Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Tetsuro Ago Last modified date:2019.06.28

Associate Professor / Department of Medicine and Clinical Science, Graduate School of Medical Sciences
Department of Clinical Medicine
Faculty of Medical Sciences


Undergraduate School
Administration Post
Other
Other
Other


E-Mail
Homepage
http://www.med.kyushu-u.ac.jp/intmed2/
Department of Clinical Medicine, Graduate School of Medical Sciences, Kyushu University .
http://www.stroke.med.kyushu-u.ac.jp/
脳循環研究室が推進する福岡脳卒中データベース研究(Fukuoka Stroke Registry: FSR) のホームページ .
Academic Degree
MD, PhD
Field of Specialization
Strokology, Molecular & Cellular Biology
Research
Research Interests
  • Molecular mechanisms of repair and regeneration in brain after cerebrovascular diseases
    keyword : brain infarction, neuronal repair/regeneration, endothelial cells, pericytes
    2008.04.
  • Roles of Redox (oxidative stress) in regulating cardiovascular diseases
    keyword : redox, NADPH oxidase, antioxidants, atherosclerosis
    2001.04.
  • Multicenter hospital-based prospective study of acute stroke (Acute stroke cohort study; Fukuoka stroke Registry).
    keyword : stroke database, multi-centered trial
    2008.04.
  • Exploration of genetic factors and biomarkers of cerebrovascular diseases
    keyword : brain infarction, biomarker, genes, proteins
    2008.04.
  • Elucidation of activation mechanisms of phagocyte NADPH oxidase
    keyword : Phagocyte NADPH oxidase
    1996.04~2002.03.
Academic Activities
Reports
1. Ago T, Kuroda J, Kamouchi M, Sadoshima J, Kitazono T. , Pathophysiological Roles of NADPH Oxidase/Nox Family Proteins in the Vascular System – Review and Perspective – , Circulation Journal , 2011.07, [URL].
2. Ago T, Matsushima S, Kuroda J, Zablocki D, Kitazono T, Sadoshima J., The NADPH oxidase Nox4 and aging in the heart, Aging, 2010.12.
3. Ago T, Sadoshima J. , Thioredoxin1 as a negative regulator of cardiac hypertrophy. , 2007.06.
4. Kamouchi M, Ago T, Kitazono T., Brain pericytes: emerging concepts and functional roles in brain homeostasis., Cell Mol Neurobiol. , 2011.03.
5. Kamouchi M, Ago T, Kuroda J, Kitazono T. , The possible roles of brain pericytes in brain ischemia and stroke, Cell Mol Neurobiol, 2012.03.
Papers
1. Tachibana M, Ago T, Wakisaka Y, Kuroda J, Kitazono T, Early reperfusion after brain ischemia has beneficial effects beyond rescuing neurons, Stroke, 2017.08.
2. Ago T, Matsuo R, Hata J, Wakisaka Y, Kuroda J, Kitazono T, Kamouchi M. Insulin resistance and clinical outcomes after ischemic stroke., Insulin resistance and clinical outcomes after ischemic stroke., Neurology, 90, 17, 1470-1477, 2018.05.
3. Nishimura A, Ago T, Kuroda J, et al., Detrimental role of pericyte Nox4 in the acute phase of brain ischemia., J Cereb Blood Flow Metab, 36, 6, 1143-1154, 2016.06.
4. Nakamura K, Arimura K, Ago T, et al., Possible involvement of basic FGF in the upregulation of PDGFR beta in pericytes after ischemic stroke, BRAIN RESEARCH, 10.1016/j.brainres.2015.11.003, 1630, 98-108, 2016.01.
5. Makihara N, Ago T, Involvement of platelet-derived growth factor receptor β in fibrosis through extracellular matrix protein production after ischemic stroke, Exp Neurol, 2015.02.
6. Ishitsuka K, Ago T(Corresponding author), Arimura K, Nakamura K, Tokami H, Makihara N, Kuroda J, Kamouchi M, Kitazono T., Neurotrophin production in brain pericytes during hypoxia: a role of pericytes for neuroprotection, Microvascular Research, 83, 3, 352-9, 2012.05.
7. Arimura K, Ago T(Corresponding author), Kamouchi M, Nakamura K, Ishitsuka K, Kuroda J, Sugimori H, Ooboshi H, Sasaki T, Kitazono T., PDGF receptor β signaling in pericytes following ischemic brain injury, Current Neurovascular Research, 9, 1, 1-9, 2012.02.
8. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J, NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart., PNAS, 107, 35, 15565-70, 2010.08.
9. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J., Upregulation of Nox4 by Hypertrophic Stimuli Promotes Apoptosis and Mitochondrial Dysfunction in Cardiac Myocytes., Circulation Research, 2010.04.
10. Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M, NAD(P)H oxidases in rat basilar arterial endothelial cells, Stroke, 10.1161/01.STR.0000163111.05825.0b, 36, 5, 1040-1046, 36(5): 1040-1046 , 2005.05.
11. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M. , Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase., Circulation, 10.1161/01.CIR.0000105680.92873.70, 109, 2, 227-233, 109(2): 227-233., 2004.01.
12. Ago T, Kuribayashi F, Hiroaki H, Takeya R, Ito T, Kohda D, Sumimoto H. , Phosphorylation of p47phox directs PX domain from SH3 domain towards phosphoinositides, leading to phagocyte NADPH oxidase activation. , PNAS, 10.1073/pnas.0735712100, 100, 8, 4474-4479, 100(8): 4474-9., 2003.04.
13. Hiroaki H, Ago T, Ito T, Sumimoto H, Kohda D. , Solution structure of the PX domain, a target of the SH3 domain. , Nature Structural Biology, 10.1038/88591, 8, 6, 526-530, 8, 526-30 , 2001.08.
14. Ago T, Nunoi H, Ito T, Sumimoto H., Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47phox, thereby activating the oxidase. , J Biol Chem , 10.1074/jbc.274.47.33644, 274, 47, 33644-33653, 274(47): 33644-33653., 1999.11.
Presentations
1. Gordon Research Conference on Nox family NADPH oxidases 2010, [URL].
2. , [URL].
Membership in Academic Society
  • Cardiovascular Stroke Society of Japan