Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Yoshiko Miura Last modified date:2018.09.03

Professor / Department of Chemical Systems and Engineering, Graduate School of Engineering, Graducate School of Engineering,
Department of Chemical Engineering
Faculty of Engineering


Graduate School
Undergraduate School


E-Mail
Homepage
http://www.chem-eng.kyushu-u.ac.jp/lab9/index_e.html
Phone
092-802-2749
Fax
092-802-2769
Academic Degree
Dr of Engineering, Kyoto University
Country of degree conferring institution (Overseas)
No
Field of Specialization
Biopolymers, Functional Polymer, Polymer Synthesis
ORCID(Open Researcher and Contributor ID)
0000-0001-8590-6079
Total Priod of education and research career in the foreign country
01years00months
Outline Activities
[Research Activities]
(1) Bio-functional materials by Glycopolymers
(2) Functional materials by polymer nanogel
(3) Bio-interface to inhibit infections
(4) Porous materials and flow reactor

[Education]
Lectures
Elementary Organic Chemistry (1st year)
Physical Chemistry I(2nd year, Chemical Engineering)
Physical Chemistry III(3rd year, Chemical Engineeing)
Biomedical Material Engineering (Graduate School)

I am also in charge of the research education of bachelor, master and doctor course students.

[International Activities]
I am working on International research activities with US, Canada and Korea . I am in charge of Organizer of International Conferences and Symposium .
Associate editor of Chemistry Letters and Trends in Glycoscience and Glycotechnology. Editorial Board of Membrane, and International Journal of Carbohydrate Chemistry
Research
Research Interests
  • Development of Oligosaccharide mimic with glyco-module method
    keyword : Saccharide、Module, Glycopolymer, SPR
    2017.04~2019.03.
  • Separation of Biomolecules with metal mesh device
    keyword : Metal Mesh Device, Bioseparation
    2016.04~2019.03.
  • Flow organic synthesis with polymer monolith
    keyword : Polymer monlith reactor
    2016.04~2019.03.
  • CO2 separation by polymer monolith
    keyword : Polymer Monolith
    2015.09~2017.03.
  • Bioseparation by Polymer Monolith
    keyword : Polymer Monolith
    2014.04~2017.03.
  • Catalysis with Polymer nanogel
    keyword : Polymer, Nanogel, Catalysis
    2012.04~2016.03.
  • The material fabrication with branched polymer interface
    keyword : Interface, Branched Polymer
    2007.04~2016.03.
  • Biomaterials with Glycopolymer
    keyword : Glycopolymer、Biopolymer, Infection Disease
    2008.04~2019.03.
Academic Activities
Papers
1. Xinnan Cui, Tatsuya Murakami, Yukihiko Tamura, Kazuhiro Aoki, Yu Hoshino, and Yoshiko Miura, Bacterial Inhibition and Osteoblast Adhesion on Ti Alloy Surfaces Modified by Poly(PEGMA-r-Phosmer) Coating, ACS Appl. Mater. Interfaces, 10.1021/acsami.8b07757, 10, 28, 23674-23681, 2018, 10 (28), 23674–23681, 2018.06, [URL], We have synthesized and immobilized PEGMA500-Phosmer to Ti6Al4V surfaces by a simple procedure to reduce bacteria-associated infection without degrading the cell response. Adhered bacteria coverage was lessened to 1% on polymer-coated surfaces when exposed to Escherichia coli, Staphylococcus epidermidis, and Streptococcus mutans. Moreover, PEGMA500-Phosmer and homoPhosmer coatings presented better responses to MC3T3-E1 preosteoblast cells when compared with the results for PEGMA2000-Phosmer-coated and raw Ti alloy surfaces. The behavior of balancing bacterial inhibition and cell attraction of the PEGMA500-Phosmer coating was explained by the grafted phosphate groups, with an appropriate PEG brush length facilitating greater levels of calcium deposition and further fibronectin adsorption when compared with that of the raw Ti alloy surface..
2. Hiroyuki Koide, Keiichi Yoshimatsu, Yu Hoshino, Shih-Hui Lee, Saki Arizumi, Yudai Narita, Yusuke Yonamine, Adam C. Weisman, Yuri Nishimura, Naogo Oku, Yoshiko Miura, Kenneth J Shea, A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165), Nature Chemistry, 10.1038/nchem.2749, 9, 715-722, 9, pages 715–722 (2017), 2017.03, [URL], Protein affinity reagents are widely used in basic research, diagnostics and separations and for clinical applications, the most common of which are antibodies. However, they often suffer from high cost, and difficulties in their development, production and storage. Here we show that a synthetic polymer nanoparticle (NP) can be engineered to have many of the functions of a protein affinity reagent. Polymer NPs with nM affinity to a key vascular endothelial growth factor (VEGF165) inhibit binding of the signalling protein to its receptor VEGFR-2, preventing receptor phosphorylation and downstream VEGF165-dependent endothelial cell migration and invasion into the extracellular matrix. In addition, the NPs inhibit VEGF-mediated new blood vessel formation in Matrigel plugs in vivo. Importantly, the non-toxic NPs were not found to exhibit off-target activity. These results support the assertion that synthetic polymers offer a new paradigm in the search for abiotic protein affinity reagents by providing many of the functions of their protein counterparts..
3. Masanori Nagao, Yuuki Kurebayashi, Hirokazu Seto, Tadanobu Takahashi, Takashi Suzuki, Yu Hoshino, Yoshiko Miura, Polyacrylamide backbones for polyvalent bioconjugates using “post-click” chemistry”, Polymer Chemistry, 2016.07.
4. Yoshiko Miura, Yu Hoshino, Hirokazu Seto, Glycopolymer Nanobiotechnology, Chemical Reviews, 10.1021/acs.chemrev.5b00247, 116, 1673-1692, 2016.02, Previous studies have clearly shown the importance of the multivalent effect in saccharide–protein interactions. To investigate the multivalent effect, the use of multivalent compounds or “glycoclusters” is indispensable, and many groups have reported syntheses of glycocluster compounds. Examples of glycoclusters include liposomes with glycolipids, glycocalixarenes, glycocyclodextrins, glycopeptides, and glycopolymers. Among the various synthetic glycoclusters, glycopolymers have been the subject of much attention . In this review, we define glycopolymers as polymers carrying pendant saccharides. Since glycopolymers have larger valencies than other multivalent compounds, they show the largest amplification effects in molecular recognition. Glycopolymers are able to be prepared as nanomaterials by controlled polymerization. In this section of the review, we discuss glycopolymers and their application for biotechnology..
5. Xinnan Cui, Hirokazu Seto, Tatsuya Murakami, Yu Hoshino, Yoshiko Miura, Inhibition of Bacterial Adhesion on Hydroxyapatite Model Teeth by Surface Modification with PEGMA-Phosmer Copolymers, ACS Biomater. Sci. Eng, 10.1021/acsbiomaterials.5b00349, 2, 2, 205-212, 2016.02, Modification of the interface properties on hydroxyapatite and tooth enamel surfaces was investigated to fabricate bacterial resistance in situ. A series of copolymers containing pendants of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and ethylene glycol methacrylate phosphate (Phosmer) were polymerized by conventional free radical polymerization and changing the feed ratio of monomers. The copolymers were immobilized on hydroxyapatite and tooth enamel via the affinity of phosphate groups to hydroxyapatite to form the stable and durable polymer brushes on the surfaces. The amounts of polymer immobilized depended on the phosphate group ratio in the copolymers. Surface modification altered the interfacial properties of hydroxyapatite and inhibited bacterial adhesion. Copolymers containing 40–60% PEGMA segments showed a significant inhibitory effect on bacterial adhesion of S. epidermidis both in the presence and absence of plaque model biomacromolecules..
6. Seto, Hirokazu; Ogata, Yutaro; Murakami, Tatsuya; Hoshino, Yu; Miura, Yoshiko , Selective Protein Separation Using Siliceous Materials with a Trimethoxysilane-Containing Glycopolymer, ACS Applied Materials & Interfaces, 10.1021/am2014713, 4, 1, 411-417, 2012, 4(1), 411-417, 2012.01, A copolymer with α-d-mannose (Man) and trimethoxysilane (TMS) units was synthesized for immobilization on siliceous matrices such as a sensor cell and membrane. Immobilization of the trimethoxysilane-containing copolymer on the matrices was readily performed by incubation at high heat. The recognition of lectin by poly(Man-r-TMS) was evaluated by measurement with a quartz crystal microbalance (QCM) and adsorption on an affinity membrane, QCM results showed that the mannose-binding protein, concanavalin A, was specifically bound on a poly(Man-r-TMS)-immobilized cell with a higher binding constant than bovine serum albumin. The amount of concanavalin A adsorbed during permeation through a poly(Man-r-TMS)-immobilized membrane was higher than that through an unmodified membrane. Moreover, the concanavalin A adsorbed onto the poly(Man-r-TMS)-immobilized membrane was recoverable by permeation of a mannose derivative at high concentration..
7. Matsumoto, Erino; Nishizawa, Kazuki; Fukuda, Tomohiro; Takai, Madoka; Miura, Yoshiko, Separation capability of proteins using microfluidic system with dendrimer modified surface , Transactions of the Materials Research Society of Japan, 36, 4, 541-544, 2011、36(4)、541-544, 2011.11.
8. Masaya Wada, Yuta Miyazawa, Yoshiko Miura, A specific Inhibitory effect of multivalent trehalose toward amyloid beta (1-40) aggregation, Polymer Chemistry, accepted, 2011.07.
9. Erino Matsumoto, Tomohiro Fukuda, Yoshiko Miura, Bioinert surface to protein adsorption with higher generation of dendrimer SAMs, Colloids and Surfaces B:Biointerfaces, doi:10.1016/j.colsurfb.2011.01.003, 84, 1, 280-284, 2011.05.
10. Jin Ishii, Masayuki Toyoshima, Miyuki Chikae, Yuzuru Takamura, Yoshiko Miura , Preparation of Glycopolymer-modified Gold Nanoparticles and a New Approach for a Lateral Flow Assay, Bull chem Soc Jpn, doi:10.1246/bcsj.2010030, 84, 5, 466-470, selected paper, 2011.05.
11. Tomohiro Fukuda, Erino Matsumoto, Nobuhiko Yui,and Yoshiko Miura, Peculiar Wettability Based on Orientational Change of Self-assembled Hemispherical PAMAM Dendrimer Layer, Chemistry Letters, doi:10.1246/cl.2010.923, 39, 9, 923, 2010, 39, 923-925, 2010.07, [URL].
12. T. Fukuda, E. Matsumoto, S. Onogi, Y. Miura, Aggregation of Alzheimer Amyloid β Peptide (1−42) on the Multivalent Sulfonated Sugar Interface, Bioconjugate Chemistry, 10.1021/bc100053x, 21, 6, 1079, 2010, 21, 1079-1086, 2010.06, [URL].
13. M. Toyoshima, T. Oura, T. Fukuda, E. Matsumoto, Y. Miura, , Biological specific recognition of glycopolymermodified interfaces by RAFT living radical polymerization, Polymer Journal, doi:10.1038/pj.2009.321, 42, 172, 2010, 42, 172-178, 2010.02, [URL].
14. yoshiko miura, Inhibition of protein amyloidosis by glycomaterials, Trends in Glycoscience and Glycotechnology, doi:10.4052/tigg.21.324, 21, 122, 324-334, 2009.12.
15. Tomohiro Fukuda, Shunsuke Onogi, Yoshiko Miura, Dendritic Sugar-Microarrays by Click Chemistry, Thin Solid Films, 518, 880-888, 2009.11.
16. Koji Funato, Naoto Shirahata, Yoshiko Miura, The monolayer of a-Man via Si-C bond formation and protein recognition, Thin Solid Films, 518, 699, 2009.11.
17. Yoshiko Miura, Kiyofumi Yamamoto, Kikuko Yasuda, Yoshihiro Nishida, Kazukiyo koabayashi, Inhibition of Alzheimer Amyloid Aggregation with Sulfate Glycopolymers, Advances in Science and Technology , 57, 166-169, 2009.08.
18. Masayuki Toyoshima, Yoshiko Miura, Preparation of GLycopolymer-Substituted Gold nanoparticles and Their Molecular Recognition, Journal of Polymer Science PartA: Polymer Chemistry, 47, 1412-1421, 2009.03.
19. Erino Matsumoto, Takanori Yamauchi, Tomohiro Fukuda, Yoshiko Miura, Sugar microarray by click chemistry, Sci. Technol. Adv. Mater. , 10, 034605, 2009.03.
20. Miyuki Chikae, Tomohiro Fukuda, K. Kerman, K. Idegami, Yoshiko Miura, Eiichi Tamiya, Amyloid beta-detection with saccharide immobilized gold nanoparticle on carbon electrode, Bioelectrochemistry, 74, 118-123, 2008.11.
21. Yoshiko Miura, Takahiro Yamauchi, Hajime Sato, Tomohiro Fukuda, The Self-Assembled Monolayer of Saccharide via Click Chemistry: Formation and Protein Recognition, Thin Solid Films, 516, 2443, 2008.09.
22. Yoshiko Miura, Chouga You, Reiko Ohnishi,, Inhibition of Alzheimer amyloid beta aggregation by polyvalent trehalose, Sci. Technol Adv Mat , 9, 24407, 2008.07.
23. Tomohiro Fukuda, Shunsuke Onogi, Yoshiko Miura, Preparation and Properties of Dendritic Sugar Immobilized Surface, Trans. Mat. Res. Soc. Jpn,, 33, 733, 2008.03.
24. Yoshiko Miura, Shunsuke Onogi, Kiyofumi Yamamoto, Synthesis of Glycodendrimer via Click Chemistry and Protein Affinities, Trans. Mat. Res. Soc. Jpn, 33, 729, 2008.03.
25. Yoshiko Miura, Kikuko Yasuda, Kiyofumi Yamamoto, Mihoko Koike, Yoshihiro Nishida, Kazukiyo Kobayashi, Inhibition of Alzhimer Amyloid Aggregation with Sulfated Glycopolymers , Biomacromolecules, 8, 2129, 2007.11.
26. Yoshiko Miura, Daisuke Kouketsu, kazukiyo Kobayashi, Synthesis and Properties of a Well-Defined Glycopolymer via Living radical Polymerization, Polymer Advanced Technology, 18, 647, 2007.07.
27. Hajime Sato, Yoshiko Miura, Nagahiro Saito, Kazukiyo Kobayashi, Osamu Takai, Fibroblastic Microfabrication by Molecular Recognition on Substrate, Surface Science, 601, 3871, 2007.04.
28. Hajime Sato, Yoshiko Miura, Nagahiro Saito, Kazukiyo Kobayashi, Osamu Takai, A Micropatterned Multifunctional Carbohydrate Display by an Orthogonal Self-Assembling Strategy, Biomacromolecules, 8, 753-756, 2007.01.
29. Yoshiko Miura, Akio Sakaki, Masamichi Kamihira, Shinji Iijima, Kazukiyo Kobayashi, A globotriaosylceramide (Gb3Cer) mimic peptide , Biochimica et Biophysica Acta, 1760, 883, 2006.09.
30. Hajime Sato, Yoshiko Miura, Takahiro Yamauchi, Kazukiyo , Carbohydrate Microarray by Click Chemistry, Trans. Mat. Res. Soc. Jpn, 31, 659, 2006.04.
31. Yoshiko Miura, The Development and the Character of Saccharide Biosensors, Trends in Glycoscience and Glycotechnology, , 18, 349, 2006.04.
32. Yoshiko Miura, Chieri Shibata, Kazukiyo Kobayashi, Theremoresponsive Self-Assembly of Short Elastin-Like Peptides , Trans Mat Res Soc Jpn, 31, 549, 2006.04.
33. Yoshiko Miura, Chieri Shibata, Kazukiyo Kobayashi, Theremoresponsive Self-Assembly of Short Elastin-Like Peptides , Trans Mat Res Soc Jpn, 31, 549, 2006.04.
34. Natsuko Wada, Yoshiko Miura, Kazukiyo Koabayashi, Synthesis and Biological Properties of Glycopolymer-Polylactide Conjugate, Trans. Mat. Res. Soc. Jpn, 32, 767, 2005.04.
35. Yoshiko Miura, Natsuko Wada, Yoshihiro Nishida, H. Mori, K. Kobayashi, Chemoenzymatic Synthesis of Glycoconjugate Polymers Starting from Non-reducing Disaccharides, J. Polym. Sci. part A Polym. Chem. 2004, 42, 4598, 42, 4598, 2004.04.
36. Yoshiko Miura, Yuki Sasao, Masamichi Kamihira, Akio Sakaki, Shinji Iijima, Kazukiyo kobayashi, Peptides binding to a Gb3 mimic selected from a phage library, Biochem. Biophys. Acta, 1673, 131, 2004.04.
37. Y. Miura, T. Ikeda, N. Wada, K. kobayashi, Chemoenzymatic Synthesis of Glycoconjugate Polymers: Greening the Synthesis of biomaterials, Green Chemistry, 5, 610, 2003.04.
38. Y. Miura, T. Ikeda, N. Wada, K. Kobayashi, Chemoenzymatic synthesis of a Multivalent Aminoglycoside, Macromol. Biosci, 3, 362, 2003.04.
39. Yoshiko Miura, takayasu ikeda, kazukiyo kobayashi, Chemoenzymatically Synthesized Glycoconjugate Polymers, Biomacromolecules, 10.1021/bm025714b, 4, 2, 410, 2003.02.
40. Yoshiko Miura, Yuuki Sasao, Hirofumi Dohi, Yoshihiro Nishida and Kazukiyo Kobayashi, Self-assembled monolayers of globotriaosylceramide (Gb3) mimics: surface-specific affinity with shiga toxins , doi:10.1016/S0003-2697(02)00318-4, 310, 27, 2002.04.
41. Y. Miura, S. Kimura, S. Kobayashi, Y. Imanishi, J. Umemura, Cation recognition by self-assembled monolayers of oriented helical peptides having a crown ether unit, Biopolymers, 55, 391, 2000.04.
42. Y. Miura, S. Kimura, Y. Imanishi, J. Umemura, Formation of Oriented Helical Peptide Layers on a Gold Surface due to the Self-assembling Properties of Peptides, Langmuir, 14, 6935, 1998.04.
43. Y. Miura, S. Kimura, Y. Imanishi, J. Umemura, Self-Assembly of a-helix peptide/crown ether conjugate upon complexation with ammonium-terminated alkanethiolate, 14, 2761, 1998.04.
Membership in Academic Society
  • Science Council of Japan
  • The Japan Society of Vacuum and Surface Science
  • The Japanese Society of Carbohydrate Research
  • The Society of Chemical Engineering, Japan
  • the Materials Research Society of Japan
  • Polymer Society Japan
  • The Chemical Society of Japan
  • The Japan Society of Applied Physics
  • American Chemical Society
Awards
  • The manuscript title of "Interaction Analyses of Amyloid beta Peptide (1-40) with Glycosaminoglycan Model Polymers" was selected as BCSJ award by Japan Chemical Society. In this manuscript, the author described the inhibition of Alzheimer disease using biomaterials. Especially, the authors synthesized glycominoglycan mimic polymer which inhibit the aggregation of Alzheimer amyloid beta aggregation.
Educational
Educational Activities
Lectures
Elementary Organic Chemistry (1st year)
Physical Chemistry (2nd year, Chemical Engineering)
Bio-resource Materials Engineering(Graduate School)

I am also in charge of the research education of bachelor, master and doctor course students.
Social
Professional and Outreach Activities
Outreach in Elementary School in Itoshima-city (2012), Lecture in Miyazaki-Kita high school (2013), JGFos (2004).