OCHIAI HIROYUKI | Last modified date：2015.10.23 |

Graduate School

Undergraduate School

Homepage

##### [URL]

Changed into new address on Feb 20, 2014.

Academic Degree

Ph.D(Math. Sci.)

Field of Specialization

Algebraic Analysis

Outline Activities

Research interest is Algebraic Analysis, Representation Theory and Special Functions. I give courses on these topics as well as undergraduate linear algebra, complex variables, and differential equations for undergraduate and those for graduate students.

Research

**Research Interests**

- Representation theory of real reductive Lie groups

keyword : Algebraic Analysis

2009.10～2020.03.

**Academic Activities**

**Books**

1. | Hiroyuki Ochiai, Ken Anjyo,Mathematical Progress in Expressive Image Synthesis II,Springer-Verlag. |

2. | Ken Anjyo, Hiroyuki Ochiai,Mathematical Progress in Expressive Image Synthesis I,Springer-Verlag,2014.08. |

3. | Ken Anjyo, Hiroyuki Ochiai,Mathematical Basics of Motion and Deformation in Computer Graphics,Morgan & Claypool Publishers,doi:10.2200/S00599ED1V01Y201409CGR017,2014.10[URL]. |

**Papers**

1. | 落合 啓之, Dominic Lanphier, Howard Skogman,Values of twisted tensor L-functions of automorphic forms over imaginary quadratic fields,Canadian J. Math.,Vol.66,No.5,2014.04. |

2. | 落合 啓之,Non-commutative harmonic oscillators,Symmetries, Integrable Systems and Representations,2013.05. |

3. | 落合 啓之, Zunderiya Uuganbayar,A generalized hypergeometric system,J. Math. Sci. Univ. Tokyo,Vol.20,No.2,2013.06. |

4. | 落合 啓之, He Xuhua, Nishiyama Kyo, Oshima Yoshiki,On orbits in double flag varieties for symmetric pairs,Transformation Groups,Vol.18,No.4,2013.06. |

5. | Kyo Nishiyama and Hiroyuki Ochiai,Double flag varieties for a symmetric pair and finiteness of orbits,Journal of Lie Theory,Vol.21,pp.79--99,2011.01. |

6. | Nobushige Kurokawa and Hiroyuki Ochiai,Zeta functions and Casimir energies on infinite symmetric groups II,Casimir Force, Casimir operators and Riemann hypothesis,pp.57--63,de Gruyter,2010.12. |

7. | Kentaro Ihara and Hiroyuki Ochiai,,Symmetry on linear relations for multiple zeta values,,Nagoya Mathematical Journal,Vol.189,pp.49--62,2008.05. |

8. | 落合啓之,A special value of the spectral zeta function of the non-commutative harmonic oscillators, The Ramanujan Journal,{\bf 15} (2008) 31--36,2008.01. |

**Presentations**

1. | 落合 啓之,Covariant differential operators and Heckman–Opdam hypergeometric systems,Analytic Representation Theory of Lie Groups,2015.07.02. |

2. | 落合 啓之,Computer graphics and mathematics,Computational and Geometric Approaches for Nonlinear Phenomena,2015.08.05. |

3. | Ken Anjyo, Hiroyuki Ochiai,Mathematical basics of motion and deformation in computer graphics,ACM SIGGRAPH,2014.08.12. |

4. | OCHIAI HIROYUKI,Double flag variety for a symmetric pair and finiteness of orbits,Representation Theory of Chevalley Groups and Related Topics,2012.03.15. |

5. | OCHIAI HIROYUKI,Positivity of alpha determinant,Geometrci Analysis on Euclidean Homogeneous Spaces,2012.01.08,[URL]. |

6. | 12/14 と 12/16 の２コマの連続講演. |

7. | An algebraic transformation of Gauss hypergeometric function. |

8. | OCHIAI HIROYUKI,Positivity of an alpha determinant,Analysis, Geometry and Group Representations for Homogeneous Spaces,2010.11.25. |

9. | OCHIAI HIROYUKI,Invariant hyperfunctions on some semisimple symmetric space,International conference on representation theory and harmonic analysis,2010.06.08. |

**Membership in Academic Society**

- Japan Mathematical Society

**Awards**

- On the study of mathematical models of computer graphics

Educational

Unauthorized reprint of the contents of this database is prohibited.