Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
Hajime Okamoto Last modified date:2018.12.16

Professor / Atmospheric physics group / Division of Earth Environment Dynamics / Research Institute for Applied Mechanics

1. Kaori Sato, Hajime Okamoto, Hiroshi Ishimoto, Modeling the depolarization of space-borne lidar signals, Optics Express, in press, 2018.12.
2. S. Ishii, A. Sato, M. Aoki, K. Akahane, S. Nagano, K. Nakagawa, K. Sato, H. Okamoto, Development of Tm,Ho: YLF laser for future space-based doppler wind lidar, Proc. SPIE 10779, Lidar Remote Sensing for Environmental Monitoring XVI,1077903, 10.1117/12.2324388, 10779, 2018.10.
3. Hajime Okamoto, Kaori Sato, Shuichiro Katagiri, Masahiro Fujikawa, Tomoaki Nishizawa, Nobuo Sugimoto, Yoshitaka Jin, Atsushi Shimizu and Hiroshi Ishimoto, Application of multiple-scattering polarization lidar for the evaluation of space-borne lidar algorithms, EPJ Web Conf. , DOI:, 176, 02014, 1-4, 2018.04.
4. Kaori Sato, Hajime Okamoto, Shuichiro Katagiri, Masataka Shiobara, Masanori Yabuki and Toshiaki Takano, Active sensor synergy for arctic cloud microphysics, EPJ Web Conf. , DOI:, 176, 08004, 1-4, 2018.04.
5. Shuichiro Katagiri, Kaori Sato, Kohei Ohta and Hajime Okamoto, Refinement of the CALIOP cloud mask algorithm, EPJ Web Conf. ,, 176, 05043, 1-4, 2018.04.
6. Okamoto, H. and K. Sato, Remote Sensing of Clouds and Precipitation, Springer Remote Sensing/Photogrammetry, doi:10.1007/978-3-319-72583-3_8, 2018.03.
7. Sato, K., H. Okamoto and H. Ishimoto, A physical model for mulIple scaQered space-borne lidar returns from clouds, Optics Express,, 26, A301-A319, 2018.03, 光学的に厚い下層雲の衛星ライダ信号の理論計算による再現を行う手法を、N回散乱の位相関数を解析的に求め、おsれと経路積分の手法を組み合わせることで実現した。.
8. Yamauchi, A., K. Kawamoto,, H. Okamoto, Differences in the fractions of ice clouds between eastern and western parts of Eurasian Continent using CALIPSO in January 2007, Atmospheric Science Letters, DOI: 10.1002/asl.807, 19:e807, 1-8, Atmos. Sci. Lett. 2018;19:e807., 2018.03.
9. Kustova N.V., Konoshonkin A.V., Borovoi A., Okamoto H., Sato K., Katagiri S., Power laws for the backscattering matrices in the case of lidar sensing of cirrus clouds, Proceedings of SPIE - The International Society for Optical Engineering, doi: 10.1117/12.2286579, 10466, 1046637, 2017.11.
10. Kikuchi, M., H. Okamoto, K. Sato, Y. Hagihara, K. Suzuki, N. Takahashi, G. Cesana, T. Hayasaka, R. Oki, Development of Algorithm for Discriminating Hydrometeor Particle Types with a Synergistic Use of CloudSat and CALIPSO, J. Geophys. Res. Atmosphere,, 122,, 2017.10.
11. Konoshonkin, A.,, A. Borovoi, N. Kusutova, H. Okamoto, H. Ishimoto, Y. Grynko, J. Foestner, Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation, J. Quant Spectrosc Radiat Transfer, doi:, 195, 132-140,, 2017.07.
12. Takahashi, N., T. Hayasaka, H. Okamoto, Ice cloud microphysical properties in tropical Pacific regions derived from CloudSat and CALIPSO measurements, Radiation Processes in the Atmosphere and Ocean (IRS2016) AIP Conf. Proc., doi: 10.1063/1.4975529, 1810, 070008 (2017); doi: 10.1063/1.4975529, 2017.03.
13. Kikuchi, M., H. Okamoto, K. Sato, Y. Hagihara, Testing hydrometeor particle type discrimination derived from CloudSat and CALIPSO, Radiation Processes in the Atmosphere and Ocean (IRS2016) AIP Conf. Proc., doi: 10.1063/1.4975526, 1810, 070005 (2017); doi: 10.1063/1.4975526, 2017.03.
14. Sato, H., H. Okamoto, Information content of cloud physical properties derived from satellite active remote sensors, Radiation Processes in the Atmosphere and Ocean (IRS2016) AIP Conf. Proc., 1810, 050003 (2017); doi: 10.1063/1.4975515, 2017.03.
15. Okamoto H.,, K. Sato, Y. Hagihara, H. Ishimoto, Relationship between ice supersaturation and ice microphysics inferred from CloudSat, CALIPSO and AIRS, Radiation Processes in the Atmosphere and Ocean (IRS2016) AIP Conf. Proc., doi:, 1810, 070006 (2017); doi:, 2017.03.
16. Okamoto H.,, K. Sato, T. Nishizawa, N. Sugimoto, Y. Jin, Development of multiple scattering polarization lidar to observe depolarization ratio of optically thick low level clouds, Radiation Processes in the Atmosphere and Ocean (IRS2016) AIP Conf. Proc., doi: 10.1063/1.4975514, 1810, 050002 (2017); doi: 10.1063/1.4975514, 2017.03.
17. Okamoto H., K. Sato, T. Nishizawa, N. Sugimoto, T. Makino, Y. Jin, A. Shimizu, T. Takano, M. Fujikawa, Development of a multiple-field-of-view multiple-scattering polarization lidar: comparison with cloud radar, Opt. Express,, 24, 26, 30053-30067,, 2016.12, 既存の地上ライダと異なり、複数の視野角をもつことで衛星と同等のフットプリントで偏光を含めたライダ観測機器を作成し、その初期観測を行った。雲レーダによって雲頂高度の検証も実施した。.
18. Okata, M., T. Nakajima, K. Suzuki, T. Inoue, T Y. Nakajima, Okamoto H., A study on radiative transfer effects in 3D cloudy atmosphere using satellite data, J. Geophys. Res. Atmos., doi:10.1002/2016JD025441, 121, doi:10.1002/2016JD025441, 2016.12.
19. Konoshonkin, A. V.,, A. G. Borovoi, N. V. Kustova, Okamoto H., K. Sato, Optical and microphysical properties of cirrus clouds retrieved from combined lidar and radar measurements, Proc. SPIE 10035, 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, , doi:10.1117/12.2249115, 100353X (November 29, 2016); doi:10.1117/12.2249115, 2016.11.
20. Konoshonkin, A. V.,, N. V. Kustova, A. G. Borovoi, Okamoto H., K. Sato, H. Ishimoto, E. Grynko, J. Foersstner, Comparison between the physical-optics approximation and exact methods solving the problem of light scattering by ice crystals of cirrus clouds, Proc. SPIE 10035, 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, , doi:10.1117/12.2248409, 1003533 (November 29, 2016); doi:10.1117/12.2248409, 2016.11.
21. Tempei Hashino, M. Satoh, Y. Hagihara, S. Kato, T. Kubota, T. Matsui, T. Nasuno, H. Okamoto, M. Sekiguchi, Evaluating Arctic Cloud Radiative Effects simulated by NICAM with A-train, J. Geophys. Res. Atmosphere, doi:10.1002/2016JD024775, 121, 7041-7063, doi:10.1002/2016JD024775, 2016.06.
22. Cesana,G., H. Chepfer, D. Winker, B. Getzewich, X. Cai, O. Jourdan, G. Mioche, H. Okamoto, Y. Hagihara, V. Noel, M. Reverdy, Using In-Situ Airborne Measurements to Evaluate Three Cloud Phase Products Derived from CALIPSO, J. Geophys. Res. Atmosphere, 10.1002/2015JD024334, 121, 5788-5808, doi:10.1002/2015JD024334, 2016.05.
23. Takahashi, N.,, T. Hayasaka, Okamoto H., Differences in ice cloud microphysical properties between western and eastern tropical pacific regions derived from CloudSat and CALIPSO measurements, SOLA, doi:10.2151/sola.2016-021, Vol. 12, 91-94(TBA), doi:10.2151/sola.2016-021, 2016.03.
24. K. Masuda, H. Ishimoto, T. Sakai, Okamoto H., Backscattering properties of non spherical ice
particles calculated by geometrical-optics-integral equation method, EPJ Web of Conferences ILRC27, DOI: 10.1051/epjconf/201611916001, 119, 16001, DOI: 10.1051/epjconf/201611916001, 2016.03.
25. Sato, K., H. Okamoto, H. Ishimoto, Modeling lidar multiple scattering, EPJ Web of Conferences ILRC 27, DOI: 10.1051/epjconf/201611921005, 119, 21005, DOI: 10.1051/epjconf/201611921005, 2016.06.
26. Okamoto H.,, K. Sato, Y. Hagihara, Evaluation of retrieval algorithms for ice microphysics using CALIPSO/CloudSat and EarthCARE, EPJ Web of Conferences ILRC 27, DOI: 10.1051/epjconf/201611916007 ILRC 27, 119, 16007, DOI: 10.1051/epjconf/201611916007 ILRC 27, 2016.06.
27. Okamoto H., Sato, Kaori, T. Makino, T.Nishizawa, Y. Jin, N. Sugimoto, Depolarization ratio of clouds measured by multiple-field of view multiple scattering polarization lidar, EPJ Web of Conferences ILRC 27, DOI: 10.1051/epjconf/201611911007, 119, 11007, DOI: 10.1051/epjconf/201611911007 , 2016.06.
28. A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, Okamoto H., Coherent and incoherent additions of light beams at solutions of the light scattering problem by use the beam tracing method within the framework of physical optics, Proc. SPIE. , doi: 10.1117/12.2204879 , 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, 96802X., doi: 10.1117/12.2204879, 2015.11.
29. A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, H. Ishimoto, K. Masuda, Okamoto H., Comparison of the physical optics code with the GOIE method and the direct solution of Maxwell equations obtained by FDTD, Proc. SPIE., doi: 10.1117/12.2203288, 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, 96802M., doi: 10.1117/12.2203288, 2015.11.
30. Kawai, Hideaki, Yabu, Shoukichi, Y. Hagihara, Koshiro, Tsuyoshi, Okamoto H., Characteristics of the Cloud Top Heights of Marine Boundary Layer Clouds and the Frequency of Marine Fog over Mid-Latitudes, Journal of the Meteorological Society of Japan, 10.2151/jmsj.2015-045 , 93, 6, 613-628, 10.2151/jmsj.2015-045 , 2015.12.
31. Gan, Tong, Yamamoto, M.K., Hashiguchi, H., Okamoto H., Yamamoto, M., Spectral parameters estimation in precipitation for 50-MHz band atmospheric radars, Radio Science, in press, 2015.10.
32. A. Illingworth, H. Barker, H. Chepfer, J. Delanoe, C. Domenech, D. Donovan, R. Hogan, A. Huenerbein, P. Kollias, T. Nakajima, T. Nakajima, T. Nishizawa, Y. Ohno, Okamoto H., Sato, Kaori, M. Satoh, U. Wandinger, T. Wehr, G. Zadelgoff, THE EARTHCARE SATELLITE: THE NEXT STEP FORWARD IN GLOBAL MEASUREMENTS OF CLOUDS, AEROSOLS, PRECIPITATION AND RADIATION, Bulletin of the American Meteorological Society,, 96, 8, 1311-1332, doi:, 2015.08.
33. Iwasaki, Suginori, Luo, Z., J., Kubota, H., Shibata, T., Okamoto, Hajime, Ishimoto, H., Characteristics of cirrus clouds in the tropical lower stratosphere, Atmospheric Research, -368, 164-165, 358-368, -368, 2015.10.
34. Seiki, T., C. Kodama, M. Satoh, T. Hashino, Y. Hagihara, Okamoto H., Vertical grid spacing necessary for simulating tropical cirrus clouds with a high-resolution AGCM, Geophysical Research Letters, DOI: 10.1002/2015GL064282, 42, 10, 4150-4157, DOI: 10.1002/2015GL064282, 2015.05.
35. T. Gan, M. K. Yamamoto, H. Hashiguchi, H. Okamoto, M. Yamamoto, Error estimation of spectral parameters for high-resolution wind and turbulence measurements by wind profiler radars, Radio Science, doi: 10.1002/2013RS005369, 49, doi: 10.1002/2013RS005369, 2014.11.
36. Hirakata, M., H. Okamoto, Y. Hagihara, T. Hayasaka, Comparison of global and seasonal characteristics of cloud phase and horizontal ice plates derived from CALIPSO with MODIS and ECMWF, Journal of Atmospheric and Oceanic Technology, doi:, 31, 10, 2114-2130, doi:, 2014.10, [URL].
37. Nagao, Takashi, Nakajima, Takashi, Letu, Husi, Okamoto H., Cloud microphysical properties as seen from spaceborne passive multi-spectral imagers: interpretation in terms of vertical and horizontal inhomogeneity by using modeling and other spaceborne instruments, Trans. JSASS Aerospace Tech. Japan, 12, ists29, Tn_1-Tn_6, 2014.10.
38. Jin Yoshitaka, Kenji Kai, Okamoto Hajime, Y. Hagihara, Improvement of CALIOP cloud masking algorithms for better estimation of dust extinction profiles , J. Meteor. Soc. Japan, DOI:10.2151/jmsj.2014-502, 92, 5, 433-455, DOI:10.2151/jmsj.2014-502, 2014.10.
39. Hiroshi Ishimoto, Kozo Okamoto, Okamoto Hajime, Sato, K., One-dimensional variational (1D-Var) retrieval of middle to upper tropospheric humidity using AIRS radiance data., J. Geophys. Res. Atmosphere, DOI: 10.1002/2014JD021706, 119, DOI: 10.1002/2014JD021706, 2014.06.
40. Iwabuchi H., Yamada, S., Katagiri, S., Yang, P., Okamoto H., Radiative and Microphysical Properties of Cirrus Cloud Inferred from Infrared Measurements Made by the Moderate Resolution Imaging Spectroradiometer (MODIS). Part I: Retrieval Method, J. Appl. Meteor. and Clim., 10.1175/JAMC-D-13-0215.1, 53, 5, 1297-1316, 53, 2014.05.
41. Hagihara Yuichiro, Okamoto Hajime, Zhengzhao Luo, Joint analysis of cloud-top heights from CloudSat and CALIPSO: New insights into cloud-top microphysics, J. Geophys. Res. Atmosphere, DOI: 10.1002/2013JD020919, 119, 4087-4106, doi:10.1002/2013JD020919, 2014.04, 衛星搭載レーダとライダの複合解析より、従来はライダで検出される雲頂は、レーダのものより高いとされてきたが、レーダの方が高い雲頂を与える場合が、下層雲を中心としてかなり多いことがわかった。
42. Study of clouds by spaceborne active sensors: Current status and future direction.
43. Hashino Tempei, Masaki Satoh, Hagihara Yuichiro, Kubota Takuji, Matsui Toshihisa, Nasuno Tomoe, Okamoto Hajime, Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO, J. Geophys. Res. Atmosphere, doi:10.1002/jgrd.50564, 118, 7273-7292, J. Geophys. Res. Atmos., 118, 7273–7292, doi:10.1002/jgrd.50564., 2013.07, We describe a method to evaluate cloud microphysics simulated with a global cloud-resolving model against CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data..
44. Nishizawa Tomoaki, Sugimoto Nobuo, Matsui Ichiro, Shimizu Akira, Okamoto Hajime, Development of aerosol and cloud retrieval algorithms using ATLID and MSI data of EarthCARE, Current problems in Atmospheric radiation (IRS 2012), Proc. international radiation symposium, AIP conference proceedings, doi:, 1531, 472-475, AIP Conf. Proc. 1531, pp. 472-475; doi:, 2013.05, [URL].
45. Sato Kaori, Okamoto Hajime, Detection and analyses of hydrometer properties from EarthCARE data, International radiation symposium, doi:, 1531, 200-203, AIP Conf. Proc. 1531, pp. 200-203; doi:, 2013.05, [URL].
46. 萩原 雄一朗, Okamoto Hajime, Global Cloud Distribution Revealed by Combined Use of CloudSat/CALIPSO: Comparison of Using CALIPSO Version 2 and 3 Data, Current problems in Atmospheric radiation (IRS 2012), Proc. international radiation symposium, AIP conference proceedings, doi:, 1531, 456-459, AIP Conf. Proc. 1531, pp. 456-459; doi:, 2013.05, We compiled the seasonal variations of the vertical distribution of clouds through a combined analysis of multiyear CloudSat cloud radar and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations between June 2006 and May 2010. The differences between using the previous (version 2, V2) and the latest release (version 3, V3) CALIPSO “Vertical Feature Mask (VFM)” results were also examined. We first developed a cloud mask scheme for CALIPSO and then developed a combined CloudSat/CALIPSO cloud mask based on the ground observations. The VFM (V2) misclassified aerosols and noise signals located in attenuated areas as cloud. Cloud edge detection was also slightly greater by the VFM (V2). In addition, by updating from CALIPSO V2 to V3, the cloud fractions by the VFM dramatically decreased below ~2.5 km while there is little change in those by the C2. The cloud fraction still differed by as much as 20% between the VFM and our CALIPSO scheme. These results indicate that the issues of CALIPSO VFM (V2) had not been corrected in the latent release VFM (V3) completely. The 4-year averaged seasonal variations were examined by using our combined CloudSat/CALIPSO scheme. In the low-level, cloud coverage is relatively smaller over land and in the InterTropical Convergence Zone (ITCZ) depending on season due to a high frequency of cloud overlap. Very large coverage (~92%) is shown over the western coasts of continents, especially during the summer and fall. The seasonal variation of the ITCZ and the subtropical high in the high-level are observed. A remarkably large cloud coverage of ~87% exists over the whole area with seasonal variation except for part of the subtropical high region, Greenland and Antarctica..
47. Okamoto Hajime, Sato Kaori, Hagihara Yuichiro, Nishizawa Tomoaki, Development of level 2 algorithms for EarthCARE CPR/ATLID, Current Problems in Atmospheric Radiation (IRS2012), Proc. International Radiation Symposium, AIP conference proceedings,, 1531, 448-451, AIP Conf. Proc. 1531, 448 (2013); doi: 10.1063/1.4804803, 2013.05, We develop algorithms that can be applied to EarthCARE Cloud Profiling Radar (CPR) and Atmospheric backscatter LIdar (ATLID) and discuss about the expected products. EarthCARE will carry CPR and ATLID and these combination corresponds to the CloudSat and CALIPSO for the A-train. Due to the similarities between the EarthCARE and the A-train, it will be possible to apply the similar types of algorithms that have been already developed and extensively used for the analyses of the A-train satellites and it is therefore expected to obtain the similar cloud products for the EarthCARE. On the other hand, there are some differences between the EarthCARE and A-train satellites, e.g., the EarthCRAE CPR has better sensitivity compared with the CloudSat. And Doppler capability of the EarthCARE-CPR is a new element and is expected to provide the better constraint for the retrievals of cloud/precipitation microphysics. And the vertical air motion and sedimentation velocity of cloud particles will be inferred..
48. Okamoto Hajime, Active remote sensing of cloud microphysics, Current Problems in Atmospheric Radiation (IRS2012),Proc. International Symposium, AIP conference proceedings, doi: , 1531, 19-22, AIP Conf. Proc. 1531, pp. 19-22; doi:, 2013.05, [URL], We discuss about recent progresses in analyses of retrieved cloud properties by active sensors. We have developed several types of algorithms that can be applied to data obtained by cloud profiling radar (CPR) and lidar to retrieve cloud macroscale and microphysical properties. The retrieved properties include cloud occurrence, cloud particle phase, orientation and microphysics. Combined use of CPR and lidar has been recognized to be a powerful tool for the retrieval of cloud microphysics. Single scattering property of ice particles is one of the key elements in the analyses. It has been necessary to develop appropriate scattering theories and inversion methods that can take into account the particle shape and its orientation for the analyses of CPR and lidar data. We have been analyzing the data obtained by the ground based, ship-borne and space-borne active sensors. Space borne active sensors CloudSat and CALIPSO successfully started global observations of cloud and aerosols in June 2006. The theoretical basis of the analysis of these active sensors is given. And global analysis of cloud macro-scale and microphysical properties has been performed. After these space missions, JAXA and ESA are planning a new space mission, EarthCARE and it will carry four sensors including 95 GHz Doppler radar and high spectral resolution lidar. It will be launched in 2015 and is expected to provide information of cloud microphysics as well as vertical air motion. The retrieval algorithms for EarthCARE have been developed by using the existing radar and lidar data including CloudSat and CALIPSO..
49. Anatoli Borovoi, Alexander Konoshonkin,, Natalia Kustova, Okamoto Hajime, Backscattering Mueller matrix for quasi- horizontally oriented ice plates of cirrus clouds: application to CALIPSO signals, Opt. Express, 20, 28222-28233, 2012.12, [URL], A general view of the backscattering Mueller matrix for the quasi-horizontally oriented hexagonal ice crystals of cirrus clouds has been obtained in the case of tilted and scanning lidars. It is shown that the main properties of this matrix are caused by contributions from two qualitatively different components referred to the specular and corner-reflection terms. The numerical calculation of the matrix is worked out in the physical optics approximation. These matrices calculated for two wavelengths and two tilt angles (initial and present) of CALIPSO lidar are presented as a data bank. The depolarization and color ratios for these data have been obtained and discussed..
50. S. Iwasaki, T. Shibata, H. Okamoto, H. Ishimoto, H. Kubota, Mixtures of stratospheric and overshooting air measured using A-Train sensors, Journal of Geophysical Research-Atmosphere, doi:10.1029/2011JD017402, 117, D12207, doi:10.1029/2011JD017402, 2012.05, Synergetic spaceborne observations of overshooting air, defined as cloud intrusion through the level of neutral buoyancy above deep convection, are analyzed using various thresholds introduced in previous studies to detect overshooting. The brightness temperature of the overshooting air measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) is generally 2 K higher than that retrieved by the radiative transfer model in which the size distribution of ice cloud particles is estimated from Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) and CloudSat data and the vertical temperature profile of cloud is assumed to follow that of the European Centre for Medium Range Weather Forecst(ECMWF). The lapse rate of overshooting whose cloud top is higher than the level of the cold-point temperature (CPT) is lower than that of an adiabatic expansion. These observations can be rationalized as being due to the overshooting air being locally warmed by a mixture of warmer stratospheric air. Analysis of CALIOP and CloudSat data by using a radar-lidar algorithm shows that the mode of averaged ice water content of the overshoot above the CPT height is 6.3-10 mg/m3. Therefore, if 5% or more of ice particles in the overshoot are sublimated and mixed into the lower stratosphere, the lower stratospheric air will be hydrated. The difference between the brightness temperatures of 6.7- and 11-μm channels observed with MODIS demonstrates that the overshoot enhances stratospheric water vapor. These results indicate that the warm stratospheric air moves downward at and around the overshoot and mixes with the overshooting air and that the overshooting hydrates the lower stratosphere..
51. Y. Jin, K. Kai, H. Okamoto, Y. Hagihara, H. Zhou, Dust and ice occurrence ratios over dust sources observed by space/ground based active remote sensor, Reviewed and Revised Papers, 26th International Laser Radar Conference., 493-439, 2012.05.
52. A. Borovoi, A. Konoshonkin, N. Kustova, H. Okamoto, Lidar backscattering by quasi-horizontally oriented hexagonal ice plates, Reviewed and Revised Papers, 26th International Laser Radar Conference. , 379-382, 2012.05.
53. K. Sato, H. Okamoto, Numerical and theoretical analysis of hydrometeor properties observed by spaceborne lidar and radar., Reviewed and Revised Papers, 26th International Laser Radar Conference. , 737-740, 2012.05.
54. H. Okamoto, K. Sato, Y. Hagihara, T. Matsumoto, A. Borovoi, Retrieved ice microphysics from CALIPSO and CloudSat and horizontally oriented ice plates, Reviewed and Revised Papers, 26th International Laser Radar Conference. , 687-690, 2012.05.
55. T. Iguchi, T. Nakajima, A. Khain, K. Saito, T. Takemura, H. Okamoto, T. Nishizawa, W. -K. Tao, Evaluation of cloud microphysics in JMA-NHM simulations using bin or bulk microphysical schemes through comparison with cloud radar observations, J. Atmos. Sci., doi:, 69, 8, 2566-2586, 2012.08.
56. Nishizawa T., S. Nobuo, I. Matsui, A. Shimizu, H. Okamoto, Algorithms to Retrieve Optical Properties of Three-Component Aerosols from Two-Wavelength Backscatter and One-Wavelength Polarization Lidar Measurements: Considering Nonsphericity of Dust, J Quant. Spectrosc. Radiative Transfer, doi:10.1016/j.jqsrt.2010.06.002, 112, 2, 254-267, doi:10.1016/j.jqsrt.2010.06.002, 2011.11.
57. Sato, K., H. Okamoto, Refinement of global ice microphysics using spaceborne active sensors, J. Geophys. Res. -Atmosphere, 10.1029/2011JD015885, 116, D20202, doi: 10.1029/2011 JD01588, 2011.10.
58. Watanabe, Masahiro, Shiogama, Hideo, Yoshimori, Masakazu, Ogura, Tomoo, Yokohata, Tokuta, Okamoto Hajime, Emori, Seita, Kimoto, Masahide, Fast and slow timescales in the tropical low-cloud response to increasing CO2 in two climate models, Climate Dynamics, 10.1007/s00382-011-1178-y, 39, 7-8, 1627-1641, in press, 2012.10.
59. Iwasaki Suginori, Shibata T., Nakamoto T., Okamoto Hajime, Ishimoto Hiroshi, Kubota H, Characteristics of deep convection measured by using the A-train constellation
, 10.1029/2009JD013000, 115, D6, 2010.03, [URL].
60. T. Y. Nakajima, M. Kuji, I. Sano, Nick Schutgens, Y. Mano, J. Riedi, H. Ishida, K. Suzuki, H. Okamoto, T. Matsuia, H. Letu, Observations of cloud and aerosol from GCOM-C SGLI, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII, 8, 30-34, 2010.01, Observing cloud and aerosol distributions and their optical and microphysical properties are one of important activities for the global climate change study, since the role of these particles and their interactive responses to the climate system are still in mystery. The Second generation Global Imager (SGLI) aboard the GCOM-C satellite is a follow-on sensor of the Global Imager (GLI) aboard the Midori-2 satellite. It is designed for globally observing clouds and aerosols targets with high-accuracy and quick recurrence. The major geophysical parameters retrieved from SGLI atmosphere’s algorithm are cloud optical thickness, cloud particle radii, cloud top temperature, cloud geometrical thickness, aerosol optical thickness, and aerosol Angstrom exponents. Cloud discriminations all of SGLI pixels will also be supplied. It is notable that the SGLI has some functions specialized for observing aerosol properties over ocean and land. They are 0.38-μm channels, multi-angles and polarization capability in 0.67 and 0.86-μm channels. This paper introduces strategy of the atmospheric observations by use of the GCOM-C/SGLI and the latest research results obtained from GLI- to-SGLI scientific activities..
61. Okamoto, Hajime, Sato, K., Hagihara, Yuichiro, Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals, JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 10.1029/2009JD013383, 115, 2010.11.
62. Sato Kaori, Okamoto Hajime, Takemura Toshihiko, Kumagai Hiroshi, Sugimoto Nobuo, Characterization of ice cloud properties obtained by shipborne radar/lidar over the tropical western Pacific Ocean for evaluation of an atmospheric general circulation model, J. Geophys. Res., 10.1029/2009JD012944, 115, 2010.08.
63. Yoshida Ryo, Okamoto Hajime, 萩原 雄一朗, Ishimoto Hiroshi, Global analysis of cloud phase and ice crystal orientation from CALIPSO data using attenuated backscattering and depolarization ratio, J. Geophys. Res., doi:10.1029/2009JD012334, 115, D00H32, 2010.08, [URL].
64. 萩原 雄一朗, Okamoto Hajime, Yoshida Ryo, Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution, J. Geophys. Res., 10.1029/2009JD012344, 115, 2010.09, [URL].
65. Min Deng, Gerald G. Mace, Zhien Wang, Okamoto Hajime, Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar, J. Geophys. Res., 10.1029/2009JD013104, 115, doi:10.1029/2009JD013104, 15, D00J15, 2010, 2010.09, [URL].
66. Okamoto, H., N. Kumaoka, T. Nishizawa, N. Sugimoto and Y. Hagihara, Calibration of 1064nm channel and retrieval of aerosol extinction from CALIOP, Reviewed and Revised Papers, 25th International Laser Radar Conference, 636-639, 636-639, 2010.10.
67. Okamoto, H., K. Sato, Y. Hagihara and M. Hirakata, Ice cloud microphysics from CloudSat and CALIOP: Analysis of oriented crystals, Reviewed and Revised Papers, 25th International Laser Radar Conference, 2010.10.
68. Sato, K. and H. Okamoto, Application of optimal estimation to retrieve hydrometeor properties from lidar/radar method, Reviewed and Revised Papers, 25th International Laser Radar Conference, 2010.10.
69. Hirakata, M., H. Okamoto, Y. Hagihara, R. Yoshida and T. Hayasaka, Global and seasonal characteristics of the cloud phase and ice orientation observed by CALIPSO, Reviewed and Revised Papers, 25th International Laser Radar Conference, 2010.10.
70. Hagihara, Y., H. Okamoto, Z. Luo, Development of combined CloudSat and CALIPSO mask and revisit cloud top heights from CloudSat and CALIPSO, Reviewed and Revised Papers, 25th International Laser Radar Conference, 2010.10.
71. Hagihara Y., H. Okamoto, and T.Y. Nakajima, CloudSat and CALIPSO for improved retrieval of liquid water cloud microphysical properties, Current Problems in Atmospheric Radiation (IRS2008), Proc. International Radiation Symposium, AIP conference proceedings, 1100, 259-262,2009, 2010.10.
72. Zubko,E., D. Petrov, Y. Grynko, Y. Shkuratov, H. Okamoto, K. Muinonen, T. Nousiainen, H. Kimura, T. yamamoto, and G. Videen, Validity criteria of the discrete dipole approximation, Appl. Opt., 49, 8, 1267-1279, 49,8,1267-1279, 2010.07.
73. Nishizawa T., N. Sugimoto, I. Matsui, A. Shimizu, T. Takemura, and H. Okamoto, Aerosol Retrieval from Dual-wavelength Polarization Lidar Measurements over Tropical Pacific Ocean and Validation of a Global Aerosol Transport Model, Current Problems in Atmospheric Radiation (IRS2008), Proc. International Radiation Symposium, AIP conference proceedings, 2009.10.
74. Sato K., H. Okamoto, and Y.Hagihara,, Sensitivity study for the interpretation of Doppler signal of space-borne 95-GHz cloud radar, Current Problems in Atmospheric Radiation (IRS2008), Proc. International Radiation Symposium, AIP conference proceedings, 1100, 323-326, 2009. , 2009.10.
75. Okamoto, H., K. Sato and Y. Hagihara, Retrieval of ice cloud microphysics by synergy use of CloudSat and CALIPSO data, Current Problems in Atmospheric Radiation (IRS2008), AIP conference proceedings, 1100, 412-415, 2009, 2009.10.
76. Katagiri, S., R. Oki, S. Shimizu, T. Kimura, T. Nakajima, H. Okamoto, N. Sugimoto, T. Y. Nakajima, M. Sato, Y. Takayabu, K. Sato, T. Nishizawa, T. Matsui, Y. Hagihara, EarthCARE science mission objectives, ISPRS, XXXVIII, Part8, 2010.10.
77. Fujiwara M., Iwasaki Suginori, Shimizu S., Inai Y., Shiotani M., Hasebe F., Matsui I., Sugimoto Nobuo, Okamoto Hajime, Nishi N., Hamada T., Sakazaki T., Yoneyama Kunio, Cirrus Observations in the Tropical Tropopause Layer Over the Western Pacific, J. Geophys. Res., doi:10.1029/2008JD011040, 114, D09304, doi:10.1029/2008JD011040, 2009, 2009.10.
78. Zubko, E., H. Kimura, Y. Shkuratov, K. Muinonen, T.Yamamoto, H. Okamoto and G. Videen, Effect of absorption on light scattering by agglomerated debris particles,, J Quant Spectrosc radiative Transfer, doi:10,1016/j.jqsrt. 2008.12.006,110, , 2008.12.006,110,1741-1749,2009. , 2009.10.
79. Sato Kaori, Okamoto Hajime, Yamamoto, M. K., Fukao S., Kumagai Hiroshi, Ohno Yuichi, Horie Hiroaki, Abo M., 95-GHz Doppler radar and lidar synergy for simultaneous ice microphysics and in-cloud vertical air motion retrieval, J. Geophys. Res., doi:10.1029/2008JD010222, 114, D03203, doi:10.1029/2008JD010222, 2009 , 2009.02.
80. Okamoto, H., T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, Vertical cloud properties in the tropical western Pacific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar, J. Geophys. Res., doi:10.1029/2008JD009812, 113, D24213, doi:10.1029/2008JD009812, 2008. , 2008.10.
81. Nishizawa, T., H. Okamoto, T. Takemura, N. Sugimoto, I. Matsui, and A. Shimizu, Aerosol retrieval from two-wavelength backscatter and one-wavelength polarization lidar measurement taken during the MR01K02 cruise of the R/V Mirai and evaluation of a global aerosol transport model,, J. Geophys. Res., doi:10.1029/2007JD009640,, 113, D21201, doi:10.1029/2007JD009640, 2008. , 2008.10.
82. Hamada A., N. Nishi, S. Iwasaki, Y. Ohno, H. Kumagai and H. Okamoto, Cloud type and top height estimation for tropical upper-tropospheric clouds using GMS-5 split-window measurements combined with cloud radar measurements, SOLA, doi:10.2151/sola.2008-015, 4, 057-060, doi:10.2151/sola.2008-015, 2008., 2008.10.
83. Yamamoto, M., Y. Ohno, H. Horie, N. Nishi,.H. Okamoto, K, Sato, H. Kumagai, M. Yamamoto, H. Hashiguchi, S. Mori, N. O. Hashiguchi, H. Nagata and S. Fukao, Observation of particle fall velocity in cirriform cloud by VHS and millimeter-wave Doppler radars, J. Geophys, Res., doi:10.1029/2007JD009125, 113, D12210, doi:10.1029/2007JD009125, 2008. , 2008.10.
84. Nishizawa, T., N. Sugimoto, I. Matsui, A. Shimizu, B. Tatarov and H. Okamoto, Algorithm to Retrieve Aerosol Optical Properties From High-Spectral-Resolution Lidar and Polarization Mie-Scattering Lidar Measurements, IEEE Trans. Geosci. Remote Sens., DOI: 10.1109/TGRS.2008.2000797, vol. 46, no. 12, pp. 4094-4103, Dec. DOI: 10.1109/TGRS.2008.2000797, 2008., 2008.10.
85. Heymsfield, A. J., A. Protat, R. Austin, D. Bouniol, R. Hogan, H. Okamoto, K. Sato, G. Zadelhoff, D. Donovan, and Z. Wang, Testing and evaluation of ice water content retrieval methods using radar and ancillary measurements, J. Appl. Meteor. Climate, DOI: 10.1175/2007, 47, 135–163. 2008., 2008.10.
86. Okamoto, H., T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, A. Kamei, S. Emori, and T. Nakajima, Vertical cloud structure observed from shipborne radar and lidar,: mid-latitude case study during the MR01/K02 cruise of the R/V Mirai, J. Geophys. Res., doi:10.1029/2006JD007435, 112, D06212, doi:10.1029/2006JD007435,2007., 2007.10.
87. Nishizawa, T., H. Okamoto, N. Sugimoto , I. Matsui, A. Shimizu , K. Aoki, An algorithm that retrieves aerosol properties from dual-wavelength polarized lidar measurements, J. Geophys. Res., doi:10.1029/2006JD007435, 112, D06212, doi:10.1029/2006JD007435,2007, 2007.10.
88. Okamoto, H., T. Nishizawa, H. Kumagai, N. Sugimoto, T. Takemura, and T. Nakajima, Study of cloud microphysical structure with cloud profiling radar and lidar: Mirai cruise, IRS 2004:Current problems in Atmospheric Radiation, H. Fischer and B.-J. Sohn, Eds., A. Deepak Publishing, 447-450, 2006., 2006.10.
89. Sato, K., and H. Okamoto , The effects of nonsphericity and variation in ice crystal bulk density on 95GHz cloud radar signals, IRS 2004: Current problems in Atmospheric Radiation, H. Fischer and B.-J. Sohn, Eds., A. Deepak Publishing, 119- 122, 2006. , 2006.10.
90. Nishizawa, T., H. Okamoto, T. Takemura, N. Sugimoto, I. Matusi, and A. Shomizu, Retrieval of aerosol optical properties from dual-wavelength polarization lidar measurements, Proc.IRS 2004: Current problems in Atmospheric Radiation, H. Fischer and B.-J. Sohn, Eds., A. Deepak Publishing, 99-102. 2006 , 2006.10.
91. Sato, K., H. Okamoto, T. Takmura, N. Sugimoto, H. Kumagai , Development of Algorithms for Air-Motion, Ice Sedimentation and Microphysics Using Lidar and Radar,, Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, 487-490 (3P-27), ISBN 4-9902916-0-3, 2006 , 2006.10.
92. Okamoto, H., T. Nishizawa, K. Sato, S. Otake, M. Sensu, T. Takemura, N. Sugimoto, I. Matsui, A. Sihimizu, H. Kumagai, Y. Ohno, T. Takano and T. Nakajima, Microphysics of Clouds and Aerosols by Combined Use of Lidar and Cloud Radar,, Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, 337-349 (3O-8), ISBN 4-9902916-0-3, 2006 , 2006.10.
93. Sato, K., and H. Okamoto, Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar, J. Geophys. Res., doi:10.1029/2005JD006959, 111, D22213, doi:10.1029/2005JD006959, 2006., 2006.10.
94. Nagasawa, R., T. Iwasaki, S. Asano, K. Saito, and H. Okamoto, , Resolution Dependence of Nonhydrostatic Models in Simulating the Formation and Evolution of Low-Level Clouds during a "Yamase" Event, J. Meteor. Soc. Japan, 84, 969-987, 2006 , 2006.10.
95. Yasunaga, K, Yoneyama, K, H. Kubota, H. Okamoto, A. Shimizu, H. Kumagai, M. Katsumata, Melting layer cloud observed during R/V Mirai cruise MR01-K05,, J. Atmos. Sci.,, 63(11): 3020, 2006. , 2006.10.
96. S. Iwasaki, Okamoto Hajime, H. Hanado, K. Reddy, H. Horie, H. Kuroiwa, H. Kumagai, Retrieval of raindrop and cloud particle size distributions with 14 GHz and 95 GHz radars, J. Meteor. Soc. Japan, 83, 5, 771-782, ,83, 771-782, 2005, 2005.10.
97. Kumagai, H., H. Kuroiwa, T. Orikasa, Y. Ohno, A. Kamei and H. Okamoto, Cloud profiling radar (CPR) for EarthCARE and synergy algorithm studies, Proc. SPIE, doi: 10.1117/12.511026, 5234, 347-353, doi: 10.1117/12.511026, 2004. , 2004.10.
98. S. Iwasaki, Y. Tsushima, R. Shirooka, R. Katsumata, K. Yoneyama, I. Matsui, A. Shimizu, N. Sugimoto, A. Kamei, H. Kuroiwa, H. Kumagai, Okamoto Hajime, Subvisual cirrus cloud observations using a 1064-nm lidar, a 95 GHz cloud radar, and radiosondes in the warm pool region, Geophys. Res. Lett., 10.1029/2003GL019377, 31, 9, 31, L09103, doi: 10.1029/2003GL019377, 2004. , 2004.05.
99. Kimura, T., K.Kondo, H. Kumagai, H.Kuroiwa, C. Ishida, R. Oki, A. Kuze, M. Suzuki, H. Okamoto, R. Imasu and T. Nakajima, EarthCARE- Earth Clouds, Aerosol and Radiation Explorer: It's Objectives and Japanese Sensor designs, Proc. SPIE, 4882,510-519, 2003. , 2003.10.
100. Okamoto Hajime, An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar., J. Geophys. Res., doi:10.1029/2001JD0001225, 108(D7, 4226), doi:10.1029/2001JD0001225, 2003., 2003.10.
101. H. Kimura, Okamoto Hajime, T. Mukai, Radiation pressure and the Poynting-Robertson effect for fluffy dust particles, ICARUS, 10.1006/icar.2002.6849, 157, 2, 349-361, 349-361, 2002, 2002.06.
102. Okamoto, H, Information content of the 95-GHz cloud radar signals: Theoretical assessment of effects of nonsphericity and error evaluation of the discrete dipole approximation, J. Geophys. Res., 10.1029/2001JD001386, 107, D22, 107 (D22, 4628) , doi: 10.1029/2001JD001386, 2002. , 2002.11.
103. Iwasaki, S., and H. Okamoto, Analysis of lidar returns from rectangles and hexagonal ice crystals, Proc. of IRS 2000, 999-1002, 2001, 2001.10.
104. Iwasaki, S., and H. Okamoto, Analysis of the enhancement of backscattering by nonspherical particles with flat surfaces, Appl. Opt.,, 40(33), 6121-6129, 2001., 2001.10.
105. Takemura, T., H. Okamoto, A. Numaguti, A. Higurashi, and T. Nakajima, Global three-dimensional simulation and radiative forcing of various aerosol species, IRS 2000 : Current Problems in Atmospheric Radiation, W. L. Smith and Y. M. Timofeyev (Eds.), 733-736, 2001, 2001.10.
106. Okamoto, H., M. Yasui, H. Horie, H. Kuroiwa, H. Kumagai and S. Iwasaki, Observation of clouds by 95GHz radar and lidar systems: radius versus fall velocity, IRS 2000 : Current Problems in Atmospheric Radiation, W. L. Smith and Y. M. Timofeyev (Eds.), 981-984,2001, 2001.10.
107. T. Takemura, H. Okamoto, A. Nugaguchi, K. Suzuki, A. Higurashi, T. Nakajima, Global three-dimensional simulation and radiative forcing of various aerosol species with GCM, Proc. SPIE, 4150, 249-257, 2000. , 2000.10.
108. Kumagai, H. H. Horie, H. Kuroiwa, H. Okamoto and S. Iwasaki,, Retrieval of cloud microphysics using 95-GHz cloud radar and microwave radiometer, Proc. SPIE, 4152, 364-371, 2000., 2000.10.
109. Takemura Toshihiko, Okamoto Hajime, Y. Maruyama, A. Numaguchi, T. Nakajima, Global three-dimensional simulation of aerosol optical thickness distribution of various origins, J. Geophys. Res., 105, D14, 17853-17873, 105, 17853-17873, 2000. , 2000.07.
110. Horie, H., T. Iguchi, H. Hanado, H. Kuroiwa, H. Okamoto and H. Kumagai, Development of A 95-GHz airborne cloud profiling radar (SPIDER) -- Technical aspects --, IEICE Trans. Commun,, E83-B, 2010-2020, 2000. , 2000.10.
111. Okamoto, H., S. Iwasaki, M. Yasui, H. Horie, H. Kuroiwa, and H. Kumagai, 95GHz cloud radar and lidar systems : preliminary results of cloud microphysics, Proc. SPIE, 4152, 355-363, 2000. , 2000.10.
112. Nakamura, R., and H. Okamoto, Optical properties of fluffy aggregates as analogue of interplanetary dust particles, Adv. Space. Res.,, 23, 1209-1212, 1999., 1999.10.
113. Murayama, T; Okamoto, H; Kaneyasu, N; Kamataki, H; Miura, K, Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles, J. Geophys. Res., 104, D24, 31781-31792, 104, 31781-31792, 1999., 1999.12.
114. Lemke, H., H. Okamoto, and M. Quante, Comments on error analysis of backscatter from discrete dipole approximation for different ice particle shapes, Atmos. Res., 49, 189-197, 1998., 1998.10.
115. Okamoto, H; Xu, YL, Light scattering by irregular interplanetary dust particles, Earth, Planets and Space, 50, 6-7, 577-585, 1998.01.
116. Okamoto, H., Y. Sasano, S. Mukai, I. Sano, H. Ishihara, T. Matsumoto, L. Thomason and M. Pitts, ADEOS/ILAS aerosol retrieval algorithm with 5 channels, Adv. Space. Res., 21, 443-446, 1998., 1998.10.
117. Okamoto, H., T. Nakajima, Y. Maruyama, A. Numaguti and I. M. Lensky, The direct radiative forcing by tropospheric and stratospheric aerosols with geographical distribution, IRS '96 : Current Problems in Atmospheric Radiation,, IRS '96 : Current Problems in Atmospheric Radiation, Deepak Publishing Smith and Stamnes (Eds.), 328-331, 1997. , 1997.10.
118. Okamoto, H., Improvement of the discrete dipole approximation for scattering calculations of the cluster , The NATO Advanced Study Institute on The Cosmic Dust Connection, Kluwer Academic Publishers (J. M. Greenberg Ed.), 104, 357-360, 1996., 1996.10.
119. Okamoto, H., Applicability of a1-term method to the scattering by irregularly shaped interplanetary dust grains, Physics, Chemistry, and Dynamics of Interplanetary Dust, A. S. P. Conf. Ser. (B. A. A. Gustafson and M. S. Hanner eds), 104, 104, 423-426, 1996.10.
120. Mann, I., H. Ishimoto, H. Okamoto, and T. Mukai, Model Calculations of Near Solar Dust Properties, Physics, Chemistry, and Dynamics of Interplanetary Dust, A. S. P. Conf. Ser. (B. A. A. Gustafson and M. S. Hanner eds), 104, 104, 357-360, 1996.10.
121. Okamoto, H., A.Macke, M.Quante, E.Raschke, Modeling of backscattering by non-spherical ice particles for the interpretation of cloud radar signals at 94GHz., Contr. Atmos. Phys., 68, 319-334, 1995. , 1995.10.
122. Mann, I., T. Mukai, H. Okamoto, On the evolution of dust in the solar vicinity, Adv. Space. Res. Prebiotic Chemistry in Space, 16, 37-40, 1995. , 1995.10.
123. Okamoto, H., Light scattering by clusters : the a1-term method, Optical Review, 2, 407-412, 1995., 1995.10.
124. Okamoto, H., A. Macke and F. Albers, Scattering properties of ice crystals in the mm-wavelength region, Proc. IRS, The Eighth conference on atmospheric radiation, 355-357, 1994. , 1994.10.
125. Okamoto, H., T.Mukai, T. Kozasa, The 10µm feature of aggregates in comets, Planetary and Space Science, 42, 643-649, 1994., 1994.10.
126. Kozasa, T., J. Blum, H.Okamoto, T.Mukai, Optical properties of dust aggregates II, Angular dependence of scattered light, Astronomy and Astrophysics,, 276, 278-288,1993. , 1993.10.
127. Mann, I., H.Okamoto, T.Mukai, H.Kimura, Y.Kitada, Fractal aggregate analogues for near solar dust properties, Astronomy and Astrophysics, 291, 1011-1018, 1994., 1994.10.