Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Motohiro Tani Last modified date:2018.09.30

Associate Professor / Organic and Biological Chemistry
Department of Chemistry
Faculty of Sciences

Graduate School
Undergraduate School

Academic Degree
Doctor of Agriculture
Country of degree conferring institution (Overseas)
Field of Specialization
lipid biochemistry, cell biology, yeast genetics
Total Priod of education and research career in the foreign country
Research Interests
  • Metabolism and physiological function of membrane sphingolipids
    keyword : sphingolipid, metabolism, membrane
Academic Activities
1. Tani M, Ito M, Neutral ceramidase, Encyclopedia of Signaling Molecules, 2nd Edition (Sangdun Choi., ed), 3450-3457, 2018.01.
2. Bielawski J, Tani M, and Hannun YA., Mass spectrometry methods for the analysis of bioactive sphingolipids: A high-performance liquid chromatography/tandem mass spectrometry approach., Lipid-mediated Signaling (Eric J. Murphy., ed), CRC Press., 177-197, 2010.03.
1. Tani M, Funato K, Protection mechanisms against aberrant metabolism of sphingolipids in budding yeast, Curr Genet., DOI: 10.1007/s00294-018-0826-8, 2018.03.
2. Tani M, Structure-function relationship of complex sphingolipids in yeast, Trends Glycosci Glycotechnol, DOI: 10.4052/tigg.1509.1E, 2016.12.
3. Ito M, Okino N, Tani M, New insight into the structure, reaction mechanism, and biological functions of neutral ceramidase., Biochim Biophys Acta., DOI: 10.1016/j.bbalip.2013.09.008, 2014.10.
4. Tani M, Mechanisms of regulation of membrane phospholipids metabolism and its physiological significance, Report of the Noda Institute for Scientific Research, 2014.12.
5. Tani M, Kuge O, Global screening of yeast mutants showing high sensitivity and resistance against aberrant metabolism of sphingolipids., Kyushu University Global-COE program Science for Future Molecular Systems Journal, 2012.12.
6. Tani M, Ito M, and Igarashi Y., Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space., Cell Signal, DOI: 10.1016/j.cellsig.2006.07.001, 2007.02.
7. Clarke CJ, Snook CF, Tani M, Matmati N, Marchesini N, Hannun YA, The extended family of neutral sphingomyelinases., Biochemistry , 45, 11247-11256, DOI: 10.1021/bi061307z, 2006.08.
1. Katsuki Y, Yamaguchi Y, Tani M, Overexpression of PDR16 confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in yeast Saccharomyces cerevisiae, FEMS Microbiol Lett., DOI: 10.1093/femsle/fnx255, 365, fnx255, 2018.02.
2. Yamaguchi Y, Katsuki Y, Tanaka S, Kawaguchi R, Hiroto D, Ikeda T, Funato K, Tani M, Protective role of the HOG pathway against the growth defect caused by impaired biosynthesis of complex sphingolipids in yeast Saccharomyces cerevisiae., Mol Microbiol., DOI: 10.1111/mmi.13886, 107, 3, 363-386, 2018.01.
3. Toume M, Tani M, Yeast lacking the amphiphysin-family protein Rvs167 is sensitive to disruptions in sphingolipid levels., FEBS J., DOI: 10.1111/febs.13783, 283, 2911-2928, 2016.06.
4. Tani M, Toume M, Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase., Microbiology-Sgm, DOI: 10.1099/mic.0.000187, 161, 2369-2383, 2015.09.
5. Morimoto Y, Tani M, Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae, Mol Microbiol, DOI: 10.1111/mmi.12896, 95, 4, 706-722, 2015.02.
6. Toume M, Tani M, Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae., FEMS Microbiol Lett., DOI: 10.1111/1574-6968.12535, 358, 64-71, 2014.07.
7. Tani M, Kuge O, Involvement of Sac1 phosphoinositide phosphatase in metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae., Yeast, DOI: 10.1002/yea.3004, 31, 145-158, 2014.02.
8. Tani M, Kuge O, Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae., Mol Microbiol., DOI: 10.1111/mmi.12057, 86, 5, 1262-1280, 2012.10.
9. Tani M, and Kuge O., Hydroxylation state of fatty acid and long-chain base moieties of sphingolipid determine the sensitivity to growth inhibition due to AUR1 repression in Saccharomyces cerevisiae, Biochem Biophys Res Commun., DOI: 10.1016/j.bbrc.2011.11.138, 417, 673-678, 2012.01.
10. Tani M, and Kuge O, Defect of synthesis of very long-chain fatty acids confers resistance to growth inhibition by inositol phosphorylceramide synthase repression in yeast Saccharomyces cerevisiae., J. Biochem., DOI: 10.1093/jb/mvq090, 148, 5, 565-571, 2010.08.
11. Tani M, and Kuge O, Requirement of a specific group of sphingolipid-metabolizing enzyme for growth of yeast Saccharomyces cerevisiae under impaired metabolism of glycerophospholipids., Mol. Microbiol., DOI: 10.1111/j.1365-2958.2010.07340.x, 78, 2, 395-413, 2010.08.
12. Tani M, and Kuge O, Sphingomyelin synthase 2 is palmitoylated at the COOH-terminal tail, which is involved in its localization in plasma membranes., Biochem Biophys Res Commun., DOI: 10.1016/j.bbrc.2009.02.063, 381, 3, 328-332, 2009.02.
13. Tani M, and Hannun YA., Analysis of membrane topology of neutral sphingomyelinase 2., FEBS lett., 581, 1323-1328, 2007.04.
14. Tani M, and Hannun YA., Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues: Role of palmitoylation in subcellular localization. , J. Biol. Chem., 282, 13, 10047-10056, 2007.03.
15. Tani M, Kihara A, and Igarashi Y., Rescue of cell growth by sphingosine with disruption of lipid microdomain formation of Saccharomyces cerevisiae deficient in sphingolipid biosynthesis., Biochem. J., 394, 1, 237-242, 2006.02.
16. Tani M, Sano T, Ito M, and Igarashi Y., Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. , J. Lipid Res., 10.1194/jlr.M500268-JLR200, 46, 11, 2458-2467, 2005.08.
17. Tani M, Okino N, Sueyoshi N, and Ito M., Conserved amino acid residues in the COOH-terminal tail are indispensable for the correct folding and localization, and enzyme activity of neutral ceramidase. , J. Biol. Chem., 10.1074/jbc.M404012200, 279, 28, 29351-29358, 2004.05.
18. Tani M, Iida H, and Ito M., O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. , J. Biol. Chem., 10.1074/jbc.M207932200, 278, 12, 10523-10530, 2003.05.
19. Tani M, Okino N, Mori K, Tanigawa T, Izu H, and Ito M., Molecular cloning of the full-length cDNA encoding mouse neutral ceramidase., J Biol Chem , 10.1074/jbc.275.15.11229, 275, 15, 11229-11234, 2000.04.
20. Tani M, Okino N, Mitsutake S, and Ito M., Purification and characterization of a neutral ceramidase from mouse liver. , J Biol Chem , 10.1074/jbc.275.5.3462, 275, 5, 3462-3468, 2000.02.
21. Tani M, Okino N, Mitsutake S, and Ito M., Specific and sensitive assay for alkaline and neutral ceramidases involving C12-NBD-ceramide., J Biochem, 125, 4, 746-749, 1999.09.
22. Tani M, Kita K, Komori H, Nakagawa T, and Ito M., Enzymatic synthesis of omega-amino-ceramide: Preparation of a sensitive fluorescent substrate for ceramidase., Anal Biochem, 10.1006/abio.1998.2781, 263, 2, 183-188, 1998.10.
Works, Software and Database
1. .
1. Tani M, Morimoto Y, Tanaka S, Toume M, Physiological significance of biosynthesis of mannosylinositol phosphorylceramide in the yeast Saccharomyces cerevisiae, 2016 1st Korea-Japan Bioactive Lipid Joint Symposium, 2016.05.
2. Tani M, Multifunctional role of mannose-containing glycosphingolipids in the yeast Saccharomyces cerevisiae. , Progress 100:Second International Symposium. Protein Trafficking and Intracellular Signaling of Plant and Fungal Cells, 2016.02.
  • Analysis of membrane topology and posttranslational modification of neutral sphingomyelinase-2.