Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Michihisa KOYAMA Last modified date:2017.02.03

Professor / Frontier Energy Research Division
Inamori Frontier Research Center


Graduate School
工学府水素エネルギーシステム専攻 (Department of Hydrogen Energy Systems)


E-Mail
Homepage
http://inamori-frontier.kyushu-u.ac.jp/energy/
Home page of Frontier Energy Laboratory .
Academic Degree
Ph.D.(Eng.)
Field of Specialization
Chemical system engineering, electrochemistry, computational chemistry, fuel cell engineering
Outline Activities
Energy technologies for sustainable society require highly functional material/component systems. We are conducting practical simulation studies for designs of materials, interfaces and structures.
Examples of research topiscs are
1. Theoretical Study on Solid Oxide Fuel Cells (SOFC)
2. Theoretical Study on Nano-alloys (Metal-Hydrogen Interaction, catalysis)
3. Multi-scale analyses of Porous Material System
For more details, please visit our website
http://inamori-frontier.kyushu-u.ac.jp/energy/
Research
Research Interests
  • Development and Evaluation of Scenarios toward Sustainable, Low-Carbon Society
    keyword : Low-Carbon Society, Technology Roadmap, Scenario Development
    2009.07.
  • Theoretical materials design by computational chemistry
    keyword : Theoretical Materials Design, Computational Chemistry
    2003.10.
  • Research on Porous Electrode of Fuel Cells
    keyword : Fuel Cell, Electrode Reaction, Reaction Mechanism, Porous Electrode
    1997.04.
Current and Past Project
  • GREEN
  • ACCEL
  • AdHiCap Project, ALCA
  • Cost Analysis of Emerging Energy Supply Technologies, Grant-in-aid by JSPS
  • Development of paper solid oxide fuel cell, Grant-in-aid by JSPS
  • Development of large-scale simulation method for reaction-flow coupled phenomena in porous media, Grant-in-aid by JSPS
  • Development of large-scale simulation method for reaction-flow coupled phenomena in porous media, Grant-in-aid by JSPS
Academic Activities
Books
1. Y. Kato, 古山 通久, Y. Fukushima, T. Nakagaki, Energy Technology Roadmaps of Japan: Future Energy Systems Based on Feasible Technologies Beyond 2030, Springer Japan, 2016.06.
2. Yuya Kajikawa, Yasunori Kikuchi, Yasuhiro Fukushima, 古山 通久, “Utilizing Risk Analysis and Scenario Planning for Technology Roadmapping”, in "Strategic Planning Decisions in the High Tech Industry: Methods and Cases", pp. 231-244, Springer, 2013.03.
3. Energy Beyond '20, Kagaku Kogyo Sha, October 2010.
4. 化学工学における分子シミュレーションの活用.
Reports
1. 加藤之貴、古山通久、化学工学、80(1) (2016) 25-27.
次世代エネルギー社会のビジョンと技術オプション.
2. 古山通久、屋山巴、石元孝佳、楊 安麗、坂田修身、吉川英樹、草田康平、小林浩和、北川 宏、検査技術、20(8) (2015) 16-20.
電子論から見る元素間融合による新機能の創製:人工パラジウムの電子状態の初観測.
3. 古山通久、石倉威文、藤田顕二郎、日本機械学会誌、118(1149) (2014) 533.
機械工学年鑑特集号「9.エンジンシステム、9.2.9 燃料電池」.
4. 古山通久、石元孝佳、原 祥太郎、小倉鉄平、河野晴彦、多田朋史、梅野宜崇、松村 晶、鹿園直毅、燃料電池, 13(2), 2013.10, pp.40-45
電極の材料・構造設計に向けたマルチスケール・マルチフィジックスアプローチ.
5. 古山通久、石元孝佳、化学工業, 62(11), 2011.10, pp.862-866
リチウムイオン電池電極構造最適化に向けたシミュレーション技術の活用 .
6. 骨太エネルギー技術ロードマップ技術の紹介(4)エネルギーを届ける、古山通久、Vol. 75, No. 3, pp.137-139.
7. 骨太エネルギー技術の二酸化炭素削減効果とリスク評価、菊池康紀、梶川裕矢、福島康裕、古山通久、Vol. 75, No. 3, pp.118-125.
8. Michihisa Koyama, Takayoshi Ishimoto, Shozo Kinoshita, Hiroshi Kitagawa, Fuel Cells, 47(201) 20011.1 pp. 39-43 "A Metal-Organic Framework as a Noble Metal Free Electrocatalyst for
Ethanol Oxidation".
9. 固体高分子形燃料電池触媒層に対するマルチスケール計算化学アプローチ.
10. 量子分子動力学法と多孔質シミュレータによる固体高分子形燃料電池電極の理論設計.
11. 固体高分子形燃料電池用プロトン伝導性電解質の計算化学.
12. 基礎講座:統合化計算化学手法による燃料電池材料設計 第6回:三次元多孔質シミュレータに基づくマルチスケール計算化学への展開.
13. 基礎講座:統合化計算化学手法による燃料電池材料設計 第5回:SCF-Tight-Binding量子分子動力学法に基づく電気伝導特性・熱伝導特性の定量予測の基礎と応用.
Papers
1. T. Ishimoto, T. Ogura, M. Koyama, L. Yang, S. Kinoshita, T. Yamada, M. Tokunaga, H. Kitagawa, The Journal of Physical Chemistry C, 117(20) (2013) 10607-10614.
A Key Mechanism of Ethanol Electrooxidation Reaction in a Noble-Metal-Free Metal-Organic Framework.
2. M. Koyama, H. Kohno, T. Ogura, T. Ishimoto, Journal of Computer Chemistry, Japan, 12(1) (2013) 1-7.
Applications of Computational Chemistry to Designing Materials and Microstructure in Fuel Cell Technologies.
3. Y. Fukushima, Y. Kikuchi, Y. Kajikawa, M. Kubota, T. Nakagaki, M. Matsukata, Y. Kato, M. Koyama, Tackling Power Outages in Japan: The Earthquake Compels a Swift Transformation of the Power Supply , Journal of Chemical Engineering of Japan, 44, 6, 365-369 , 2011.06.
4. Theoretical Study on Dissolution and Reprecipitation Mechanism of Pt Complex in Pt Electrocatalyst, T. Ishimoto, T. Ogura, M. Umeda, M. Koyama, 115(7) (2011) 3136-3142
.
5. T. Ishimoto, R. Nagumo, T. Ogura, T. Ishihara, B. Kim, A. Miyamoto, M. Koyama, Chemical Degradation Mechanism of Model Compound, CF3(CF2)3O(CF2)2OCF2SO3H, of PFSA Polymer by Attack of Hydroxyl Radical in PEMFCs , Journal of The Electrochemical Society, 157, 9, B1305-B1309 , 2010.09.
6. A Metal-Organic Framework as An Electrocatalyst for Ethanol Oxidation, L. Yang, S. Kinoshita, T. Yamada, S. Kanda, H. Kitagawa, M. Tokunaga, T. Ishimoto, T. Ogura, R. Nagumo, A. Miyamoto, M. Koyama, Angewandte Chemie International Edition, 49(31) (2010) 5348-5351 (selected as "hot paper" by Editor's choice)
.
7. M. Koyama, K. Bada, K. Sasaki, H. Tsuboi, A. Endou, M. Kubo, C. A. Del Carpio, E. Broclawik, A. Miyamoto, First-principles study on proton dissociation properties of fluorocarbon- and hydrocarbon-based membrane in low humidity condition , The Journal of Physical Chemistry B, 110 (2006) 17872-17877. , 2006.01.
8. M. Koyama, J. Hayakawa, T. Onodera, K. Ito, H. Tsuboi, A. Endou, M. Kubo, C. A. Del Carpio, A. Miyamoto, Tribochemical Reaction Dynamics of Phosphoric Ester Lubricant Additive by Using Hybrid Tight-Binding Quantum Chemical Molecular Dynamics Method , The Journal of Physical Chemistry B, 110 (2006) 17507-17511. , 2006.01.
9. M. Koyama and S. Kraines, A flexible model integration approach for evaluating tradeoffs between CO2 emissions and cost in Solid Oxide Fuel Cell-based building energy systems , International Journal of Energy Research, 29 (2005) 1261-1278 , 2005.01.
10. Y. Fukushima, M. Shimada, S. Kraines, M. Hirao, M. Koyama, Scenarios of solid oxide fuel cell introduction into society , Journal of Power Sources, 131 (2004) 327-339 , 2004.01.
11. M. Koyama, S. Kraines, K. Tanaka, D. Wallace, K. Yamada, H. Komiyama, Integrated Model Framework for the Evaluation of an SOFC/GT System as a Centralized Power Source , International Journal of Energy Research, 28 (2004) 13-30 , 2004.01.
12. T. Ota, M. Koyama, C. Wen, K. Yamada, H. Takahashi, Object-based modeling of SOFC system:dynamic behavior of micro tubular SOFC , Journal of Power Sources, 118 (2003) 430-439 , 2003.01.
13. M. Koyama, C. Wen, T. Masuyama, J. Otomo, H. Fukunaga, K. Yamada, K. Eguchi, H. Takahashi, The Mechanism of Porous Sm0.5Sr0.5CoO3 Used in Solid Oxide Fuel Cells , Journal of the Electrochemical Society, 148 (2001) A795-A801 , 2001.01.
Works, Software and Database
1. .
2. .
3. .
Presentations
1. 統合型材料開発の視点 ~トップダウン型基礎科学は可能か? 理事長主催勉強会 : 統合型材料開発の新展開 つくば 2016.7.25
.
2. Michihisa KOYAMA, Applications of Computational Chemistry to Functional Material Systems, International Conference on Small Science, 2016.06.26.
3. Michihisa KOYAMA, Computational Chemical Study on Catalytic Role of Metal-Organic Framework
, The 2016 EMN Meeting on Metal-Organic Frameworks, 2016.06.13.
4. 各種技術が支えるこれからのエネルギーの供給と利用の姿 サイエンス福岡クラブ エネルギーセミナー 福岡 2016.4.24
.
5. Michihisa KOYAMA, Toward better interplay between experiment and simulation in catalysis, DECHEMA-SCEJ Joint Session, 81st Annual Meeting of the Society of Chemical Engineers, Japan, 2016.03.14.
6. 不均質系触媒および電極触媒における実測-計算協働: 構造の観点からの一考察 分子研研究会「触媒の分子科学:理論と実験のインタープレイ最前線」 岡崎 2016.3.9-10
.
7. Michihisa KOYAMA, Multi-Physics Simulation of Porous Electrode for Lithium Ion Battery, The Japanese Swiss Energy Materials Workshop, 2016.03.07.
8. 触媒・燃料電池分野におけるシミュレーション技術の活用 表面科学会 触媒表面研究部会ワークショップ 福岡 2016.3.3-4
.
9. 次世代エネルギー分野における計算化学の実践応用 近畿化学協会コンピュータ化学部会公開講演会(第95回例会)「触媒設計を目指した理論計算化学」 大阪 2016.1.29.
10. Michihisa KOYAMA, Multi-Physics Simulation of Porous Materials in Energy Devices, EMN Meeting on Ceramics 2016, 2016.01.25.
11. 古山通久 次世代エネルギー技術における表面・界面特性解明へのアプローチ 第35回表面科学学術講演会 つくば 2015.12.1-3
.
12. Michihisa KOYAMA, Computational Chemistry Study on Functional Materials for Future Energy Systems
, International Conference on Small Science, 2015.11.04.
13. Michihisa KOYAMA, Takayoshi Ishimoto, Multi-Physics Simulation of Porous Electrodes in Functional Energy Devices
, IUPAC 10th International Conference on Novel Materials and their Synthesis (NMS-XI), 2015.10.12.
14. 古山通久 マテリアルズ・インフォマティクスの現状と将来展望~材料・システムインタープレイのためのシステム研究~ 理事長主催勉強会シリーズ:マテリアルズ・インフォマティクス/物質・材料研究における新展開 第2ラウンド第3回 つくば 2015.7.23
.
15. 古山通久 水素・燃料電池分野におけるシミュレーションの活用 ~材料・システム研究のよりよいインタープ レイに向けて~ 第99回SOFC研究会 福岡 2015.7.15
.
16. Michihisa KOYAMA, Takayoshi Ishimoto, Theoretical Approach for Understanding Oxygen Reduction at the Cathode Surface of Solid Oxide Fuel Cell, 227th Electrochemical Society (ECS) Meeting, 2015.05.26.
17. 電子状態から見た元素間融合によるナノ合金~「資源大国日本」実現に向けた元素戦略~.
18. Michihisa KOYAMA, Present Status of Japan's Energy, Advances in Electrical Energy Conversion and Storage, 80th Annual Meeting of The Society of Chemical Engineers, Japan, 2015.03.20.
19. 次世代エネルギー分野における計算化学の応用.
20. 電池技術におけるシミュレーションの活用 .
21. Michihisa KOYAMA, COMPUTATIONAL CHEMISTRY FOR FUNCTIONAL MATERIAL SYSTEMS, IUPAC 10th International Conference on Novel Materials and their Synthesis (NMS-IX), 2014.10.11.
22. 水素・燃料電池分野における計算化学の応用展開.
23. 次世代エネルギー社会に向けた根拠に基づく議論と技術実装への挑戦.
24. Michihisa KOYAMA, Computational Chemistry for Functional Materials Design in Energy Systems, The AIMR International Symposium 2014, 2014.02.18.
25. Role of Technology Options and Target-setting in Materials Design toward Carbon-Neutral Society
.
26. Evaluation Viewpoint on Feed-in Tariff for Renewable Energy.
27. Michihisa KOYAMA, TARGET SETTING OF MATERIALS RESEARCH IN ENERGY SYSTEMS: AN EXAMPLE IN MULTI-SCALE SIMULATION OF SOLID OXIDE FUEL CELL ANODE, 2013年度 第4回AIMRジョイントセミナー, 2013.10.25.
28. Michihisa KOYAMA, APPLICATION OF COMPUTATIONAL CHEMISTRY TO FUNCTIONAL MATERIALS FOR ENERGY DEVICES, IUPAC 9th International Conference on Novel Materials and their Synthesis (NMS-VIII) & 23rd International Symposium on Fine Chemistry and Functional Polymers (FCFP-XXII), 2013.10.21.
29. 次世代燃料電池における現象解明と理論材料設計.
30. 各種エネルギー技術の量的貢献見込みとエネルギー需給のこれから.
31. MULTI-SCALE APPROACH FOR TRIPLE PHASE BOUNDARY REACTION OF SOLID OXIDE FUEL CELL.
32. 固体酸化物形燃料電池電極の材料・構造革新のためのマルチスケール連成解析基盤.
33. Applications of Computational Chemistry to Future Energy Technologies.
34.
.
35. Future Japanese Energy System with Decreasing Nuclear –Exploration for A Golden Mean Way with A Minimum Regret, M. Koyama (Invited) , 11th International Conference on Clean Energy (ICCE-2011).
36. Computational Chemistry for Designing Functional Materials in Future Energy Technologies, M. Koyama (Invited) , IUPAC 7th International Conference on Novel Materials and their Synthesis (NMS-VII) & 21st International Symposium on Fine Chemistry and Functional Polymers (FCFP-XXI).
37. 今夏の電力不足に向けての対策提言、古山通久、東日本大震災に伴う電力不足対策に関する緊急提言 ―計画停電を最小限に食い止めるために― 、2011.4.18.
38. Computational Chemistry Approach for Designing Durable Fuel Cell Materials, M. Koyama 106th Catalysis Society Meeting (Invited)
.
39. CO2 Emission in 2040 -from Honebuto Energy Roadmap 2nd Edition- (Invited), 42nd Autumn Meeting of SCEJ.
40. Multi-Level Multi-Physics Simulation based on Molecular Simulation: Applications to Fuel Cell and Hydrogen Related Technologies and Perspectives, M. Koyama, 42th Autumn Meeting of SCEJ (Invited).
41. Computational Chemistry for Designing Durable Fuel Cell Materials, M. Koyama (Invited) , IUMRS-ICEM2010 (International Union of Materials Research Societies - International Conference on Electronic Materials 2010).
42. How can we understand phenomena in primary particles of carbon black ? (invited).
43. Theoretical Methods for Hydrogen Science and Their Application to Hydrogen and Fuel Cell Researches (invited).
44. How Can Computational Chemistry Contribute to Industrial Problems, Chemical Degradation of PEFC? (invited).
45. Computational Chemistry for Fuel Cell Materials Design (keynote).
46. Durability of Polymer Electrolyte Fuel Cells: Degradation Mechanism of Membrane and Challenges (Invited).
47. Simulation of complex fuel cell porous electrode systems (invited).
48. Simulation Approach for Studying Phenomena in Complex Reaction Field in Polymer Electrolyte Fuel Cells (invited).
49. 三次元多孔質シュミレータの開発と不規則性多孔体への応用(受賞講演)、化学工学会第74年会 (invited).
50. Simulation of Mass Transfer in Porous Electrode of Fuel Cells toward Optimization of Electrode Microstructure (invited).
51. 省エネルギー技術としての燃料電池の技術課題と展望、平成20 年度山形化学工学懇話会・技術講演会 (invited).
52. 三次元多孔質シミュレータの開発と応用、日本コンピュータ化学会2008春季年会(invited).
53. Challenge toward Microstructure Optimization of Irregular Porous Materials by Three-dimensional Porous Structure Simulator, 32nd International Conference on Advanced Ceramics & Composites (invited).
Membership in Academic Society
  • Japan Society of Mechanical Engineers
  • The Electrochemical Society
  • Society of Chemical Engineers, Japan
  • The Electrochemical Society, Japan
  • The Computer Chemistry Society, Japan
  • Japan Society of Applied Physics
  • Japanese Society of Tribologist
  • Catalysis Society of Japan
  • The Chemical Society of Japan
Awards
  • FY2016 Research Activities Award of Kyushu University
  • FY2015 Research Activities Award of Kyushu University
  • FY2014 Research Activities Award of Kyushu University
  • The Young Scientists' Prize, The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology (FY2014)
  • FY2013 Research Activities Award of Kyushu University
  • Best Paper Award 2009 by Surface Engineering Technical Committee, The Society of Tribologists and Lubrication Engineers
  • The SCEJ Young Investigator Researcher Award, The Society of Chemical Engineers. Japan
  • Young Researcher Award, Miyagi Funding for Industry Promotion
  • Yoshida Award (Paper Award), Society of Computer Chemistry, Japan
  • Poster Award, Electrochemical Society of Japan
  • Development of New in silico Method for Predicting Drug Metabolism
Educational