会, 2021.03.
第11回日本学術振興会賞, 独立行政法人日本学術振興会, 2015.02.
第10回日本分子生物学会三菱化学奨励賞, 日本分子生物学会, 2012.12.
文部科学大臣表彰若手科学者賞, 文部科学省, 2009.04.
第1回日本再生医療学会若手研究奨励賞, 日本再生医療学会, 2009.03.
内藤コンファレンス・ポスター賞, 内藤記念科学振興財団, 2008.11.
第15回肝細胞研究会会長賞, 肝細胞研究会, 2008.06.
Keystone Symposia ポスター賞, Keystone Symposia (Pluripotent Stem Cells: Biology and Applications), 2001.02.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。