九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
三浦 佳子(みうら よしこ) データ更新日:2024.04.15

教授 /  工学研究院 化学工学部門 工学府 化学システム工学専攻 生体界面工学 (分子・生物システム工学講座)


主な研究テーマ
機械学習を用いた高分子機能材料の開発
キーワード:高分子機能材料、ソフトマテリアル、機械学習、ベイズ推計
2023.04~2024.04.
酸素耐性のある重合法を利用した生体機能性高分子ライブラリーの開発
キーワード:酸素耐性重合、生体機能性高分子、PET-RAFT、糖鎖高分子
2020.04~2024.03.
多孔性高分子を用いた固定化触媒の開発
キーワード:固定化触媒、多孔質高分子、フロー合成
2019.04~2024.03.
高分子モノリスを用いた分離膜
キーワード:多孔性高分子、ポリマーモノリス
2019.04~2021.03.
糖鎖モジュール法によるオリゴ糖ミミックの開発
キーワード:糖鎖、モジュール、糖鎖高分子、SPR
2017.04~2024.03.
メタルメッシュデバイスによる生体分離材料
キーワード:メタルメッシュデバイス、生体分離
2016.04~2020.03.
高分子モノリスによる合成フロープロセスの開発
キーワード:高分子 モノリス リアクター
2016.04~2024.03.
高分子モノリスを用いた二酸化炭素分離材料
キーワード:高分子モノリス
2015.09~2020.03.
高分子モノリスを用いた生体分離材料
キーワード:モノリス 分離
2014.04~2017.03.
高分子ナノゲルを用いた触媒の開発
キーワード:高分子、ナノゲル、触媒
2012.04~2016.03.
樹状高分子界面による機能材料の創製
キーワード:界面、樹状高分子
2007.04~2016.03.
糖鎖高分子を用いた生体機能材料の開発
キーワード:糖鎖高分子、生体高分子、感染症、精密重合
2008.04~2024.03.
従事しているプロジェクト研究
クロストリディオイデス・ディフィシル感染症の新規治療・予防法の開発
2021.04~2024.03, 代表者:小椋義俊, 久留米大学, 久留米大学
高分子ナノゲルを用いた腸内細菌の制御.
プラスチック抗体技術を用いた腸管出血性大腸菌感染症の新規治療法の開発
2017.04~2019.03, 代表者:小椋義俊, 九州大学医学部, 九州大学大学院医学研究院.
粒子分画能力を持つ金属メッシュを利用した細胞分離装置の開発
2015.12~2019.03, 代表者:近藤孝志, 村田製作所, JST
精密な構造を持つ金属メッシュを利用した細胞分離材料の開発を行う。.
相転移型ナノゲルのpKa制御によるCO2分離膜・プロセスの開発
2014.10~2020.03, 代表者:星野友.
金属メッシュデバイスを用いた検出分離材料
2010.02~2015.12, 代表者:三浦佳子.
硫酸化糖を用いたナノゲルによるプラスチック抗体の開発
2012.04~2015.03, 代表者:K. J. Shea, University of California, Irvine , アメリカ合衆国.
研究業績
主要著書
1. Mizuo Maeda, Atsuhi Takahara, Hiromi Kitano, Tetsuji Yamaoka, Yoshiko Miura, Molecular Soft-Interface Science: Principles, Molecular Design, Characterization and Application, Springer, 2019.05.
2. 三浦佳子, 生命機能に迫る分子化学
生命分子を真似る、飾る、超える
, 日本化学会, pp74-78, 2018.08.
主要原著論文
1. Yoshiko Miura, Masanori Nagao, Hikaru Matsumoto, De Novo designed glycopolymer by the precise polymer synthesis, Chemistry Letters, https://doi.org/10.1093/chemle/upad012, 2023.12, Synthetic polymers with molecular recognition ability were investigated. Well-defined chemical structures of biopolymers were mimicked by controlled polymerization. In particular, the preparation and molecular recognition of de novo designed glycopolymers were studied. Glycopolymers such as block polymers, star polymers, and microgels were prepared. The designed glycopolymers showed strong molecular recognition against target proteins and viruses..
2. Masanori Nagao, Aya Horie, Hikaru Matsumoto, Yu Hoshino, Yoshiko Miura, Continuous-Flow PET-RAFT Polymerization in a Packed-Bed Reactor with Porphyrin-Immobilized Silica Particles, Industrial & Engineering Chemistry Research, doi.org/10.1021/acs.iecr.3c03496, 2023.12, Photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization enables the production of well-controlled synthetic polymers under mild conditions by using visible-light energy. Although flow reactors are suitable for photoreactions in terms of light penetration, contamination of photocatalysts occurs in a homogeneous system and necessitates product purification. Immobilizing the photocatalysts onto supports can eliminate the need for this purification step and enhance the potential for industrial applications of PET-RAFT polymerization. Herein, we report the development of a packed-bed flow photoreactor wherein a photocatalyst for PET-RAFT polymerization, zinc tetraphenylporphyrin, was immobilized onto packed silica particles. Continuous PET-RAFT polymerization of a model monomer (N,N-dimethylacrylamide) was achieved without leakage of the porphyrin molecules. The effects of various reaction conditions, such as the residence time, catalyst density, and target molecular weight, on the polymerization reaction were evaluated. This work contributes to the realization of a facile and practical manufacturing process for highly valuable synthetic polymers..
3. Hiroyuki Koide, Chiaki Kiyokawa, Anna Okishima, Kaito Saito, Keiichi Yoshimatsu, Tatsuya Fukuta, Yu Hoshino, Tomohiro Asai, Yuri Nishimura, Yoshiko Miura, Naoto Oku, Kenneth J. Shea, Design of an Anti-HMGB1 Synthetic Antibody for In Vivo Ischemic/Reperfusion Injury Therapy, Journal of the American Chemical Society, https://doi.org/10.1021/jacs.3c06799, 2023.10, High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins’ interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood–brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an “informed” selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug..
4. Masanori Nagao, Hikaru Matsumoto, Yoshiko Miura , Design of Glycopolymers for Controlling the Interactions with Lectins, Chemistry – An Asian Journal, 10.1002/asia.202300643, 10.1002/asia.202300643, 2023.08, Carbohydrates are involved in life activities through the interactions with their corresponding proteins (lectins). Pathogen infection and the regulation of cell activity are controlled by the binding between lectins and glycoconjugates on cell surfaces. A deeper understanding of the interactions of glycoconjugates has led to the development of therapeutic and preventive methods for infectious diseases. Glycopolymer is one of the classes of the materials present multiple carbohydrates. The properties of glycopolymers can be tuned through the molecular design of the polymer structures. This review focuses on research over the past decade on the design of glycopolymers with the aim of developing inhibitors against pathogens and manipulator of cellular functions..
5. Hikaru Matsumoto, Yu Hoshino, Tomohiro Iwai, Masaya Sawamura, Yoshiko Miura, Sheltering Mono‐P‐Ligated Metal Complexes in Porous Polystyrene Monolith: Effect of Aryl Pendant Stabilizers on Catalytic Durability, Chemistry A European Journal, 10.1002/chem.202301847, 29, 55, e202301847, Chemistry A European Journal, 2023, 29, 55, e202301847, 2023.07, Metal centers that can generate coordinatively unsaturated metals in accessible and stable states have been developed using synthetic polymers with sophisticated ligand and scaffold designs, which required synthetic efforts. Herein, we report a simple and direct strategy for producing polymer-supported phosphine-metal complexes, which stabilizes mono-P-ligated metals by modulating the electronic properties of the aryl pendant groups in the polymer platform. A three-fold vinylated PPh3 was copolymerized with a styrene derivative and a cross-linker to produce a porous polystyrene-phosphine hybrid monolith. Based on the Hammett substituent constants, the electronic properties of styrene derivatives were modulated and incorporated into the polystyrene backbone to stabilize the mono-P-ligated Pd complex via Pd-arene interactions. Through NMR, TEM, and comparative catalytic studies, the polystyrene-phosphine hybrid, which induces selective mono-P-ligation and moderate Pd-arene interactions, demonstrated high catalytic durability for the cross-coupling of chloroarenes under continuous-flow conditions..
6. Masanori Nagao, Yu Hoshino, Yoshiko Miura, Synthesis of well-defined cyclic glycopolymers and the relationship between their physical properties and their interaction with lectins, Polymer Chemistry, 10.1039/d2py00941b, 13, 5453-5457, Polym. Chem., 2022, 13, 5453-5457, 2022.09.
7. Yusuke Saito, Ryutaro Honda, Sotaro Akashi, Hinata Takimoto, Masanori Nagao, Yoshiko Miura, Yu Hoshino, Polymer Nanoparticles with Uniform Monomer Sequences for Sequence Specific Peptide Recognition, Angewandte Chemie, 10.1002/ange.202206456, 2022.05, [URL], Synthetic polymer nanoparticles (NPs) that recognize and neutralize target biomacromolecules are of considerable interest as “plastic antibodies”, synthetic mimics of antibodies. However, monomer sequences in the synthetic NPs are heterogeneous. The heterogeneity limits the target specificity and safety of the NPs. Herein, we report the synthesis of NPs with uniform monomer sequences for recognition and neutralization of target peptides. A multifunctional oligomer with a precise monomer sequence that recognizes the target peptide was prepared via cycles of reversible addition–fragmentation chain transfer (RAFT) polymerization and flash chromatography. The oligomer or blend of oligomers was used as a chain transfer agent and introduced into poly(N-isopropyl acrylamide) hydrogel NPs by radical polymerization. Evaluation of the interaction with the peptides revealed that multiple oligomers in NPs cooperatively recognized the sequence of the target peptide and neutralized its toxicity. Effect of sequence, combination, density and molecular weight distribution of precision oligomers on the affinity to the peptides was also investigated..
8. Masanori Nagao, Yuri Kimoto, Yu Hoshino, Yoshiko Miura, Facile Preparation of a Glycopolymer Library by PET-RAFT Polymerization for Screening the Polymer Structures of GM1 Mimics, ACS Omega, 10.1021/acsomega.2c00719, 7, 15, 13254-13259, ACS Omega 2022, 7, 15, 13254–13259, 2022.04, [URL], Commercialized oligosaccharides such as GM1 are useful for biological applications but generally expensive. Thus, facile access to an effective alternative is desired. Glycopolymers displaying both carbohydrate and hydrophobic units are promising materials as alternatives to oligosaccharides. Prediction of the appropriate polymer structure as an oligosaccharide mimic is difficult, and screening of the many candidates (glycopolymer library) is required. However, repeating polymerization manipulation for each polymer sample to prepare the glycopolymer library is time-consuming. Herein, we report a facile preparation of the glycopolymer library of GM1 mimics by photoinduced electron/energy transfer-reversible addition–fragmentation chain-transfer (PET-RAFT) polymerization. Glycopolymers displaying galactose units were synthesized in various ratios of hydrophobic acrylamide derivatives. The synthesized glycopolymers were immobilized on a gold surface, and the interactions with cholera toxin B subunits (CTB) were analyzed using surface plasmon resonance imaging (SPRI). The screening by SPRI revealed the correlation between the log P values of the hydrophobic monomers and the interactions of the glycopolymers with CTB, and the appropriate polymer structure as a GM1 mimic was determined. The combination of the one-time preparation and the fast screening of the glycopolymer library provides a new strategy to access the synthetic materials for critical biomolecular recognition..
9. M Nagao, A Yamaguchi, T Matsubara, Y Hoshino, T Sato, Y Miura, De Novo Design of Star-Shaped Glycoligands with Synthetic Polymer Structurestoward an Influenza Hemagglutinin Inhibitor, Biomacromolecules, 10.1021/acs.biomac.1c01483, 23, 3, 1232-1241, Biomacromolecules 2022, 23, 3, 1232–1241, 2021.12, Synthetic polymers with well-defined structures allow the development of nanomaterials with additional functions beyond biopolymers. Herein, we demonstrate de novo design of star-shaped glycoligands to interact with hemagglutinin (HA) using well-defined synthetic polymers with the aim of developing an effective inhibitor for the influenza virus. Prior to the synthesis, the length of the star polymer chains was predicted using the Gaussian model of synthetic polymers, and the degree of polymerization required to achieve multivalent binding to three carbohydrate recognition domains (CRDs) of HA was estimated. The star polymer with the predicted degree of polymerization was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization, and 6′-sialyllactose was conjugated as the glycoepitope for HA. The designed glycoligand exhibited the strongest interaction with HA as a result of multivalent binding. This finding demonstrated that the biological function of the synthetic polymer could be controlled by precisely defining the polymer structures..
10. T Oh , T Uemura, M Nagao, Y Hoshino, Y Miura, A QCM study of strong carbohydrate–carbohydrate interactions of glycopolymerscarrying mannosides on substrates, Journal of Materials Chemistry B, 10.1039/D1TB02344F, 10, 2597-2601, J. Mater. Chem. B, 2022, 10, 2597-2601 10.1039/D1TB02344F (Paper), 2021.12, [URL], Carbohydrates on cell surfaces are known to interact not only with lectins but also with other carbohydrates; the latter process is known as a carbohydrate–carbohydrate interaction. Such interactions are observed in complex oligosaccharides. It would be surprising if these interactions were observed in simple monosaccharides of mannose. In this study, the interaction between glycopolymers carrying monosaccharides of mannose was quantitatively investigated by quartz crystal microbalance measurements. We measured the interactions with glycopolymers carrying mannose, galactose and glucose. Surprisingly, the interaction between the glycopolymers and mannose was much stronger than that between other saccharides..
11. T Ishida , M Nagao, T Oh, T Mori, Y Hoshino, Y Miura, Synthesis of Glycopolymers Carrying 3’-Sialyllactose for Suppressing InflammatoryReaction via Siglec-E, Chemistry Letters, 51, 3, 308-311, Chem. Lett. 2022, 51, 308–311 | doi:10.1246/cl.210740, 2021.12, [URL], One of the new strategies to treat autoimmune diseases is to target Siglec, a membrane protein receptor with the ability to suppress immune responses. Herein, we synthesized glycopolymers carrying 3′-sialyllactose in various glycounit densities. RAW 264.7 macrophages transfected to express secreted alkaline phosphatase (SEAP) were used to evaluate the immunosuppression ability of the glycopolymers. The inhibition of the signal transmission was dependent on the glycounit densities of the glycopolymers, and was maximized at the moderate density (70%)..
12. S Nonaka, H Matsumoto, M Nagao, Y Hoshino, Y Miura, Investigation of the effect of microflow reactor diameter on condensationreactions in l-proline-immobilized polymer monoliths, Reaction Chemistry & Engineering, 10.1039/D1RE00386K, 7, 1, 55-60, 10.1039/D1RE00386K (Communication) React. Chem. Eng., 2022, 7, 55-60, 2021.11, [URL], The effect of monolith structure and monolith reactor inner diameter on the residence time distribution (RTD), and the relationship between RTD and the catalytic efficiency of the asymmetric aldol addition reaction between p-nitrobenzaldehyde and cyclohexanone were examined. A monolith column containing L-proline as a catalyst was prepared using poly(ethylene glycol) (PEG) as the porogen. The monolith column prepared with PEG with a molecular weight of 6000 Da displayed a narrow pore size distribution and showed a controlled RTD. The performance of monolith reactors with different inner diameters (micro- and millireactors, 0.53 and 4.00 mm) was compared: the microreactor displayed a narrower RTD and a higher turnover number for the asymmetric aldol addition reaction than the millireactor. The different linear flow velocities in the microreactor did not affect the catalytic reaction efficiency and enantioselectivity, demonstrating that the RTDs can be controlled regardless of the flow velocity..
13. Benshuai Guo, Yoshiko Miura, Yu Hoshino, Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles, ACS Applied Materials & Interfaces, 10.1021/acsami.1c07266, 13, 27, 32184-32192, ACS Appl. Mater. Interfaces 2021, 13, 27, 32184–32192, 2021.10, Thermocells are thermoelectrochemical conversion systems for harvesting low-temperature thermal energy. Liquid-state thermocells are particularly desirable because of low cost and their high conversion efficiency at temperatures around physiological temperature, and they have, thus, been extensively studied. However, the performance of the thermocells has to be improved to utilize them as energy chargers and/or batteries. Recently, we reported that a liquid-state thermocell driven by the volume phase transition of hydrogel nanoparticles showed highly efficient thermoelectric conversion with Seebeck coefficient (Se) of −6.7 mV K–1. Here, we report the design rationale of the thermocells driven by the phase transition. A high Se of −9.5 mV K–1 was achieved at temperature between 36 and 40 °C by optimizing choice and amount of redox chemical species. The figure of merit (ZT) of the thermocell was improved by selecting appropriate electrolyte salt to increase the ionic conductivity and prevent the precipitation of nanoparticles. Furthermore, screening of nanoparticles revealed the high correlation between Se and the pH shift generated as a result of phase transition of the nanoparticles. After optimization, the maximum ZT of 8.0 × 10–2 was achieved at a temperature between 20 and 70 °C..
14. Masanori Nagao, Takeshi Uemura, Tasuku Horiuchi, Yu Hoshino, , Screening of a glycopolymer library for GM1 mimetics synthesized by the “carbohydrate module method”, Chemical Communications, 10.1039/D1CC04394C, 57, 10871-10874, Chem. Commun., 2021, 57, 10871-10874, 2021.09, The “carbohydrate module method” is a promising approach for oligosaccharide mimetics using polymeric materials. However, it is difficult to predict the optimal structure for a particular oligosaccharide mimetic, and an efficient strategy for the synthesis and evaluation of glycopolymers is desirable. In this study, a screening of glycopolymers for the “carbohydrate module method” by a combination of photoinduced electron/energy transfer-reversible addition–fragmentation chain-transfer (PET-RAFT) polymerization and surface plasmon resonance imaging (SPRI) is demonstrated. The facile and fast screening of synthetic glycomimetics was achieved, and the glycopolymer with the optimal structure as a GM1 mimetic strongly interacted with the cholera toxin B subunit..
15. Masanori Nagao, Masaya Kichize, Yu Hoshino, Yoshiko Miura, Influence of Monomer Structures for Polymeric Multivalent Ligands: Consideration of the Molecular Mobility of Glycopolymers, Biomacromolecules, 10.1021/acs.biomac.1c00553, 22, 7, 3119-3127, Biomacromolecules 2021, 22, 7, 3119–3127, 2021.06, Molecular mobility is important for interactions of biofunctional polymers with target molecules. Monomer structures for synthetic biofunctional polymers are usually selected based on their compatibility with polymerization systems, whereas the influence of monomer structures on the interaction with target molecules is hardly considered. In this report, we evaluate the correlation between the monomer structures of glycopolymers and their interactions with concanavalin A (ConA) with respect to the molecular mobility. Two types of glycopolymers bearing mannose are synthesized with acrylamide or acrylate monomers. Despite the similar structures, except for amide or ester bonds in the side chains, the acrylate-type glycopolymers exhibit stronger interaction with ConA both in the isothermal titration calorimetry measurement and in a hemagglutination inhibition assay. Characterization of the acrylate-type glycopolymers suggests that the higher binding constant arises from the higher molecular mobility of mannose units, which results from the rotational freedom of ester bonds in their side chains..
16. Yu Hoshino, Tomohiro Gyobu, Kazushi Imamura, Akira Hamasaki, Ryutaro Honda, Ryoga Horii, Chie Yamashita, Yuki Terayama, Takeshi Watanabe, Shoma Aki, Yida Liu, Junko Matsuda, Yoshiko Miura, Ikuo Taniguchi, Assembly of Defect-Free Microgel Nanomembranes for CO2 Separation, ACS Appl. Mater. Interfaces , 10.1021/acsami.1c06447, 13, 25, 30030-30038, ACS Appl. Mater. Interfaces 2021, 13, 25, 30030–30038, 2021.06, The development of robust and thin CO2 separation membranes that allow fast and selective permeation of CO2 will be crucial for rebalancing the global carbon cycle. Hydrogels are attractive membrane materials because of their tunable chemical properties and exceptionally high diffusion coefficients for solutes. However, their fragility prevents the fabrication of thin defect-free membranes suitable for gas separation. Here, we report the assembly of defect-free hydrogel nanomembranes for CO2 separation. Such membranes can be prepared by coating an aqueous suspension of colloidal hydrogel microparticles (microgels) onto a flat, rough, or micropatterned porous support as long as the pores are hydrophilic and the pore size is smaller than the diameter of the microgels. The deformability of the microgel particles enables the autonomous assembly of defect-free 30–50 nm-thick membrane layers from deformed ∼15 nm-thick discoidal particles. Microscopic analysis established that the penetration of water into the pores driven by capillary force assists the assembly of a defect-free dense hydrogel layer on the pores. Although the dried films did not show significant CO2 permeance even in the presence of amine groups, the permeance dramatically increased when the membranes are adequately hydrated to form a hydrogel. This result indicated the importance of free water in the membranes to achieve fast diffusion of bicarbonate ions. The hydrogel nanomembranes consisting of amine-containing microgel particles show selective CO2 permeation (850 GPU, αCO2/N2 = 25) against post-combustion gases. Acid-containing microgel membranes doped with amines show highly selective CO2 permeation against post-combustion gases (1010 GPU, αCO2/N2 = 216) and direct air capture (1270 GPU, αCO2/N2 = 2380). The membrane formation mechanism reported in this paper will provide insights into the self-assembly of soft matters. Furthermore, the versatile strategy of fabricating hydrogel nanomembranes by the autonomous assembly of deformable microgels will enable the large-scale manufacturing of high-performance separation membranes, allowing low-cost carbon capture from post-combustion gases and atmospheric air..
17. Yoshiko MIURA, Yuki KOJIMA, Hirokazu SETO, Yu HOSHINO, Bio-inert Properties of TEG Modified Dendrimer Interface, Analytical Sciences, 10.2116/analsci.20P388, 37, 3, 519-523, 2021,37(3), 519-523, 2021.03, The bioinert interfaces that prevent adhesion of proteins and cells are important for biomaterial applications. In order to design a bioinert interface, the immobilization of an appropriate functional group and the control of molecular density is required. Dendrimer was modified with triethylene glycol (TEG) to display a dense brush structure. TEG with different density and terminal groups were immobilized with a dendrimer template and thiol terminated molecules. The inhibitory effect on protein and bacteria binding was investigated. The physical property of the interface was measured by QCM-admittance to clarify the factor of the bioinert property..
18. Masaya Kichize, Masanori Nagao, Yu Hoshino, Yoshiko Miura, Multi-block and sequence-controlled polymerization of glycopolymers, andinteraction with lectin, European Polymer Journal, doi.org/10.1016/j.eurpolymj.2020.110044, 140, 110044, 2020.11.
19. Takahiro Oh, Yu Hoshino, Yoshiko Miura,, Aggregation of a double hydrophilic block glycopolymer: the effect ofblock polymer ratio, Journal of Materials Chemistry B, doi.org/10.1039/DoTB02093A, 8, 10101-10107, 2020.10.
20. Benshuai Guo, Yu Hoshino, Fan Gao, Keisuke HayashiYoshiko Miura, Nobuo Kimizuka, Teppei Yamada, Thermocells driven by phase transition of hydrogel nanoparticles, J.Am.Chem.Soc, doi.org/10.1021/jacs.0c08600, 142, 41, 17318-17322, 2020, 142, 41, 17318–17322, 2020.09.
21. Hikaru Matsumoto, Yu Hoshino, Tomohiro Iwai, Masaya Sawamura, Yoshiko Miura, Polystyrene‐Supported PPh3 in Monolithic Porous Material: Effect of Cross‐Linking Degree on Coordination Mode and Catalytic Activity in Pd‐Catalyzed C−C Cross‐Coupling of Aryl Chlorides, ChemCatChem, doi.org/10.1002/cctc.202000651, 12, 16, 4034-4037, 2020.08, Hybridization of porous synthetic polymer and sophisticated ligands play an important role in transition‐metal catalysis for chemical transformations at laboratory and industrial levels. A monolithic porous polymer, which is a single piece with continuous macropores, is desired for high permeability, fast mass transfer properties, high stability, and easy modification. Herein, we first develop a monolithic porous polystyrene containing three‐fold cross‐linked PPh3 (M‐PS‐TPP ) for transition‐metal catalysis. The monolithic and macroporous structure of M‐PS‐TPP was fabricated via polymerization‐induced phase separation using porogenic solvent. Moreover, the M‐PS‐TPP was synthesized using different feed ratios of divinylbenzene (DVB) for site‐isolation and mono‐P‐ligating behavior of PPh3. 31P CP/MAS NMR analysis revealed that the different selectivity of M‐PS‐TPP s was obtained in formation of mono‐P‐ligation toward PdII. The macroporous properties and controlled mono‐P‐ligating behavior of M‐PS‐TPP facilitated the challenging Pd‐catalyzed Suzuki‐Miyaura cross‐coupling reaction of chloroarenes..
22. Hikaru Matsumoto, Yu Hoshino, Tomohiro Iwai, Masaya Sawamura, Yoshiko Miura, Polystyrene-Cross-Linking Triphenylphosphine on a Porous Monolith: EnhancedCatalytic Activity for Aryl Chloride Cross-Coupling in Biphasic Flow, Ind.Eng. Chem., doi.org/10.1021/acs.iecr.0c02404, 59, 34, 15179-15187, 2020,59, 34, 15179-15187., 2020.07.
23. Hinata Takimoto, Sho Katakami, Yoshiko Miura, Yu Hoshino, Controlling the block sequence of multi-block oligomer ligands for neutralizationof a target peptide, Materials Advances, doi.org/10.1039/DoMA00149J, 1, 604-608, 2020, 1, 604-608., 2020.06.
24. Yoshiko Miura, Controlled polymerization for the development of bioconjugate polymers and material, Journal of Materials Chemistry B, 10.1039/c9tb02418b, 8, 10, 2010-2019, 2020.03, [URL], Controlled polymerization through living radical polymerization is widely studied. Controlled polymerization enables synthetic polymers with precise structures, which have the potential for excellent bio-functional materials. This review summarizes the applications of controlled polymers, especially those via living radical polymerization, to biofunctional materials and conjugation with biomolecules. In the case of polymer ligands like glycopolymers, the polymers control the interactions with proteins and cells based on the precise polymer structures. Living radical polymerization enables the conjugation of polymers to proteins, antibodies, nucleic acids and cells. Those polymer conjugations are a sophisticated method to modify bio-organisms. The polymer conjugations expand the potential of biofunctional materials and are useful for understanding biology..
25. Yu Hoshino, Shohei Taniguchi, Hinata Takimoto, Sotaro Akashi, Sho Katakami, Yusuke Yonamine, Yoshiko Miura, Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide, Angewandte Chemie - International Edition, 10.1002/anie.201910558, 59, 2, 679-683, 2020, 132,2,689-693., 2020.01, [URL], Abiotic ligands that bind to specific biomolecules have attracted attention as substitutes for biomolecular ligands, such as antibodies and aptamers. Radical polymerization enables the production of robust polymeric ligands from inexpensive functional monomers. However, little has been reported about the production of monodispersed polymeric ligands. Herein, we present homogeneous ligands prepared via radical polymerization that recognize epitope sequences on a target peptide and neutralize the toxicity of the peptide. Taking advantage of controlled radical polymerization and separation, a library of multifunctional oligomers with discrete numbers of functional groups was prepared. Affinity screening revealed that the sequence specificity of the oligomer ligands strongly depended on the number of functional groups. The process reported here will become a general step for the development of abiotic ligands that recognize specific peptide sequences..
26. Yuri Kimoto, Yuhei Terada, Yu Hoshino, Yoshiko Miura, Screening of a Glycopolymer Library of GM1 Mimics Containing Hydrophobic Units Using Surface Plasmon Resonance Imaging, ACS Omega, 10.1021/acsomega.9b02877, 4, 24, 20690-20696, 2019, 4, 24, 20690-20696., 2019.11, [URL], Effective screening methods for the development of glycopolymers as molecular recognition materials are desirable for the discovery of novel biofunctional materials. A glycopolymer library was prepared to obtain guidelines for the design of glycopolymers for the recognition of cholera toxin B subunits (CTB). Glycopolymers with varying ratios of hydrophobic and sugar units were synthesized by reversible addition fragmentation chain transfer polymerization. N-tert-Butylacrylamide, N-phenylacrylamide, and N-cyclohexylacrylamide as hydrophobic units were copolymerized in the polymer backbone, and galactose, which contributes to CTB recognition, was introduced into the side chains by "post-click" chemistry. The thiol-terminated glycopolymers were immobilized on a gold surface. The polymer immobilization substrate was analyzed in terms of interaction with galactose recognition proteins (CTB, peanut agglutinin, and Ricinus communis agglutinin I) using surface plasmon resonance imaging. The polymers with high ratios of sugar and hydrophobic units had the strongest interactions with the CTB, which was different from the trend with peanut agglutinin and Ricinus communis agglutinin I. The binding constant of the CTB with the glycopolymer with hydrophobic units was 4.1 × 106 M-1, which was approximately eight times larger than that of the polymer without hydrophobic units. A correlation was observed between the log P value and the binding constant, indicating that the hydrophobic interaction played an important role in binding. New guidelines for the design of recognition materials were obtained by our screening method..
27. Takahiro Oh, Kazuki Jono, Yuri Kimoto, Yu Hoshino, Yoshiko Miura, Preparation of multifunctional glycopolymers using double orthogonal reactions and the effect of electrostatic groups on the glycopolymer–lectin interaction, Polymer Journal, 10.1038/s41428-019-0244-x, 51, 12, 1299-1308, 2019, 51,12,1299-1308, 2019.08, [URL], We investigated synthetic biomacromolecules to control molecular interactions. Multifunctional glycopolymers for molecular recognition were prepared via living radical polymerization and post-click chemistry with orthogonal Huisgen and thiol-epoxy reactions. The synthesis of the polymer backbone and the subsequent side-chain introduction successfully proceeded in high yield. The multifunctional glycopolymers had a tri-block structure: the first and third blocks contained mannose, and the second block contained either a positively or negatively charged group or a neutral hydrophilic group. The molecular recognition of the glycopolymers toward lectin was evaluated via fluorescence quenching measurements. Because of the electrostatic interaction, the binding constant varied in the following order: positively charged glycopolymer (PT110) > negatively charged glycopolymer (NT110). The effect of the electrostatic interactions was modest compared with the effect of the carbohydrate–lectin binding. These results suggested that the carbohydrate–lectin interaction was an important factor in the molecular recognition of glycopolymers. This study provides guidelines for the preparation of multifunctional polymers, such as biomaterials..
28. Kenneth J. Shea, @Hiroyuki Koide, Yoshiko Miura, Yu Hoshino, Yuri Nishimura, Naoto Oku, Abiotic Anti-VEGF Nanoparticle, United States Patent Application, 2019.07, The present invention relates generally to compositions and methods comprising abiotic, synthetic polymers with affinity and specificity to proteins. The synthetic polymers are an improvement over biological agents by providing a simpler, less expensive, and customizable platform for binding to proteins. In one embodiment, the compositions and methods relate to synthetic polymers with affinity and specificity to vascular endothelial growth factor (VEGF). In one embodiment, the compositions are useful for treating diseases and disorders related to the overexpression of VEGF. In one embodiment, the compositions are useful for treating cancer. In one embodiment, the compositions are useful for detecting VEGF levels from biological samples. In one embodiment, the compositions are useful for detecting overexpression of VEGF from biological samples. In one embodiment, the compositions are used to diagnose cancer..
29. Nagao,M., Matsubara, T., Hoshino, Y., Sato, T., Miura, Y., Synthesis of Various Glycopolymers Bearing Sialyllactose and the Effectof Their Molecular Mobility on Interaction with the Influenza Virus, Biomacromolecules, doi/10.1021/acs.biomac.9b00515, 20, 7, 2763-2769, 2019, 20, 7, 2763-2769, 2019.06.
30. Masanori Nagao, Teruhiko Matsubara, Yu Hoshino, Toshinori Sato, and Yoshiko Miura, Topological Design of Star Glycopolymers for Controlling the Interaction with the Influenza Virus, Bioconjugate Chemistry, 10.1021/acs.bioconjchem.9b00134, 30, 1192-1198, Bioconjugate Chemistry 2019,30,1192-1198, 2019.04, The precise design of synthetic polymer ligands using controlled polymerization techniques provides an advantage for the field of nanoscience. We report the topological design of glyco-ligands based on synthetic polymers for targeting hemagglutinin (HA, lectin on the influenza virus). To achieve precise arrangement of the glycounits toward the sugar-binding pockets of HA, triarm star glycopolymers were synthesized. The interaction of the star glycopolymers with HA was found to depend on the length of the polymer arms and was maximized when the hydrodynamic diameter of the star glycopolymer was comparable to the distance between the sugar-binding pockets of HA. Following the formula of multivalent interaction, the number of binding sites in the interaction of the glycopolymers with HA was estimated as 1.8–2.7. Considering one HA molecule has three sugar-binding pockets, these values were reasonable. The binding mode of synthetic glycopolymer–ligands toward lectins could be tuned using controlled radical polymerization techniques..
31. Nagao Masanori, Hoshino Yu, Miura Yoshiko, Quantitative preparation of multiblock glycopolymers bearing glycounits at the terminal segments by aqueous reversible addition–fragmentation chain transfer polymerization of acrylamide monomer, Journal of Polymer Science, Part A: Polymer Chemistry, 10.1002/pola.29344, 57, 857-861, 2019,57,857-861, 2019.03.
32. Terada, Y.; Hoshino, Y.; Miura, Y., “Glycopolymers mimicking GM1 gangliosides: Cooperativity of galactose and neuraminic acid for cholera toxin recognition, Chemistry–An Asian Journal, 10.1002/asia.201900053, 14, 1021-1027, Chemistry–An Asian Journal 2019,14,1021-1027. (DOI: doi.org/10.1002/asia.201900053), 2019.03.
33. Yu Hoshino, Kazushi Imamura, Tomohiro Gyobu, Ikuo Taniguchi, Akira Hamasaki, Chie Yamashita, Takeshi Watanabe, Yoshiko Miura, , Monolayer, composite, gas separation material, filter, gas separation device and method for manufacturing composite, United States Patent Application, 2019.03, A monolayer membrane containing gelling polymer particles having at least one of a basic functional group and an acidic functional group, and having a thickness of less than 5 μm. A composite having a porous carrier and gelling polymer particles having at least any one of a basic functional group and an acidic functional group and filling up the surface pores of the porous carrier. The invention can provide a novel material capable of efficiently separating an acid gas from a mixed gas..
34. Takahiro Oh, Masanori Nagao, Yu Hoshino , and Yoshiko Miura, Self-Assembly of a Double Hydrophilic Block Glycopolymer and the Investigation of Its Mechanism, Langmuir, 10.1021/acs.langmuir.8b01527, 2018.07.
35. Hikaru Matsumoto, Takanori Akiyoshi, Yu Hoshino, and Yoshiko Miura, Size-tuned hydrogel network of palladium-confining polymer particles: a highly active and durable catalyst for Suzuki coupling reactions in water and ambient temperature, Polymer Jornal, 10.1038/ s41428-018-0102-2, 2018.07.
36. Xinnan Cui, Tatsuya Murakami, Yukihiko Tamura, Kazuhiro Aoki, Yu Hoshino, and Yoshiko Miura, Bacterial Inhibition and Osteoblast Adhesion on Ti Alloy Surfaces Modified by Poly(PEGMA-r-Phosmer) Coating, ACS Appl. Mater. Interfaces, 10.1021/acsami.8b07757, 10, 28, 23674-23681, 2018, 10 (28), 23674–23681, 2018.06, We have synthesized and immobilized PEGMA500-Phosmer to Ti6Al4V surfaces by a simple procedure to reduce bacteria-associated infection without degrading the cell response. Adhered bacteria coverage was lessened to 1% on polymer-coated surfaces when exposed to Escherichia coli, Staphylococcus epidermidis, and Streptococcus mutans. Moreover, PEGMA500-Phosmer and homoPhosmer coatings presented better responses to MC3T3-E1 preosteoblast cells when compared with the results for PEGMA2000-Phosmer-coated and raw Ti alloy surfaces. The behavior of balancing bacterial inhibition and cell attraction of the PEGMA500-Phosmer coating was explained by the grafted phosphate groups, with an appropriate PEG brush length facilitating greater levels of calcium deposition and further fibronectin adsorption when compared with that of the raw Ti alloy surface..
37. Hiroyuki Koide, Keiichi Yoshimatsu, Yu Hoshino, Shih-Hui Lee, Saki Arizumi, Yudai Narita, Yusuke Yonamine, Adam C. Weisman, Yuri Nishimura, Naogo Oku, Yoshiko Miura, Kenneth J Shea, A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165), Nature Chemistry, 10.1038/nchem.2749, 9, 715-722, 9, pages 715–722 (2017), 2017.03, [URL], Protein affinity reagents are widely used in basic research, diagnostics and separations and for clinical applications, the most common of which are antibodies. However, they often suffer from high cost, and difficulties in their development, production and storage. Here we show that a synthetic polymer nanoparticle (NP) can be engineered to have many of the functions of a protein affinity reagent. Polymer NPs with nM affinity to a key vascular endothelial growth factor (VEGF165) inhibit binding of the signalling protein to its receptor VEGFR-2, preventing receptor phosphorylation and downstream VEGF165-dependent endothelial cell migration and invasion into the extracellular matrix. In addition, the NPs inhibit VEGF-mediated new blood vessel formation in Matrigel plugs in vivo. Importantly, the non-toxic NPs were not found to exhibit off-target activity. These results support the assertion that synthetic polymers offer a new paradigm in the search for abiotic protein affinity reagents by providing many of the functions of their protein counterparts..
38. Masanori Nagao, Yuuki Kurebayashi, Hirokazu Seto, Tadanobu Takahashi, Takashi Suzuki, Yu Hoshino, Yoshiko Miura, Polyacrylamide backbones for polyvalent bioconjugates using “post-click” chemistry”, Polymer Chemistry, 2016.07.
39. Yoshiko Miura, Yu Hoshino, Hirokazu Seto, Glycopolymer Nanobiotechnology, Chemical Reviews, 10.1021/acs.chemrev.5b00247, 116, 1673-1692, 2016.02, Previous studies have clearly shown the importance of the multivalent effect in saccharide–protein interactions. To investigate the multivalent effect, the use of multivalent compounds or “glycoclusters” is indispensable, and many groups have reported syntheses of glycocluster compounds. Examples of glycoclusters include liposomes with glycolipids, glycocalixarenes, glycocyclodextrins, glycopeptides, and glycopolymers. Among the various synthetic glycoclusters, glycopolymers have been the subject of much attention . In this review, we define glycopolymers as polymers carrying pendant saccharides. Since glycopolymers have larger valencies than other multivalent compounds, they show the largest amplification effects in molecular recognition. Glycopolymers are able to be prepared as nanomaterials by controlled polymerization. In this section of the review, we discuss glycopolymers and their application for biotechnology..
40. Xinnan Cui, Hirokazu Seto, Tatsuya Murakami, Yu Hoshino, Yoshiko Miura, Inhibition of Bacterial Adhesion on Hydroxyapatite Model Teeth by Surface Modification with PEGMA-Phosmer Copolymers, ACS Biomater. Sci. Eng, 10.1021/acsbiomaterials.5b00349, 2, 2, 205-212, 2016.02, Modification of the interface properties on hydroxyapatite and tooth enamel surfaces was investigated to fabricate bacterial resistance in situ. A series of copolymers containing pendants of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and ethylene glycol methacrylate phosphate (Phosmer) were polymerized by conventional free radical polymerization and changing the feed ratio of monomers. The copolymers were immobilized on hydroxyapatite and tooth enamel via the affinity of phosphate groups to hydroxyapatite to form the stable and durable polymer brushes on the surfaces. The amounts of polymer immobilized depended on the phosphate group ratio in the copolymers. Surface modification altered the interfacial properties of hydroxyapatite and inhibited bacterial adhesion. Copolymers containing 40–60% PEGMA segments showed a significant inhibitory effect on bacterial adhesion of S. epidermidis both in the presence and absence of plaque model biomacromolecules..
41. LEE, H., Hoshino, Y., Wada, Y., Arata, Y., Maruyama, A., Miura Y., Minimization of Synthetic Polymer Ligands for Specific Recognition and Neutralization of a Toxic Peptide., Journal of the American Chemical Society, 137, 34, 10878-10881, 2015, 137 (34), 10878-10881, 2015.08.
42. Yue, Mencheng, Yu Hoshino, Yoshiko Miura, Design rationale of thermally responsive microgel particle films that reversibly absorb large amounts of CO2: fine tuning the pKa of ammounium ions in the particles., Chemical Science, 10.1039/C5SC01978H, 6, 11, 6112-6123, 2015, 6 (11), 6112-6123, 2015.07, Herein we revealed the design rationale of thermally responsive gel particle (GP) films that reversibly capture and release large amounts of CO2 over a narrow temperature range (30–75 °C). The pKa value of ammonium ions in the GPs at both the CO2 capture temperature (30 °C) and release temperature (75 °C) is found to be the primary factor responsible for the stoichiometry of reversible CO2 capture by the amines in the GP films. The pKa values can be tuned by the properties of GPs such as volume phase transition temperature (VPTT), size, swelling ratio, and the imprinted microenvironment surrounding the amines. The optimal GP obtained according to the design rationale showed high capture capacity (68 mL CO2 per g dry GPs, 3.0 mmol CO2 per g dry GPs), although the regeneration temperature was as low as 75 °C. We anticipate that GP films that reversibly capture other acidic and basic gases in large amounts can also be achieved by the pKa tuning procedures..
43. Seto, Hirokazu; Ogata, Yutaro; Murakami, Tatsuya; Hoshino, Yu; Miura, Yoshiko , Selective Protein Separation Using Siliceous Materials with a Trimethoxysilane-Containing Glycopolymer, ACS Applied Materials & Interfaces, 10.1021/am2014713, 4, 1, 411-417, 2012, 4(1), 411-417, 2012.01, A copolymer with α-d-mannose (Man) and trimethoxysilane (TMS) units was synthesized for immobilization on siliceous matrices such as a sensor cell and membrane. Immobilization of the trimethoxysilane-containing copolymer on the matrices was readily performed by incubation at high heat. The recognition of lectin by poly(Man-r-TMS) was evaluated by measurement with a quartz crystal microbalance (QCM) and adsorption on an affinity membrane, QCM results showed that the mannose-binding protein, concanavalin A, was specifically bound on a poly(Man-r-TMS)-immobilized cell with a higher binding constant than bovine serum albumin. The amount of concanavalin A adsorbed during permeation through a poly(Man-r-TMS)-immobilized membrane was higher than that through an unmodified membrane. Moreover, the concanavalin A adsorbed onto the poly(Man-r-TMS)-immobilized membrane was recoverable by permeation of a mannose derivative at high concentration..
44. Matsumoto, Erino; Nishizawa, Kazuki; Fukuda, Tomohiro; Takai, Madoka; Miura, Yoshiko, Separation capability of proteins using microfluidic system with dendrimer modified surface , Transactions of the Materials Research Society of Japan, 36, 4, 541-544, 2011、36(4)、541-544, 2011.11.
45. Masaya Wada, Yuta Miyazawa, Yoshiko Miura, A specific Inhibitory effect of multivalent trehalose toward amyloid beta (1-40) aggregation, Polymer Chemistry, accepted, 2011.07.
46. Erino Matsumoto, Tomohiro Fukuda, Yoshiko Miura, Bioinert surface to protein adsorption with higher generation of dendrimer SAMs, Colloids and Surfaces B:Biointerfaces, doi:10.1016/j.colsurfb.2011.01.003, 84, 1, 280-284, 2011.05.
47. Jin Ishii, Masayuki Toyoshima, Miyuki Chikae, Yuzuru Takamura, Yoshiko Miura , Preparation of Glycopolymer-modified Gold Nanoparticles and a New Approach for a Lateral Flow Assay, Bull chem Soc Jpn, doi:10.1246/bcsj.2010030, 84, 5, 466-470, selected paper, 2011.05.
48. 三浦 佳子、横山 義之、 柴田 千絵里 , エラスチンモデルペプチドを用いた温度応答性界面の創製と生体機能解析, 高分子論文集, doi:10.1295/koron.67.584, 67, 10, 584, 2010.10.
49. Yoshiko Miura, Hikaru Mizuno, Interaction Analyses of Amyloid beta Peptide (1-40) with Glycosaminoglycan Model Polymers, Bull. Chem. Soc. Jpn, 10.1246/bcsj.20100094, 83 , 9, 1004, 2010, 83(9), 1004-1009, 2010.09.
50. Tomohiro Fukuda, Erino Matsumoto, Nobuhiko Yui,and Yoshiko Miura, Peculiar Wettability Based on Orientational Change of Self-assembled Hemispherical PAMAM Dendrimer Layer, Chemistry Letters, doi:10.1246/cl.2010.923, 39, 9, 923, 2010, 39, 923-925, 2010.07.
51. T. Fukuda, E. Matsumoto, S. Onogi, Y. Miura, Aggregation of Alzheimer Amyloid β Peptide (1−42) on the Multivalent Sulfonated Sugar Interface, Bioconjugate Chemistry, 10.1021/bc100053x, 21, 6, 1079, 2010, 21, 1079-1086, 2010.06, [URL].
52. M. Toyoshima, T. Oura, T. Fukuda, E. Matsumoto, Y. Miura, , Biological specific recognition of glycopolymermodified interfaces by RAFT living radical polymerization, Polymer Journal, doi:10.1038/pj.2009.321, 42, 172, 2010, 42, 172-178, 2010.02.
53. yoshiko miura, Inhibition of protein amyloidosis by glycomaterials, Trends in Glycoscience and Glycotechnology, doi:10.4052/tigg.21.324, 21, 122, 324-334, 2009.12.
54. Tomohiro Fukuda, Shunsuke Onogi, Yoshiko Miura, Dendritic Sugar-Microarrays by Click Chemistry, Thin Solid Films, 518, 880-888, 2009.11.
55. Koji Funato, Naoto Shirahata, Yoshiko Miura, The monolayer of a-Man via Si-C bond formation and protein recognition, Thin Solid Films, 518, 699, 2009.11.
56. Yoshiko Miura, Kiyofumi Yamamoto, Kikuko Yasuda, Yoshihiro Nishida, Kazukiyo koabayashi, Inhibition of Alzheimer Amyloid Aggregation with Sulfate Glycopolymers, Advances in Science and Technology , 57, 166-169, 2009.08.
57. Masayuki Toyoshima, Yoshiko Miura, Preparation of GLycopolymer-Substituted Gold nanoparticles and Their Molecular Recognition, Journal of Polymer Science PartA: Polymer Chemistry, 47, 1412-1421, 2009.03.
58. Erino Matsumoto, Takanori Yamauchi, Tomohiro Fukuda, Yoshiko Miura, Sugar microarray by click chemistry, Sci. Technol. Adv. Mater. , 10, 034605, 2009.03.
59. Miyuki Chikae, Tomohiro Fukuda, K. Kerman, K. Idegami, Yoshiko Miura, Eiichi Tamiya, Amyloid beta-detection with saccharide immobilized gold nanoparticle on carbon electrode, Bioelectrochemistry, 74, 118-123, 2008.11.
60. Yoshiko Miura, Takahiro Yamauchi, Hajime Sato, Tomohiro Fukuda, The Self-Assembled Monolayer of Saccharide via Click Chemistry: Formation and Protein Recognition, Thin Solid Films, 516, 2443, 2008.09.
61. 三浦佳子, 糖質薄膜を用いた生体検出, 表面, 46, 9, 443, 2008.09.
62. 豊島雅幸、大矢健、三浦佳子、小林一清, 糖鎖修飾金微粒子の合成と生体機能解析, 紛体および粉末治金, 54, 843, 2008.09.
63. Yoshiko Miura, Chouga You, Reiko Ohnishi,, Inhibition of Alzheimer amyloid beta aggregation by polyvalent trehalose, Sci. Technol Adv Mat , 9, 24407, 2008.07.
64. Tomohiro Fukuda, Shunsuke Onogi, Yoshiko Miura, Preparation and Properties of Dendritic Sugar Immobilized Surface, Trans. Mat. Res. Soc. Jpn,, 33, 733, 2008.03.
65. Yoshiko Miura, Shunsuke Onogi, Kiyofumi Yamamoto, Synthesis of Glycodendrimer via Click Chemistry and Protein Affinities, Trans. Mat. Res. Soc. Jpn, 33, 729, 2008.03.
66. Yoshiko Miura, Kikuko Yasuda, Kiyofumi Yamamoto, Mihoko Koike, Yoshihiro Nishida, Kazukiyo Kobayashi, Inhibition of Alzhimer Amyloid Aggregation with Sulfated Glycopolymers , Biomacromolecules, 8, 2129, 2007.11.
67. Yoshiko Miura, Daisuke Kouketsu, kazukiyo Kobayashi, Synthesis and Properties of a Well-Defined Glycopolymer via Living radical Polymerization, Polymer Advanced Technology, 18, 647, 2007.07.
68. Hajime Sato, Yoshiko Miura, Nagahiro Saito, Kazukiyo Kobayashi, Osamu Takai, Fibroblastic Microfabrication by Molecular Recognition on Substrate, Surface Science, 601, 3871, 2007.04.
69. Hajime Sato, Yoshiko Miura, Nagahiro Saito, Kazukiyo Kobayashi, Osamu Takai, A Micropatterned Multifunctional Carbohydrate Display by an Orthogonal Self-Assembling Strategy, Biomacromolecules, 8, 753-756, 2007.01.
70. Yoshiko Miura, Akio Sakaki, Masamichi Kamihira, Shinji Iijima, Kazukiyo Kobayashi, A globotriaosylceramide (Gb3Cer) mimic peptide , Biochimica et Biophysica Acta, 1760, 883, 2006.09.
71. Hajime Sato, Yoshiko Miura, Takahiro Yamauchi, Kazukiyo , Carbohydrate Microarray by Click Chemistry, Trans. Mat. Res. Soc. Jpn, 31, 659, 2006.04.
72. Yoshiko Miura, The Development and the Character of Saccharide Biosensors, Trends in Glycoscience and Glycotechnology, , 18, 349, 2006.04.
73. Yoshiko Miura, Chieri Shibata, Kazukiyo Kobayashi, Theremoresponsive Self-Assembly of Short Elastin-Like Peptides , Trans Mat Res Soc Jpn, 31, 549, 2006.04.
74. Yoshiko Miura, Chieri Shibata, Kazukiyo Kobayashi, Theremoresponsive Self-Assembly of Short Elastin-Like Peptides , Trans Mat Res Soc Jpn, 31, 549, 2006.04.
75. Natsuko Wada, Yoshiko Miura, Kazukiyo Koabayashi, Synthesis and Biological Properties of Glycopolymer-Polylactide Conjugate, Trans. Mat. Res. Soc. Jpn, 32, 767, 2005.04.
76. Yoshiko Miura, Natsuko Wada, Yoshihiro Nishida, H. Mori, K. Kobayashi, Chemoenzymatic Synthesis of Glycoconjugate Polymers Starting from Non-reducing Disaccharides, J. Polym. Sci. part A Polym. Chem. 2004, 42, 4598, 42, 4598, 2004.04.
77. Yoshiko Miura, Yuki Sasao, Masamichi Kamihira, Akio Sakaki, Shinji Iijima, Kazukiyo kobayashi, Peptides binding to a Gb3 mimic selected from a phage library, Biochem. Biophys. Acta, 1673, 131, 2004.04.
78. Y. Miura, T. Ikeda, N. Wada, K. kobayashi, Chemoenzymatic Synthesis of Glycoconjugate Polymers: Greening the Synthesis of biomaterials, Green Chemistry, 5, 610, 2003.04.
79. Y. Miura, T. Ikeda, N. Wada, K. Kobayashi, Chemoenzymatic synthesis of a Multivalent Aminoglycoside, Macromol. Biosci, 3, 362, 2003.04.
80. Yoshiko Miura, takayasu ikeda, kazukiyo kobayashi, Chemoenzymatically Synthesized Glycoconjugate Polymers, Biomacromolecules, 10.1021/bm025714b, 4, 2, 410, 2003.02.
81. Yoshiko Miura, Yuuki Sasao, Hirofumi Dohi, Yoshihiro Nishida and Kazukiyo Kobayashi, Self-assembled monolayers of globotriaosylceramide (Gb3) mimics: surface-specific affinity with shiga toxins , doi:10.1016/S0003-2697(02)00318-4, 310, 27, 2002.04.
82. Y. Miura, S. Kimura, S. Kobayashi, Y. Imanishi, J. Umemura, Cation recognition by self-assembled monolayers of oriented helical peptides having a crown ether unit, Biopolymers, 55, 391, 2000.04.
83. Y. Miura, S. Kimura, Y. Imanishi, J. Umemura, Formation of Oriented Helical Peptide Layers on a Gold Surface due to the Self-assembling Properties of Peptides, Langmuir, 14, 6935, 1998.04.
84. Y. Miura, S. Kimura, Y. Imanishi, J. Umemura, Self-Assembly of a-helix peptide/crown ether conjugate upon complexation with ammonium-terminated alkanethiolate, 14, 2761, 1998.04.
85. 三浦佳子、木村俊作、今西幸男、梅村順三, 分子認識部位を有するへリックスペプチドの分子集合体の構築, 70, 101, 1998.04.
主要総説, 論評, 解説, 書評, 報告書等
1. Yoshiko Miura, Controlled Polymerization for the development of bioconjugate polymers and materials, Journal of Materials Chemistry B, 10.1039/C9TB02418B, 2020, 8, 2010-2019, 2020.01, Controlled polymerization through living radical polymerization is widely studied. Controlled polymerization enables synthetic polymers with precise structures, which have the potential for excellent bio-functional materials. This review summarizes the applications of controlled polymers, especially those via living radical polymerization, to biofunctional materials and conjugation with biomolecules. In the case of polymer ligands like glycopolymers, the polymers control the interactions with proteins and cells based on the precise polymer structures. Living radical polymerization enables the conjugation of polymers to proteins, antibodies, nucleic acids and cells. Those polymer conjugations are a sophisticated method to modify bio-organisms. The polymer conjugations expand the potential of biofunctional materials and are useful for understanding biology..
主要学会発表等
1. Yoshiko Miura, Denovo design of glycopolymer for controlled molecular recognition, Pacific Polymer Conference 17 (PPC17), 2022.12.
2. 延廣一樹、安藝翔馬、星野友、三浦佳子, 金属メッシュデバイスを応用した細胞分離の基礎検討, 化学工学会第84年会, 2019.03.
3. 松本 光、星野 友、岩井 智弘、 澤村 正也、三浦 佳子, 活性なパラジウム錯体を選択的に形成するホスフィン固定化ポリスチレンの設計, 化学工学会 第84年会, 2019.03.
4. 寺田 侑平, 星野 友,三浦 佳子, コレラ毒素認識に向けた糖鎖高分子の分子認識スクリーニング, 第67会高分子学会年次大会, 2018.05.
5. #木元 優里,@寺田 侑平,@星野 友,@三浦 佳子 , 表面プラズモン共鳴イメージング(SPRI)を用いた疎水基含有糖鎖高分子-タンパク質間相互作用のスクリーニング, 第67会高分子学会年次大会, 2018.05.
6. 長尾 匡憲,久保 あかね,藤原 由梨奈,松原 輝彦 ,星野 友,佐藤 智典,三浦 佳子, 糖鎖高分子の構造設計によるインフルエンザウイルスとの相互作用制御, 第67会高分子学会年次大会, 2018.05.
7. 三浦 佳子・ 久保田 小絵・ 田口 裕貴・ 城石 桜子・星野 友, 金属メッシュデバイスを用いた細胞の分離に関する検討, 化学工学会 第83年会, 2018.03.
8. 服部 春香,松本 光,星野 友,三浦 佳子, 触媒的フロー合成を指向した多孔質高分子モノリスの開発, 化学工学会 第83年会, 2018.03.
9. 松本 光,星野 友,三浦 佳子, パラジウムを固定化した多孔質オルガノゲルのフロー触媒合成への応用, 化学工学会 第83年会, 2018.03.
10. 森井 崇人 ・瀬戸 弘一 ・ 星野友 ・ 三浦 佳子, 水素貯蔵性パラジウム(0)担持ナノ粒子の作製, 第14回化学工学会学生発表会 宇部大会, 2012.03.
11. 高良政巳、豊嶋雅幸、星野友、三浦佳子, RAFTリビングラジカル重合を利用した糖鎖高分子複合微粒子の合成と機能解析, 第61回高分子学会, 2011.05.
12. 和田将也、宮澤雄太、三浦佳子, Abetaの凝集に対するトレハロースとトレハロースポリマーの特殊な生物学的機構, 第4回バイオ関連化学シンポジウム, 2010.09.
特許出願・取得
特許出願件数  22件
特許登録件数  2件
学会活動
所属学会名
日本学術会議
日本表面真空学会
日本糖質学会
化学工学会
日本MRS
高分子学会
日本化学会
アメリカ化学会
学協会役員等への就任
2021.04~2023.03, 化学工学会 九州支部, 企画幹事.
2021.04~2024.03, 日本化学会, 男女共同参画委員会委員 副委員長.
2017.04~2020.03, 日本表面真空学会九州支部, 幹事.
2017.04~2020.03, 日本化学会九州支部, 幹事.
2017.04~2025.03, 高分子学会九州支部, 幹事.
2017.05~2019.03, 化学工学会, 高等教育委員.
2015.04~2022.03, 日本化学会, 男女共同参画委員.
2016.04~2018.03, 日本化学会九州支部, 幹事.
2015.04~2024.03, 日本糖質学会, 男女共同参画委員.
2016.04~2016.05, 日本表面科学会, 幹事.
2015.04~2020.03, 日本化学会九州支部, 幹事.
2013.04~2024.03, 日本糖質学会, 評議員.
2011.04~2014.03, 日本化学会九州支部, .
2011.04~2020.03, 高分子学会九州支部, 幹事.
2010.04~2020.03, バイオ高分子研究会, 幹事.
2010.04~2021.03, 化学工学会 九州支部, 幹事.
2004.04~2012.03, 表面技術協会ナノテク部会, 幹事.
2008.04~2020.03, 生命化学研究会, 幹事.
2004.04~2011.03, FCCAグライコサイエンス若手の会, 幹事.
学会大会・会議・シンポジウム等における役割
2022.12.05~2022.12.07, 第32回日本MRS年次大会, セッションオーガナイザー.
2021.12.13~2021.12.15, 第31回 日本MRS年次大会, セッションオーガナイザー.
2022.03.16~2022.03.18, 化学工学会第87年会, 座長.
2022.05.25~2022.05.27, 第71回高分子学会年次大会, 座長.
2021.11.12~2021.11.12, 多糖の未来シンポジウム, 企画幹事.
2020.12.10~2020.12.10, 第30回 日本MRS年次大会, 座長.
2020.12.09~2020.12.10, 第30回 日本MRS年次大会, セッションオーガナイザー.
2020.05.27~2020.05.29, 第69回高分子学会年次大会, 運営委員.
2019.11.27~2019.11.29, 日本MRS, セッションオーガナイザー.
2018.07.26~2018.07.27, 第28回バイオ高分子研究会, 座長.
2018.12.18~2018.12.20, 日本MRS年次大会, オーガナイザー.
2017.12.14~2017.12.16, 2017 九州・西部-釜山・慶南高分子(第 18 回)繊維(第 16 回)合同シンポジウム, オーガナイザー.
2018.03.13~2018.03.15, 化学工学会 第83年会, 座長.
2018.05.23~2018.05.25, 第67会高分子年次大会, 座長.
2017.09.22~2017.09.22, 第66回高分子討論会, 座長.
2017.09.21~2017.09.21, 第66回高分子討論会, 座長.
2017.03.06~2017.03.09, 化学工学会年会, 座長(Chairmanship).
2016.03.04~2016.03.04, 化学工学会学生発表会, 座長(Chairmanship).
2017.03.16~2017.03.19, 日本化学会, 司会(Moderator).
2016.12.13~2016.12.16, 11th SPSJ International Polymer Conference, 座長(Chairmanship).
2016.03.16~2016.03.19, 日本化学会, 座長(Chairmanship).
2016.11.21~2016.11.21, 日本バイオマテリアル学会シンポジウム2016, 座長(Chairmanship).
2016.09.14~2016.09.16, 第65回高分子討論会, 座長(Chairmanship).
2016.03.05~2016.03.05, 化学工学会学生発表会, 座長(Chairmanship).
2016.05.25~2016.05.27, 高分子学会, 座長(Chairmanship).
2016.09.14~2016.09.16, 高分子討論会, 座長(Chairmanship).
2015.09.15~2015.09.17, 高分子討論会, 座長(Chairmanship).
2015.05.25~2015.05.27, 高分子学会, 座長(Chairmanship).
2014.07.23~2014.07.27, Collaborative Conferece on Materials Research, 座長(Chairmanship).
2014.09.24~2014.09.26, 高分子討論会, 座長(Chairmanship).
2015.03.07~2015.03.07, 化学工学会学生発表会, 座長(Chairmanship).
2015.03.26~2015.03.29, 日本化学会年会, 座長(Chairmanship).
2013.09.11~2013.09.13, 高分子討論会.
2013.05.29~2013.05.31, 高分子学会, 座長(Chairmanship).
2013.07.31~2013.08.01, バイオ高分子シンポジウム, 座長(Chairmanship).
2013.03.17~2013.03.19, 化学工学会第78回年会, 座長(Chairmanship).
2012.06.25~2012.06.26, バイオ高分子シンポジウム, 座長(Chairmanship).
2012.09.19~2012.09.21, 第61回高分子討論会, 座長(Chairmanship).
2012.05.29~2012.05.31, 第61回高分子学会, 座長(Chairmanship).
2011.12.19~2011.12.21, 日本MRS, 座長(Chairmanship).
2011.09.20~2011.09.23, ASAM-3, 座長(Chairmanship).
2011.09.27~2011.10.28, 高分子討論会, 座長(Chairmanship).
2011.07.25~2011.07.26, バイオ高分子シンポジウム, 座長(Chairmanship).
2011.05.25~2011.05.27, 高分子学会, 座長(Chairmanship).
2011.03.23~2011.03.23, 日本バイオマテリアル学会九州ブロック, 座長(Chairmanship).
2010.09.15~2010.09.17, 高分子討論会, 座長(Chairmanship).
2010.07.28~2010.08.29, バイオ高分子シンポジウム, 座長(Chairmanship).
2016.12.13~2016.12.16, 11th SPSJ International Polymer Conference, 組織委員.
2014.12.10~2014.12.12, 日本MRS, オーガナイザー.
2014.08~2013.08, IUMRS-ICA2014, セッションオーガナイザー.
2013.09.11~2013.09.13, 高分子討論会, セッションオーガナイザー.
2012.09.17~2012.09.20, 第31回日本糖質学会, オーガナイザー.
2012.09.26~2012.09.27, IUMRS-ICEM 2012, セッションオーガナイザー.
2012.03.25~2012.03.28, 日本化学会年会, 特別企画責任者.
2010.12.10~2010.12.12, MRS-J, オーガナイザー.
2011.12.19~2011.12.20, MRS-J, オーガナイザー.
2011.09.19~2011.09.22, ASAM3, オーガナイザー.
2010.03.26~2010.03.31, 日本化学会 , 特別企画責任者.
学会誌・雑誌・著書の編集への参加状況
2020.06~2022.05, Materials Advances, 国際, Advisory Board.
2022.06~2032.06, Journal of Materials Chemistry B, 国際, 編集委員.
2023.06~2027.05, Materials Advances, 国際, 編集委員.
2021.01~2023.12, ACS Applied materials interfaces, 国際, Editorial Board.
2021.01~2023.12, ACS Macro Lett, 国際, Editorial Board.
2018.06~2021.06, Applied Science, 国際, 編集委員.
2020.04~2022.06, Journal of Materials Chemistry B, 国際, Advisory Board.
2015.04~2020.03, Trends in Glycoscience and Glycotechnology, 国際, 編集委員.
2014.07~2017.07, 高分子, 国内, 編集委員.
2015.04~2023.03, Chemistry Letters, 国際, 編集委員.
2010.06~2021.03, Membranes, 国際, 編集委員.
2009.04~2014.03, International Journal of Carbohydrate Chemistry, , 国際, 編集委員.
2008.04~2012.03, Advanced Science Letters, , 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2022年度 28        28 
2021年度 54        54 
2020年度 62        62 
2019年度 56      57 
2018年度 52  52 
2017年度 42        42 
2016年度 40        40 
2015年度 40    43 
2014年度 29      30 
2013年度 18      19 
2012年度 14        14 
2011年度 22      23 
2010年度 20        20 
その他の研究活動
海外渡航状況, 海外での教育研究歴
Pacific Polymer Conference 17, Japan, 2022.12~2022.12.
釜山大学, SouthKorea, 2019.06~2019.06.
Royal Society of Chemistry, UnitedKingdom, 2019.07~2019.07.
Stanford University, UnitedStatesofAmerica, 2019.06~2019.06.
Montpeller University, France, 2020.01~2020.01.
Pusan National University, SouthKorea, 2017.03~2017.03.
Ewha womens university, SouthKorea, 2016.10~2016.10.
ETH, Switzerland, 2017.01~2017.01.
University of Pennsylvania, UnitedStatesofAmerica, 2016.11~2016.11.
Alberta University, Canada, 2016.11~2016.11.
UC irvine, UnitedStatesofAmerica, 2015.08~2016.08.
ACS , Japan, 2015.08~2015.08.
Kyungpook National University, Japan, 2015.11~2015.11.
Kyungpook National University, Korea, 2014.11~2014.11.
Yeungnam University, Korea, 2014.11~2014.11.
CIMTEC2014, Italy, 2014.06~2014.06.
ACS national meeting, UnitedStatesofAmerica, 2014.08~2014.08.
CC3MDR, Korea, 2014.07~2014.07.
CC3DMR , Korea, 2013.06~2013.06.
National taiwan university of science and technology, Taiwan, 2013.10~2013.10.
上海大学, China, 2013.11~2013.11.
Material Research Society, UnitedStatesofAmerica, 2012.11~2012.11.
Asian Chemical Congress, Thailand, 2011.09~2011.09.
Pacifichem, UnitedStatesofAmerica, 2010.12~2010.12.
アメリカ化学会, UnitedStatesofAmerica, 2003.08~2003.08.
アメリカ化学会, UnitedStatesofAmerica, 2004.08~2004.08.
アメリカ化学会, UnitedStatesofAmerica, 2005.08~2005.08.
アメリカ化学会, UnitedStatesofAmerica, 2006.08~2006.08.
アメリカ化学会, UnitedStatesofAmerica, 2007.08~2007.08.
アメリカ化学会, UnitedStatesofAmerica, 2008.08~2008.08.
アメリカ化学会, UnitedStatesofAmerica, 2009.08~2009.08.
JGFos, Germany, 2004.02~2004.02.
デリー大学, India, 2009.03~2009.03.
ベトナム国家大学, Vietnam, 2008.01~2008.01.
WCG, China, 2009.12~2009.12.
ペンシルバニア大学, UnitedStatesofAmerica, 2000.04~2001.03.
外国人研究者等の受入れ状況
2018.01~2020.03, 1ヶ月以上, 九州大学, China, 科学技術振興機構.
受賞
女性賞, 化学工学会, 2023.03.
日本化学会 第40回学術賞, 日本化学会, 2022.03.
高分子学会 パプリシティ賞, 高分子学会, 2018.04.
高分子学会旭化成賞, 高分子学会, 2014.09.
BCSJ賞, 日本化学会, 2010.09.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2023年度~2026年度, 基盤研究(B), 代表, 精密重合を駆使した分子認識性糖鎖高分子の確立と高分子医薬の創製.
2022年度~2023年度, 挑戦的研究(萌芽), 代表, 水溶性高分子ブロック共重合体の自己組織化能の解析と機能性分子集合体の創製.
2022年度~2023年度, 学術変革領域研究(A), 代表, デジタル手法に基づく高機能モノリス型触媒の開発迅速化とフロー反応への展開.
2022年度~2023年度, 新学術領域研究, 代表, 親水性ブロック共重合体による新規水圏分子集合体の創製と機能.
2020年度~2021年度, 新学術領域研究, 代表, 多孔質界面での流体ダイナミクスに基づくハイブリッド触媒の創製.
2020年度~2021年度, 新学術領域研究, 代表, 水溶性ブロック高分子による水圏分子集合体の創製と機能材料への展開.
2019年度~2020年度, 挑戦的研究(萌芽), 代表, 抗体ー糖鎖高分子複合体の創製による細胞免疫操作法の確立.
2019年度~2022年度, 基盤研究(B), 代表, 精密重合による糖鎖高分子医薬の開発と生体機能操作.
2018年度~2019年度, 新学術領域研究, 代表, 糖モジュール法を活用した生理活性糖ミミックの合成.
2016年度~2017年度, 新学術領域研究, 代表, ゲルのやわらかさによる反応場の構築と合成プロセス.
2016年度~2017年度, 萌芽研究, 代表, 糖鎖高分子のデノボデザインによる抗体様の高分子医薬の開発.
2015年度~2018年度, 基盤研究(B), 代表, 精密重合を基盤にした糖鎖高分子ナノメディシンの開発.
2014年度~2015年度, 挑戦的萌芽研究, 代表, ダイナミック硫酸化糖鎖高分子の創製と機能.
2012年度~2013年度, 萌芽研究, 代表, 糖鎖高分子ナノ微粒子によるバイオセンシング材料の開発 .
2011年度~2014年度, 若手研究(A), 代表, 硫酸化糖鎖高分子ライブラリーに基づく病原体防除材料の展開 .
2008年度~2012年度, 新学術領域研究, 代表, 生体機能性樹状高分子を用いたソフトインターフェースの設計.
2008年度~2009年度, 若手研究(B), 代表, 糖鎖高分子を用いた病原体防除材料の開発.
日本学術振興会への採択状況(科学研究費補助金以外)
2023年度~2023年度, 委託研究, 学術動向調査.
2020年度~2020年度, 委託研究, 代表, 学術動向調査.
2021年度~2021年度, 委託研究, 代表, 学術動向調査.
2022年度~2022年度, 学術研究動向調査, 代表, カーボンニュートラルに寄与する材料化学分野に関する学術研究動向
.
競争的資金(受託研究を含む)の採択状況
2023年度~2023年度, NEDO先導研究プログラム/新技術先導研究プログラム マテリアル・バイオ革新新技術先導プログラム, 分担, 革新的異種柔軟材料3D/4Dものづくり基盤の構築.
2021年度~2023年度, AMED , 分担, クロストリディオイデス・ディフィシル感染症の新規治療・予防法の開発.
2020年度~2023年度, AMED 創薬推進事業, 代表, 糖モジュール法による中分子糖鎖クラスターによる毒素タンパク質阻害剤の開発.
2014年度~2017年度, JST-ALCA, 分担, 相転移型ナノゲルのpKa制御によるCO2分離膜・プロセスの開発.
2011年度~2011年度, JST A-STEP, 代表, 生理活性糖鎖を利用した病原体の捕捉材料の開発.
2009年度~2010年度, JST 研究シーズ探索プログラム, 自己組織性糖鎖高分子による超分子ナノワイヤーの創製.
共同研究、受託研究(競争的資金を除く)の受入状況
2019.07~2020.06, 分担, MMDを用いた環境分野応用に関する基礎研究
.
2019.07~2020.06, 分担, MMDを用いた分離工学に関する基礎研究.
2018.04~2019.03, 代表, 新規イオン交換型吸着剤の開発.
2018.04~2019.03, 代表, 高性能分離膜とそれを用いた分離検出技術に関する基礎研究.
2016.04~2017.03, 代表, 新規イオン交換型吸着剤の開発.
2017.04~2018.03, 代表, 新規イオン交換型吸着剤の開発.
2016.04~2017.03, 代表, 微小粒子状物質の分離、および、センシング技術に関する研究.
2015.04~2016.03, 代表, nmからμmサイズの物質の分離、及び、センシングに関する研究.
2015.04~2016.03, 代表, 高分子合成技術を利用した医療用機能性素材作製技術の確立.
2014.04~2015.03, 代表, 金属メッシュを用いた微量物質検出用センサーデバイスの研究開発.
2013.06~2014.04, 代表, 精密合成高分子による生体機能材料の開発.
2013.04~2014.03, 代表, 高分子を用いた新規分離材料の開発.
2013.09~2014.03, 代表, ナノ材料のバイオテクノロジーへの応用.
2012.07~2013.06, 代表, 精密合成高分子による生体機能材料の開発.
2013.04~2014.03, 代表, 金属メッシュを用いた微量物質検出用センサーデバイスの研究開発.
2012.04~2013.03, 代表, 金属メッシュを用いた微量物質検出用センサーデバイスの研究開発.
2012.04~2013.03, 代表, 抗体やタンパク質、光学活性化合物を認識する高分子の合成と評価による分離材料の開発.
2011.04~2012.06, 代表, 精密合成高分子による生体機能材料の開発.
2011.09~2012.03, 代表, 蛋白質を精製する微粒子の開発.
2011.04~2012.03, 代表, 有機高分子を用いた被測定物質吸着用被膜の開発
.
2010.09~2011.03, 代表, 生体高分子研究に関する学術調査.
2010.02~2011.03, 代表, 有機高分子を用いた被測定物質吸着用被膜の開発.
2010.02~2011.03, 代表, 糖鎖高分子を用いた病源体除去材料の開発.
寄附金の受入状況
2019年度, 公益財団法人江野科学振興財団, 多孔性高分子を用いたバイオミメティックフリーリアクター.
2018年度, 豊田理研, 分子間相互作用を利用したフィルター型分離リアクターの開発.
2015年度, 旭硝子財団, 旭硝子財団
精密高分子合成を基盤とした、病原体捕捉材料の開発と活用.
2016年度, 日産化学, 高分子モノリスに関する基礎研究.
2017年度, 豊田理研スカラー.
2017年度, 精密重合を基盤とした糖鎖高分子による抗体代替分子の開発, 東京化成化学振興財団.
2015年度, 日産化学, 高分子モノリスによる機能材料開発.
2015年度, 旭化成ケミカルズ, 精密重合をベースとした、糖鎖高分子によるナノメディシンの開発と活用.
学内資金・基金等への採択状況
2023年度~2023年度, 2023 年度 物質・デバイス領域共同研究課題, 代表, シアル酸クラスターのトポロジー制御と細胞の機能制御.
2020年度~2020年度, 令和2年度AMED橋渡し研究戦略的推進プログラム・シーズA, プラスチック抗体を用いた細菌感染症の制御と治療法の開発.
2019年度~2019年度, AMED橋渡し研究戦略的推進プログラム・シーズA, 代表, シアル酸クラスターによる標的細胞特異的免疫抑制剤の開発.
2014年度~2015年度, 公益財団法人コスメトロジー研究振興財団, 代表, 構造色による色調材料.
2011年度~2011年度, 水素実証試験, 代表, 有機ナノ素材へのPd固定化基材を利用した水素吸着素材の開発.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。