Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Junko Kusumi Last modified date:2017.05.23

Associate Professor / Department of Environmental Changes Faculty of Social and Cultural Studies
Department of Environmental Changes
Faculty of Social and Cultural Studies


Graduate School


E-Mail
Phone
092-802-5649
Fax
092-802-5649
Academic Degree
Doctor of Science
Field of Specialization
Molecular evolution, Population Genetics
Research
Research Interests
  • A new model of compensatory evolution with indirect compensation
    keyword : compensatory evolution population genetics
    2013.04~2017.03.
  • Population genetic analysis of a widespread coniferous tree Taxodium distichum [L.] Rich. in the Mississippi River Alluvial Valley and Florida
    keyword : Taxodium distichum、genetic diversity, nucleotide polymorphism, microsatellite
    2007.04~2017.03.
  • Co-evolution, Co-speciation of figs and figwasps
    keyword : Population genetics, Molecular evolution, Molecular phylogeny, Evolution of mutualisms; plant insect interactions,
    2008.04~2017.03.
  • Molecular evolution of the chl genes in conifers
    keyword : Molecular evolution, Conifer, Light-Independent Protochlorophyllide Oxidoreductase
    2005.04~2014.03.
Academic Activities
Papers
1. Yuka Ikezaki, Yoshihisa Suyama, Beth A. Middleton, Yoshihiko Tsumura, Kosuke Teshima, Hidenori Tachida, Junko Kusumi, Inferences of population structure and demographic history for Taxodium distichum, a coniferous tree in North America, based on amplicon sequencing analysis, American journal of Botany, 103, 11, 2016.12.
2. Junko Kusumi, Motoshi Ichinose, Masasuke Takefu, Robert Piskol, Wolfgang Stephan, Masaru Iizuka, A model of compensatory molecular evolution involving multiple sites in RNA molecules, 388, 2016.01.
3. Junko Kusumi, Yoshihiko Tsumura, Hidenori Tachida, Evolutionary rate variation in two conifer species, Taxodium distichum (L.) Rich. var. distichum (baldcypress) and Cryptomeria japonica (Thunb. ex L.f.) D. Don (Sugi, Japanese cedar), 90, 2015.12.
4. Junko Kusumi, Zhi-Hui Su, Isolation and characterization of 15 polymorphic microsatellite markers for the fig-pollinating wasp, Blastophaga nipponica (Hymenoptera: Agaonidae), Applied Entomology and Zoology, 2014.04.
5. Motoshi Ichinose, Masaru Iizuka, Junko Kusumi, Masasuke Takefu, Models of compensatory molecular evolution: Effects of back mutation, JOURNAL OF THEORETICAL BIOLOGY, 323, 1-10, 2013.01.
6. Ayako Tanaka & Masato Ohtani & Yoshihisa Suyama & Nobuyuki Inomata & Yoshihiko Tsumura & Beth A. Middleton & Hidenori Tachida & Junko Kusumi, Population genetic structure of a widespread coniferous tree, Taxodium distichum [L.] Rich. (Cupressaceae), in the Mississippi River Alluvial Valley and Florida, Tree Genetics & Genomes, 2012.03.
7. Junko Kusumi; Hiroshi Azuma; Hsy-Yu Tzeng; Lien-Siang Chou; Yan-Qiong Peng; Keiko Nakamura; Zhi-Hui Su, Phylogenetic analyses suggest a hybrid origin of the figs (Moraceae: Ficus) that are endemic to
the Ogasawara (Bonin) Islands, Japan, Molecular Phylogenetics and Evolution, 63, 1, 168-179, 2012.01.
8. Junko Kusumi, Zidong, Li, Tomoyuki Kado, Yoshihiko Tsumura, Beth A. Middleton and Hidenori Tachida, Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley, American journal of botany, 97, 11, 1848-1857, 2010.11.
9. Junko Kusumi、Aya Sato、Hidenori Tachida, Relaxation of Functional Constraint on Light-Independent Protochlorophyllide Oxidoreductase in Thuja, Molecular Biology and Evolution, 23, 5, 941-948, Relaxation of Functional Constraint on Light-Independent Protochlorophyllide Oxidoreductase in Thuja, 2006.05.
10. Junko Kusumi and Hidenori Tachida, Compositional properties of green-plant plastid genomes., Journal of Molecular evolution, 60, 4, 417-425, 2005.04.
11. Junko Kusumi, Yoshihiko Tsumura, Hiroshi Yoshimaru and Hidenori Tachida, Molecular evolution of nuclear genes in Cupressaceae, a group of conifer trees., Molecular biology and evolution, 19, 5, 736-747, 2002.10.
Presentations
1. Yuka Ikezaki, Yoshihisa Suyama, Beth A. Middleton, Yoshihiko Tsumura, Junko Kusumi, Kosuke Teshima, Hidenori Tachida, Inference of population structure in Taxodium distichum, a coniferous tree in North America, based on amplicon sequence analysis, SMBE Satellite Meeting / NIG International Symposium: The Causes of Genome Evolution, 2014.03.16.
2. Junko Kusumi, Motoshi Ichinose, Masasuke Takefu, Wolfgang Stephan, Masaru Iizuka, A model of compensatory molecular evolution with indirect compensation, SMBE Satellite Meeting / NIG International Symposium: The Causes of Genome Evolution, 2014.03.15.
3. Seedlings of gymnosperms are able to synthesize chlorophyll even in the dark due to dark-operative protochlorophyllide oxidoreductase (DPOR) encoded by chloroplast DNA. In some conifers RNA-editing occurs in mRNA of chlB encoding one of the DPOR subunits resulting in amino acid substitutions in ChlB. These substitutions would be important for the DPOR activity. However, there has been no experimental evidence. In this study the efficiency of RNA-editing in the chlB mRNA was analyzed in black pine seedlings grown in the light and dark. The ratio of edited chlB mRNA to the total chlB mRNA was significantly higher in the dark grown seedlings than that of seedlings grown in the light. In addition, a cyanobacterial ChlB variant corresponding to the unedited mRNA lost the ability to form the catalytic component, NB-protein (hetero tetramer of ChlN and ChlB). This result indicated that the amino acid substitutions by RNA-editing are essential for the formation of NB-protein. It is suggested that black pine seedlings regulates greening process via DPOR activity by RNA-editing in response to environmental light conditions..
4. Taxodium distichum is a coniferous tree that is widely distributed in southeastern North America. Although levels of genetic differentiation between its two varieties, bald-cypress and pond-cypress, are low, genetic differentiation between the Mississippi river coast region and Florida region has been shown using SSR markers. In this study, we determined the sequences of T. distichum at 5 nuclear loci using DNA sampled from populations of the Mississippi river coast and Florida regions. High and significant Fst values were found at two loci: between the two varieties at AMT and between the two regions at Acl5. To investigate whether the high Fst value obtained at the AMT locus reveals variety-specific genetic differentiation, we conducted a preliminary simulation study assuming the neutrality of alleles and a simple population structure. The P-value of the observed value at AMT was 0.0495, suggesting a possible contribution of AMT to the differentiation between varieties..
5. Figs (Ficus, Moraceae) and their pollinating figwasps (Agaonidae, Chalcidoidea, Hymenoptera) form tight, species-specific obligatory mutualisms, in which neither species can propagate without the other under natural conditions. Figs depend on figwasps for pollen transmission, whereas figwasps complete their growth, development and reproduction within the fig inflorescence. Therefore, dispersal distance and a level of gene flow of one party are expected to affect those of the other party. In this study, we analyzed population structures of Ficus erecta and their pollinating figwasp, Blastophaga nipponica, using SSRs and organelle genome sequence polymorphisms. We used samples from Kansai, Kyushu, Okinawa Island, Yaeyama Islands and Taiwan. Bayesian clustering analyses based on the SSRs data showed that F. erecta and B. nipponica have a similar population structure, which correspond to their locality. In addition, we found a significant correlation between the pairwise Fst values of F. erecta and B. nipponica, suggesting interdependent gene flow of these species. On the other hand, mitochondrial genomic data indicated large genetic differentiations between the Kansai and the other populations in B. nipponica, which is inconsistent to the result of the SSRs data. This may imply that F. erecta and B. nipponica of the Kansai population have different origin-histories. .
Membership in Academic Society
  • Society for Molecular Biology &Evolution
  • Society of Evolutionary Studies
  • The genetic society of Japan