九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
迫田 直也(さこだなおや) データ更新日:2018.02.13

准教授 /  工学研究院 機械工学部門 熱工学


主な研究テーマ
高圧水素の熱物性および燃料電池自動車への充填技術開発
キーワード:高圧水素,熱物性,充填プロトコル
2013.04~2018.03.
冷媒の熱物性測定
キーワード:冷媒, 熱物性
2013.12~2018.03.
水素混合流体の熱物性研究
キーワード:水素,熱物性,混合流体,相平衡
2012.04~2014.03.
ジュール・トムソン型マイクロ冷凍機の開発
キーワード:マイクロ,ジュールトムソン効果,熱交換器
2009.04~2011.03.
高圧水素および混合流体の熱物性研究
キーワード:高圧,水素,熱物性,状態方程式
2006.04~2014.03.
従事しているプロジェクト研究
未利用熱エネルギー革新的活用技術研究開発
2013.10~2018.03.
NEDO水素利用技術研究開発事業
2013.06~2018.03.
NEDO水素先端基礎研究事業
2006.05~2013.03, 代表者:村上敬宣, 九州大学, 九州大学(日本),産業技術総合研究所(日本)
水素エネルギー社会の構築のため,100 MPaまでの高圧下の水素基礎物性の解明,水素脆化などの基本原理の解明,および対応策を幅広い分野で横断的に検討する.より安全・簡便に,低コストで水素を利用するために,材料選定や機器設計の指針,劣化評価法などを産業界に提供し,水素エネルギー社会の真の実現を促進する..
研究業績
主要著書
1. 迫田 直也, Hydrogen Energy Engineering, A Japanese Perspective, Kazunari Sasaki et al.,
Chapter 18, Compressed Hydrogen: Thermophysical Properties
, 2016.10.
主要原著論文
1. Naoya Sakoda, Jiang Shiheng, Masamichi Kohno, Shigeru Koyama, Yukihiro Higashi, Yasuyuki Takata, Gaseous PVT property measurements of cis-1,3,3,3-tetrafluoropropene, Journal of Chemical and Engineering Data, Accepted, 2017.06.
2. Naoya Sakoda, Jiang Shiheng, Masamichi Kohno, Yasuyuki Takata, Yukihiro Higashi, Vapor-Liquid Equilibrium Measurements of HFO Refrigerant Mixtures
, 5th IIR International Conference on Thermophysical Properties and Transfer Processes of Refrigerants (TPTPR2017), PAPER ID 108, 2017.04.
3. N. Sakoda, K. Onoue, T. Kuroki, K. Shinzato, M. Kohno, M. Monde, Y. Takata, Transient Temperature and Pressure Behavior of High-Pressure 100 MPa Hydrogen during Discharge through Orifices, International Journal of Hydrogen Energy, 41, 17169-17174, 2016.08.
4. N. Sakoda, T. Hisatsugu, K. Furusato, K. Shinzato, M. Kohno, Y. Takata, Viscosity Measurements of Hydrogen at High Temperatures up to 573 K by a Curved Vibrating Wire Method, The Journal of Chemical Thermodynamics, 89, 22-26, 2015.05.
5. N. Sakoda, R. Kumagai, R. Ishida, M. Kohno, Y. Takata, Vacuum Generation by Hydrogen Permeation to Atmosphere through Austenitic and Nickel-Base-Alloy Vessel Walls at Temperatures from 573 K to 773 K
, International Journal of Hydrogen Energy, 39, 21, 11316-11320, 2014.06.
6. 吉村幸祐, 上原帝臣, 新里 寛英, 久次達也, 迫田 直也, 河野 正道, 高田 保之, 振動細線法による気体の粘性係数測定装置の開発, 熱物性, 28, 1, 15-21, 2014.02.
7. Naoya Sakoda, Masamichi Kohno, Yasuyuki Takata, Thermodynamic Behavior of Hydrogen Binary Systems with Critical Curve Divergence and Retrograde Condensation, Journal of Thermal Science and Technology, 8, 3, 603-612, 2013.11, In binary systems of hydrogen and hydrocarbons, the fluid-phase thermodynamic behavior is unique in having the divergence of the critical curves to a high pressure region. The thermodynamic properties of the binary systems including hydrogen with methane, ethane, propane, and carbon dioxide were calculated from a Peng-Robinson equation of state (PR EOS). The mixing parameter of the present EOS has a functional form of temperature generalized by the critical temperatures of the hydrocarbons and carbon dioxide. Based on the corresponding states principle, the coefficients of the parameter were determined with a non-linear least squares fitting to the experimental critical points of the mixtures. The developed PR EOS shows good agreement with the experimental data of not only the critical points but also the phase equilibria. In the hydrogen binary systems, retrograde condensation is expected. The volumetric and enthalpy changes in this process were simulated for a hydrogen + carbon dioxide mixture of 0.55 mole fraction using the PR EOS at 270 K..
8. 吉村幸祐, 上原帝臣, 新里 寛英, 迫田 直也, 久次達也, 河野 正道, 高田 保之, 振動細線法による気体の粘性係数測定装置の開発, 熱物性, 高圧・高温の条件下における水素の粘性係数を測定することを目的とし,少量の試料で測定可能な振動細線法を用いた粘性係数測定装置を1 MPa以下の低圧域を対象として新たに開発した.本研究で採用した振動細線法では磁場中に設置した半円型ワイヤに交流電流を流し,その振動の減衰と気体の粘性の関係から粘性係数を算出する方法である.半円型ワイヤにはタングステン,磁石はサマリウムコバルトを使用した.この装置を用いて,室温と50 ºC,圧力1 MPa以下の条件で,測定の重要なパラメータである内部摩擦係数を決定した後,窒素,ヘリウムおよび水素の粘性係数を測定した..
9. 迫田直也,本村晃一,Supriatno,新里寛英,河野正道,高田保之,藤井丕夫, 高温高圧水素用定容積式PVT性質測定装置の開発, 熱物性, Vol. 26, 86-91, 2012.04, 473 K~773 K,100 MPaまでの温度,圧力領域において水素のPVT性質測定を目的とした定容積法による装置を開発した.水素は密度が非常に小さいため,試料容器内(250 cc)に充填された試料の質量を精度良く測定することは困難である.そこで本研究では,内容積の大きな膨張容器(2500 cc)を別途設置し,これに試料を膨張させることで充填密度を決定する気体膨脹法を組み合わせた.開発した装置を用いて窒素のPVT性質を473 K~773 K, 100 MPaまで測定し,信頼性の高い既存の状態方程式と比較した結果,0.1 %以内で良好に一致した.そして,水素を473 Kで100 MPaまで測定した.本測定データは過去にバーネット法で測定して得られたデータと0.1 %以内で一致した..
10. N. Sakoda, K. Shindo, K. Motomura, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, Burnett PVT Measurements of Hydrogen and the Development of a Virial Equation of State at Pressures up to 100 MPa, International Journal of Thermophysics, Vol. 33, 381-395, 2012.03, PVT properties were measured for hydrogen by the Burnett method in the temperature range from 353 K to 473 K and at pressures up to 100 MPa. In the present Burnett method, the pressure measurement was simplified by using an absolute pressure transducer instead of a differential pressure transducer, which is traditionally used. The experimental procedures become easier, but the absolute pressure transducer is set outside the constant temperature bath because of the difficulty of its use in the bath, and the data acquisition procedure is revised by taking into account the effects of the dead space in the absolute pressure transducer. The measurement uncertainties in temperature, pressure, and density are 20 mK, 28 kPa, and 0.07 % to 0.24 % (k = 2), respectively. Based on the present data and other experimental data at low temperatures, a virial equation of state (EOS) from 220 K to 473 K and up to 100 MPa was developed for hydrogen with uncertainties in density of 0.15 % (k = 2) at P ≤ 15 MPa, 0.20 % at 15 MPa < P ≤ 40 MPa, and 0.24 % at P > 40 MPa, and this EOS shows physically reasonable behavior of the second and third virial coefficients. Isochoric heat capacities were also calculated from the virial EOS and were compared with the latest EOS of hydrogen. The calculated isochoric heat capacities agree well with the latest EOS within 0.5 % above 300 K and up to 100 MPa, while at lower temperatures, as the pressure increases, the deviations become larger (up to 1.5 %)..
11. N. Sakoda, K. Shindo, K. Motomura, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, Burnett Method with Absolute Pressure Transducer and Measurements for PVT Properties of Nitrogen and Hydrogen up to 473 K and 100 MPa, International Journal of Thermophysics, Vol. 33, 6-21, 2012.01, A measurement method for PVT properties of high-temperature and high-pressure gases was developed by simplifying the Burnett method and revising the data acquisition procedure. Instead of a differential pressure transducer, which is traditionally used, an absolute pressure transducer is used in the present method, and the measurement of pressure becomes easier. However, the absolute pressure transducer is placed outside the constant temperature bath because of the difficulty of its use in high-temperature surroundings, and some parts with different temperatures from the sample vessels exist as dead space. The present method takes into account the effect of the dead space in the data acquisition procedure. Nitrogen was measured in the temperature range from 353 K to 473 K and at pressures up to 100 MPa to determine the apparatus constants, and then, hydrogen was measured at 473 K and up to 100 MPa. The determined densities are in agreement within uncertainties of 0.07% to 0.24% (k = 2), both with the latest equation of state and existing measured data..
12. A. Widyaparaga, M. Kuwamoto, N. Sakoda, M. Kohno, Y. Takata, Theoretical and Experimental Study of a Flexible Wiretype Joule-Thomson Microrefrigerator for Use in Cryosurgery, Transactions of the ASME, Journal of Heat Transfer, Vol. 134, 020903-1 - 020903-7, 2012.02, We have developed a model capable of predicting the performance characteristics of a wiretype Joule–Thomson microcooler intended for use within a cryosurgical probe. Our objective was to be able to predict cold tip temperature, temperature distribution, and cooling power using only inlet gas properties as input variables. To achieve this, the model incorporated gas equations of state to account for changing gas properties due to heat transfer within the heat exchanger and expansion within the capillary. In consideration of inefficiencies, heat in-leak from free convection and radiation was also considered and the use of a 2D axisymmetric finite difference code allowed simulation of axial conduction. To validate simulation results, we have constructed and conducted experiments with two types of microcoolers differing in inner tube material, poly-ether-ether-ketone (PEEK) and stainless steel. The parameters of the experiment were used in the calculations. CO2was used as the coolant gas for inlet pressures from 0.5 MPa to 2.0 MPa. Heat load trials of up to 550 mW along with unloaded trials were conducted. The temperature measurements show that the model was successfully able to predict the cold tip temperature to a good degree of accuracy and well represent the temperature distribution. For the all PEEK microcooler in a vacuum using 2.0 MPa inlet pressure, the calculations predicted a temperature drop of 57 K and mass flow rate of 19.5 mg/s compared to measured values of 63 K and 19.4 mg/s, therefore, showing that conventional macroscale correlations can hold well for turbulent microscale flow and heat transfer as long as the validity of the assumptions is verified..
13. A. Widyaparaga, T. Koshimizu, E. Noda, N. Sakoda, M. Kohno, Y. Takata, The Frequency Dependent Regenerator Cold Section and Hot Section Positional Reversal in a Coaxial Type Thermoacoustic Stirling Heat Pump, Cryogenics, Vol. 51, 591-597, 2011.10, We have constructed and tested two travelling wave thermoacoustic heat pumps using a coaxial configuration with the regenerator positioned in the annulus. We discovered a frequency dependent positional reversal of the cold section and hot section of the regenerator within the test frequency range. By decomposing the measured pressure wave within the annulus, we obtained the positive (w+) and negative (w−) propagating travelling waves. It has been revealed the change of frequency is accompanied by a change in magnitudes of w+ and w− which is in part influenced by the presence of travelling wave attenuation through the regenerator. The resulting change of dominant travelling wave on a given end of the regenerator will then change the direction of thermoacoustic heat pumping at that end. This will alter the regenerator temperature distribution and may reverse the cold and hot sections of the regenerator. As the reversal does not require additional moving parts, merely a change in frequency, this feature in coaxial travelling wave devices has tremendous potential for applications which require both heating and cooling operation..
14. 迫田直也, 尾上清明, 高田保之, 車載水素容器の亀裂発生時における圧力変化の解析, 水素エネルギーシステム, Vol. 36, 32-36, 2011.09, Thermodynamic simulation on the transient of pressure and temperature of an in-vehicle hydrogen container with the hydrogen leak from a crack was performed. It is assumed that the volume of the container is 40 L, which is filled with hydrogen at 70 MPa and 50 ºC as an initial condition, and the crack area is 1 mm2 or 10 mm2. Hydrogen at 70 MPa and -40 ºC is supplied from a refueling station with the flow rate of 2 kg/min or 6 kg/min. Conservation equations of mass and energy were solved using a thermophysical property database compiling an accurate equation of state. Moreover, the results were compared with those calculated by the ideal gas equation of state. It was found that the pressure of the real gas decreases more rapidly than that of the ideal gas..
15. A. Widyaparaga, M. Kuwamoto, A. Tanabe, N. Sakoda, H. Kubota, M. Kohno, Y. Takata, Study on a Wire-type Joule Thomson Microcooler with a Concentric Heat Exchanger, Applied Thermal Engineering, Vol. 30, 2563-2573, 2010.11, This study examines the performance of a wire-type Joule Thomson microcooler utilizing a flexible concentric counterflow heat exchanger. Three gases: C2H4, CO2 and N2 were used separately for trials conducted at inlet pressures ranging from 0.5 MPa to 5 MPa with C2H4 having the best performance. During unloaded tests at an inlet pressure of 2.0 MPa, C2H4 obtained a minimum temperature of 225 K while CO2obtained a minimum temperature of 232 K. Using CO2 the microcooler was able to maintain a temperature of 273 K at 100 mW heat input and 2 MPa inlet pressure. An inlet pressure of 3 MPa allowed a 550 mW heat input at 273 K. Theoretical performance calculations were conducted and compared to experimental results revealing considerable reduction of microcooler performance due to the presence of heat in-leak. Results have displayed that the JT coefficient of the coolant gas is a more dominant factor than heat transfer properties in determining the performance of the coolant. Due to the microscale of the device, relevant scaling effects were evaluated, particularly entrance effects, surface roughness and axial conduction..
16. 迫田直也,進藤健太,新里寛英,河野正道,高田保之,藤井丕夫, 高圧水素用バーネット式PVT性質測定装置の開発, 熱物性, Vol. 24, 28-34, 2010.02, 高圧水素のPVT性質測定を目的として,常温から523 K,100 MPaまでの温度,圧力領域で測定可能なバーネット式PVT性質測定装置を開発した.本測定装置は安全かつ効率的に実験を行うため,試料の昇圧から測定まで,全て遠隔で操作できるように設計されている.窒素のPVT性質を353 Kにおいて100 MPaまで測定し,既存の状態方程式と比較した結果,0.22 %以内で良好に一致した.そして,同様に353 Kにおいて水素のPVT性質を100 MPaまで測定することができ,既存の水素の状態方程式は本実測値と0.22 %以内で一致した..
17. N. Sakoda, K. Shindo, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, Review of the Thermodynamic Properties of Hydrogen Based on Existing Equations of State, International Journal of Thermophysics, Vol. 31, 276-296, 2010.02, Currently available equations of state (EOSs) for hydrogen are reviewed, and the data for the critical point, normal boiling point, and triple point are summarized. Through comparisons of PVT, saturated properties, heat capacity, and speed of sound among the latest EOSs for hydrogen, their features are discussed. The proper use of the EOSs, including a consideration of the nuclear isomers (ortho- and parahydrogen), is of great importance, especially for saturated properties, heat capacity, and speed of sound because these properties are different between the nuclear isomers. The present review concludes with recommendations for use of the EOSs for hydrogen..
18. N. Sakoda, M. Uematsu, A Thermodynamic Property Model for the Binary Mixture of Methane and Hydrogen Sulfide, International Journal of Thermophysics, Vol. 26, 1303-1325, 2005.11, A thermodynamic property model with new mixing rules using the Helmholtz free energy is presented for the binary mixture of methane and hydrogen sulfide based on experimental PρTx data, vapor–liquid equilibrium data, and critical-point properties. The binary mixture of methane and hydrogen sulfide shows vapor–liquid–liquid equilibria and a divergence of the critical curve. The model represents the existing experimental data accurately and describes the complicated behavior of the phase equilibria and the critical curve. The uncertainty in density calculations is estimated to be 2%. The uncertainty in vapor–liquid equilibrium calculations is 0.02 mole fraction in the liquid phase and 0.03 mole fraction in the vapor phase. The model also represents the critical points with an uncertainty of 2% in temperature and 3% in pressure. Graphical and statistical comparisons between experimental data and the available thermodynamic models are discussed.
19. N. Sakoda, M. Uematsu, Thermodynamic Properties of the Binary Mixture of Methane and Hydrogen Sulfide, Zeitschrift für Physikalische Chemie, Vol. 219, 1299-1319, 2005.09, From the interest of the thermodynamic properties for natural gas system, we have developed the thermodynamic property model for the binary mixture of methane and hydrogen sulfide system by the Helmholtz free energy function. Our model represents divergence of the critical curve and vapor–liquid–liquid equilibrium of this system as well as thermodynamic properties with high accuracy. The behavior of critical curve and phase equilibrium is discussed in detail with comparison of that for the mixture of methane and ethane system. Thermodynamic properties of methane and hydrogen sulfide system have been calculated using our model and their behavior as a function of composition is also reported..
20. N. Sakoda, M. Uematsu, A Thermodynamic Property Model for Fluid Phase Hydrogen Sulfide, International Journal of Thermophysics, Vol. 25, 709-737, 2004.05, A Helmholtz free energy equation of state for the fluid phase of hydrogen sulfide has been developed as a function of reduced temperature and density with 23 terms on the basis of selected measurements of pressure–density–temperature (P, r, T), isobaric heat capacity, and saturation properties. Based on a comparison with available experimental data, it is recognized that the model represents most of the reliable experimental data accurately in the range of validity covering temperatures from the triple point temperature (187.67 K) to 760 K at pressures up to 170 MPa. The uncertainty in density calculation of the present equation of state is 0.7% in the liquid phase, and that in pressure calculation is 0.3% in the vapor phase. The uncertainty in saturated vapor pressure calculation is 0.2%, and that in isobaric heat capacity calculation is 1% in the liquid phase. The behavior of the isobaric heat capacity, isochoric heat capacity, speed of sound, and Joule–Thomson coefficients calculated by the present model shows physically reasonable behavior and those of the calculated ideal curves also illustrate the capability of extending the range of validity. Graphical and statistical comparisons between experimental data and the available thermodynamic models are also discussed..
21. N. Sakoda, K. Motomura, Supriatno, Y. Fukatani, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, Development of Apparatuses for PVT Properties of Hydrogen and Measurements at High Temperatures and High Pressures, Book of Abstracts, 19th European Conference on Thermophysical Properties, 298, 2011.08.
22. A. Widyaparaga, M. Kuwamoto, E. Noda, N. Sakoda, M. Kohno, Y. Takata, Analytical Optimization of Heat Exchanger Dimensions of a Joule-Thomson Microcooler, 9th International Conference on Nanochannels, Microchannels and Minichannels, 2011.06.
23. M. Kuwamoto, A. Widyaparaga, N. Sakoda, M. Kohno, Y. Takata, Effect of Working Gas and Heat Exchanger Dimensions on Joule Thomson Microcooler Performance, International Symposium on Innovative Materials for Processes in Energy Systems 2010, For Fuel Cells, Heat Pumps and Sorption Systems, 203-207, 2010.11.
24. N. Sakoda, K. Shindo, K. Motomura, Supriatno, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, Measurement of PVT Property of Hydrogen at High Pressures up to 100 MPa and Development of a Virial Equation of State, Proceedings of the 9th Asian Termophysical Properteis Conference, paper number 109156, 2010.10.
25. Y. Takata, N. Sakoda, K. Shinzato, M. Fujii, Measurement of Hydrogen Thermophysical Properties at Ultra High Pressures, Proceedings of the 9th Asian Termophysical Properteis Conference, paper number 109309, 2010.10.
26. A. Widyaparaga, M. Kuwamoto, N. Sakoda, M. Kohno, Y. Takata, Theoretical Study of a Flexible Wiretype Joule Thomson Micro-refrigerator for Use in Cryosurgery, 8th International Conference on Nanochannels, Microchannels and Minichannels, 2010.08.
27. N. Sakoda, K. Shindo, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, PVT Measurements of High Pressure Gas by the Burnett Method, Proceedings of the International Conference on Power Engineering 2009(ICOPE-09), Vol. 2, 265-270, 2009.11.
28. N. Sakoda, K. Shindo, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, PVT Measurements of Hydrogen at High Pressures, Abstracts of the 17th Symposium on Thermophysical Properties, 370, 2009.06.
29. Y. Takata, P. L. Woodfield, N. Sakoda, K. Shinzato, M. Fujii, Measurement of Hydrogen Thermophysical Properties at High Pressure, The Eleventh UK National Heat Transfer Conference (UKHTC2009), 2009.06.
30. N. Sakoda, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, Development of PVT Measurement Apparatus and Preliminary Measurements for Hydrogen, Book of Abstracts of 18th European Conference on Thermophysical Properties, 197, 2008.08.
31. Y. Takata, N. Sakoda, K. Shinzato, K. Fujii, M. Fujii, Research Project of Hydrogen Thermophysical Properties at Ultra High Pressure, Proceedings of Sixth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, 2007.09.
32. N. Sakoda, E. Yusibani, P. L. Woodfield, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, Review of Thermophysical Properties of Hydrogen and the Related Work of HYDROGENIUS, Proceedings of the 8th Asian Thermophysical Properties Conference, 141, 2007.08.
33. N. Sakoda, A. Wachi, N. Masuda, M. Uematsu, PVT Measurements of Ammonia and Its Aqueous Mixtures in the Temperature Range from 350 K to 600 K at Pressures up to 200 MPa, Abstracts of THERMO INTERNATIONAL 2006 (The 19th IUPAC International Conference on Chemical Thermodynamics), 523-524, 2006.07.
34. D. Kume, N. Sakoda, M. Uematsu, An Equation of State for Thermodynamic Properties of Methanol, Book of Abstracts, The 17th European Conference on Thermophysical Properties, 292, 2005.09.
35. N. Sakoda, M. Uematsu, Thermophysical Properties of the Binary Mixture of Methane and Hydrogen Sulfide, Abstracts of Thermodynamics, 50, 2005.04.
36. N. Sakoda, M. Uematsu, A Thermodynamic Property Model for the Binary Mixture of Methane and Hydrogen Sulfide, Abstract book, The 18th IUPAC International Conference on Chemical Thermodynamics, 140, 2004.08.
37. N. Sakoda, M. Uematsu, Thermodynamic Property Model for Binary Mixtures of Methane and Hydrogen Sulfide, Abstracts of the 15th Symposium on Thermophysical Properties, 20, 2003.06.
38. K. Tanaka, N. Sakoda, M. Uematsu, Development of a Calorimeter for Measurements of Isobaric Heat Capacity for Fluids and Fluid Mixtures in a Wide Range of Temperatures and Pressures, Book of Abstracts, 9th International Conference on Properties and Phase Equilibria for Product and Process Design, 126, 2001.05.
主要総説, 論評, 解説, 書評, 報告書等
1. 高田保之, 迫田直也, 新里寛英, 藤井丕夫, 高圧水素の熱物性測定, 水素エネルギーシステム, 2009.12.
2. 高田保之, 迫田直也, 水素の異性体と熱物性, 伝熱, 2009.04.
主要学会発表等
1. 河野 裕毅, 迫田 直也, 新里 寛英, 河野 正道, 光武 雄一, 門出 政則, 高田 保之, 高圧水素放出時の容器内熱伝達, 第54回日本伝熱シンポジウム, 2017.05.
2. N. Sakoda, J. Shiheng, M. Kohno, Y. Takata, Volumetric Behavior of Binary Fluid Mixtures of Hydrogen and Experimental Observation of the Phase Equilibrium with Carbon Dioxide, The 11th Asian Thermophysical Properties Conference (ATPC 2016), 2016.10.
3. M. Tasaki, N. Sakoda, K. Shinzato, T. Yamaguchi, M. Kohno, Y. Takata, Measurement of the Speed-of-Sound of High-Pressure Hydrogen up to 15 MPa with a Spherical Acoustic Resonator, The 11th Asian Thermophysical Properties Conference (ATPC 2016), 2016.10.
4. T. Tanaka, N. Sakoda, K. Shinzato, M. Kohno, Y. Takata, Measurement of the Thermal Conductivity of Hydrogen at Low Temperatures and High Pressures, The 11th Asian Thermophysical Properties Conference (ATPC 2016), 2016.10.
5. K. Kuroki, N. Sakoda, K. Shinzato, M. Kohno, M. Monde, Y. Takata, Risk Assessment Study about Fire Outbreaks of Hydrogen Refueling Station with Gas Station, The 27th International Symposium on Transport Phenomena (ISTP27), 2016.10.
6. 河野 裕毅, 黒木 太一, 迫田 直也, 新里 寛英, 河野 正道, 光武 雄一, 門出 政則, 高田 保之, 微小オリフィスからの水素放出時の容器内伝熱特性, 第13回海洋エネルギーシンポジウム(OES2016), 2016.09.
7. 迫田 直也, 黒木 太一, 新里 寛英, 河野 正道, 門出 政則, 高田 保之, 水素インフラ構築に関わる高圧水素の熱物性研究, 第13回海洋エネルギーシンポジウム(OES2016), 2016.09.
8. 江 世恒, 迫田 直也, 河野 正道, 小山 繁, 高田 保之, 高温バーネット装置を用いた低 GWP 冷媒R1234ze(Z)の気相域における PVT 性質測定 , 2016年度 日本冷凍空調学会 年次大会, 2016.09.
9. 迫田 直也, 黒木 太一, 新里 寛英, 河野 正道, 門出 政則, 高田 保之, 高圧水素インフラ構築に向けた水素の熱物性計測と水素物性データベースの応用, 化学工学会 第48回秋季大会, 2016.09.
10. N. Sakoda, J. Shiheng, M. Kohno, S. Koyama, Y. Takata, Development of a Burnett PVT Apparatus for Low-GWP Refrigerants at High Temperatures up to 473 K , the 8th Asian Conference on Refrigeration and Air Conditioning (ACRA2016), 2016.05.
11. 田中丈晴, 迫田 直也, 新里 寛英, 河野 正道, 高田 保之, 低温高圧域における水素の熱伝導率測定, 日本機械学会九州学生会 第47回卒業研究発表講演会, 2016.03.
12. 黒木 太一, 門出 政則, 迫田 直也, 新里 寛英, 高田 保之, 河野 正道, 水素急速充填中の車載水素容器形状が水素温度上昇に及ぼす影響, 熱工学コンファレンス2015, 2015.10.
13. M. Monde, T. Kuroki, N. Sakoda, Y. Takata, Heat Transfer Rate from Hydrogen to Tank Wall during Fast Refueling Process, 14th UK Heat Transfer Conference 2015, 2015.09.
14. 迫田 直也, 江 世恒, 河野 正道, 高田 保之, 水素/二酸化炭素2成分系混合流体におけるPVTx性質の状態曲面と相平衡, 第36回日本熱物性シンポジウム, 2015.10.
15. Naoya Sakoda, Jiang Shiheng, Takafumi Hamanosono, Masamichi Kohno, Yasuyuki Takata, Phase Equilibrium and Density Measurement of Hydrogen and Carbon Dioxide Mixtures near the Supercritical Region at Pressures up to 12 MPa, Nineteenth Symposium on Thermophysical Properties, 2015.06.
16. 久次 達也, 新里 寛英, 迫田 直也, 河野 正道, 高田 保之, 半円弧状振動細線法による-40℃から25℃の温度域における水素の粘性係数測定, 第35回 日本熱物性シンポジウム, 2014.11.
17. Naoya Sakoda, Jiang Shiheng, Masamichi Kohno, Yasuyuki Takata, Correlation of the Critical Curve for Hydrogen Binary Systems with PR EOS and Experimental Observation of the Phase Change, 20th European Conference on Thermophysical Properties (ECTP2014), 2014.09.
18. Naoya Sakoda, Thermophysical Properties of Hydrogen at High Temperatures and High Pressures, 2013.11.
19. Naoya Sakoda, Ryo Akasaka, Satoru Momoki, Tomohiko Yamaguchi, Kan’ei Shinzato, Masamichi Kohno, Yasuyuki Takata, Hydrogen Thermophysical Properties Database Compiling a New Equation of State and Correlations Based on the Latest Experimental Data at High Temperatures and High Pressures, European Hydrogen Energy Conference 2014, 2014.03.
20. Tatsuya Hisatsugu, Temujin Uehara, Kan’ei Shinzato, Naoya Sakoda, Masamichi Kohno, Yasuyuki Takata, Vibrating Wire Method with Semi-Circle Wire for Measuring Hydrogen Viscosity, European Hydrogen Energy Conference 2014, 2014.03.
21. Ryosuke Kumagai, Ryusei Ishida, Kan’ei Shinzato, Naoya Sakoda, Masamichi Kohno, Yasuyuki Takata, Hydrogen Permeation through Thick Metals Using Sensor Gas Chromatograph, European Hydrogen Energy Conference 2014, 2014.03.
22. 久次達也, 上原帝臣, 新里 寛英, 迫田 直也, 河野 正道, 高田 保之, 半円弧状振動細線法による水素粘性係数測定, 第34回日本熱物性シンポジウム, 2013.11.
23. 熊谷亮祐, 石田竜聖, 新里 寛英, 迫田 直也, 河野 正道, 高田 保之, 高温域での金属に対する水素透過量の測定, 第34回日本熱物性シンポジウム, 2013.11.
24. Naoya Sakoda, Tatsuya Hisatsugu, Yohei Kayukawa, Kan’ei Shinzato, Masamichi Kohno, Yasuyuki Takata, PVT Property Measurements of Hydrogen at High Pressures up to 100 MPa by a Magnetic Suspension Densimeter
, the 10th Asian Thermophysical Properties Conference (ATPC 2013), 2013.10.
25. 迫田 直也, 河野 正道, 高田 保之, 水素を含む2成分系混合流体の状態方程式と超臨界域を中心とした熱力学性質, 日本機械学会熱工学コンファレンス2013, 2013.10.
26. 迫田 直也, 尾上 清明, 高田 保之, オリフィスを通過して急速に膨張する高圧気体の状態変化と熱解析, 第50回日本伝熱シンポジウム, 2013.05.
27. 野田英嗣 , Widyaparaga Adhika, 小清水孝夫, 迫田 直也, 河野 正道, 高田 保之, 2センサ法を用いたダブルスピーカー型熱音響デバイスにおける音響パワー計算と音波分解, 第17回動力・エネルギー技術シンポジウム, 2012.06.
28. 野田英嗣, Widyaparaga Adhika, 小清水孝夫, 迫田 直也, 河野 正道, 高田 保之, ダブルスピーカー型熱音響デバイスの蓄熱器の温度分布に及ぼす音波位相の影響, 第49回日本伝熱シンポジウム, 2012.05.
29. Keisuke Kubo, Naoya Sakoda, Koichi Motomura, Supriatno, K. Shinzato, Masamichi Kohno, Yasuyuki Takata, PVT Property Measurements of Hydrogen in the range from 473 K to 773 K and up to 100 MPa by the Isochoric Method, The 3rd International Forum of Heat Transfer, 2012.11.
30. 迫田 直也, 本村晃一, Supriatno, 久保圭祐, 新里寛英, 河野 正道, 高田 保之, 藤井丕夫, 773 K, 100 MPaまでの高温,高圧域における水素および窒素のPVT性質測定, 第49回日本伝熱シンポジウム, 2012.05.
31. 迫田 直也, 宮崎竜也, Supriatno, 粥川洋平, 新里寛英, 河野 正道, 高田 保之, 磁気式密度計を用いた高圧水素のPVT性質測定, 第33回日本熱物性シンポジウム, 2012.10.
32. 迫田直也, 本村晃一, Supriatno, 久保圭祐, 新里寛英, 河野正道, 高田保之, 藤井丕夫, 773 K, 100 MPaまで適用可能な定容積式PVT性質測定装置の開発と水素のPVT性質測定, 日本機械学会九州支部, 2012.03.
33. 本村晃一, 迫田直也, Supriatno, 久保圭祐, 新里寛英, 河野正道, 高田保之, 藤井丕夫, 定容積法による500 ºC, 100 MPaまでの高温高圧水素のPVT性質測定, 第32回日本熱物性シンポジウム, 2011.11.
34. A. Widyaparaga, T. Koshimizu, E. Noda, N. Sakoda, M. Konho, Y. Takata, Heat Transport Directional Reversal within the Regenerator of a Coaxial Travelling Wave Thermoacoustic Heat Pump, 第16回動力・エネルギー技術シンポジウム, 2011.06.
35. A. Widyaparaga, M. Kuwamoto, N. Sakoda, H. Kubota, M. Kohno, Y. Takata, Joule-Thomson Microcooler Heat Exchanger Dimensional Optimization by Analytical Calculation, 第48回日本伝熱シンポジウム, 2011.06.
36. 野田英嗣, Widyaparaga Adhika, 小清水孝夫, 迫田直也, 河野正道, 高田保之, 同軸型熱音響冷凍機の蓄冷器両端温度に及ぼす音波周波数の影響, 第48回日本伝熱シンポジウム, 2011.06.
37. Supriatno, N. Sakoda, K. Motomura, Y. Fukatani, K. Shinzato, M. Kohno, Y. Takata, M. Fujii, Measurment of Hydrogen PVT Properties at High Temperatures up to 500 ºC, 第48回日本伝熱シンポジウム, 2011.06.
38. 尾上清明, 迫田直也, 高田保之, 車載水素容器の亀裂発生時における圧力変化の解析, 第30回水素エネルギー協会大会, 2011.12.
39. 迫田直也, Supriatno, 本村晃一, 新里寛英, 河野正道, 高田保之, 藤井丕夫, 高圧水素用磁気式密度計の開発, 第31回日本熱物性シンポジウム, 2010.11.
40. 本村晃一, 迫田直也, Supriatno, 深谷侑輝, 新里寛英, 河野正道, 高田保之, 藤井丕夫, 定容積法による高温水素のPVT性質の測定, 第31回日本熱物性シンポジウム, 2010.11.
41. 迫田直也, 進藤健太, 本村晃一, Supriatno, 新里寛英, 河野正道, 高田保之, 藤井丕夫, 水素のPVT性質測定とビリアル状態方程式の開発, 第47回日本伝熱シンポジウム, 2010.05.
42. 田島功基, 城田農, 迫田直也, 高田保之, 伊藤衡平, 30MPaにおけるKOH水溶液に対する水素溶解度の計測, 第47回日本伝熱シンポジウム, 2010.05.
43. A. Widyaparaga, M. Kuwamoto, N. Sakoda, H. Kubota, M. Kohno, Y. Takata, Theoretical Analysis of the Wire-type Joule-Thomson Microcooler, 第47回日本伝熱シンポジウム, 2010.05.
44. A. Widyaparaga, M. Kuwamoto, N. Sakoda, H. Kubota, M. Kohno, Y. Takata, Study of Heat Exchange Performance in a Cylindrical Micro Heat Exchanger, 第15回動力・エネルギー技術シンポジウム, 2010.06.
45. アディカ ウィジャパラガ, 鍬本将志, 迫田直也, 河野正道, 高田保之, ワイヤー型マイクロ冷凍機に関する研究, 熱工学コンファレンス, 2009.11.
46. 迫田直也, 進藤健太, 新里寛英, 河野正道, 高田保之, 藤井丕夫, PVT実測値に基づく高圧水素のビリアル係数, 第30回日本熱物性シンポジウム, 2009.10.
47. 進藤健太, 迫田直也, 新里寛英, 河野正道, 高田保之, 藤井丕夫, バーネット法による200 ℃,100 MPaまでの高圧水素のPVT測定, 第30回日本熱物性シンポジウム, 2009.10.
48. 迫田直也, 進藤健太, 新里寛英, 河野正道, 高田保之, 藤井丕夫, 高圧水素のPVT測定とビリアル係数, 長崎講演会, 2009.10.
49. 迫田直也, 進藤健太, 新里寛英, 河野正道, 高田保之, 藤井丕夫, 遠隔操作機能を兼ね備えた高圧PVT測定装置の開発および水素のPVT測定, 第46回日本伝熱シンポジウム, 2009.06.
50. 進藤健太, 迫田直也, 新里寛英, 河野正道, 高田保之, 藤井丕夫, 高圧水素のPVT測定, 日本機械学会九州支部, 2009.03.
51. 迫田直也, 進藤健太, 新里寛英, 河野正道, 高田保之, 藤井丕夫, 高圧水素用PVT測定装置の開発, 第29回日本熱物性シンポジウム, 2008.10.
52. 迫田直也, 上松公彦, メタン/硫化水素2成分系混合流体の熱力学状態曲面, 第26回日本熱物性シンポジウム, 2005.11.
53. 迫田直也, 上松公彦, メタン/硫化水素2成分系混合流体の熱力学性質, 化学工学会 第37回秋季大会, 2005.09.
54. 迫田直也, 上松公彦, メタン/硫化水素2 成分系混合流体に対するHelmholtz関数型熱力学モデルの開発と高圧相平衡, 第25回日本熱物性シンポジウム, 2004.10.
55. 久米大輔, 迫田直也, 上松公彦, メタノールの熱力学状態方程式, 第45回高圧討論会, 2004.10.
56. 迫田直也, 上松公彦, メタン/硫化水素2成分系混合流体の熱力学モデル, 第44回高圧討論会, 2003.11.
57. 迫田直也, 上松公彦, メタン/硫化水素2成分系混合流体の熱力学モデル, 第24回日本熱物性シンポジウム, 2003.10.
58. 迫田直也, 上松公彦, 硫化水素の熱力学的モデル, 第23回日本熱物性シンポジウム, 2002.11.
59. 田中勝之, 迫田直也, 上松公彦, 高温高圧水溶液測定用カロリメータの開発, 第38回日本伝熱シンポジウム, 2001.05.
60. 田中勝之, 迫田直也, 上松公彦, 高温高圧水溶液の定圧比熱測定用熱量計の開発, 化学工学会 第66年会, 2001.04.
作品・ソフトウェア・データベース等
1. 黒木 太一,迫田 直也, 門出 政則, 高田 保之, HRS Dynamic Simulation, 2017.05.
学会活動
所属学会名
日本機械学会
日本伝熱学会
日本熱物性学会
化学工学会
学協会役員等への就任
2015.10~2016.03, 日本冷凍空調学会, 冷媒技術委員会委員.
2016.01~2017.01, 日本熱物性学会, 編集委員.
2013.11~2015.11, 日本熱物性学会, 評議員.
学会大会・会議・シンポジウム等における役割
2016.10.02~2016.10.06, The 11th Asian Thermophysical Properties Conference (ATPC 2016), 座長(Chairmanship).
2015.10.19~2014.09.21, 第36回日本熱物性シンポジウム, 座長(Chairmanship).
2008.10~2008.10.10, 第29回日本熱物性シンポジウム, 座長(Chairmanship).
2009.11~2009.11.20, International Conference on Power Engineering (ICOPE-09), 座長(Chairmanship).
2010.11~2010.11.20, 第31回日本熱物性シンポジウム, 座長(Chairmanship).
2016.10.02~2016.10.06, The 11th Asian Thermophysical Properties Conference (ATPC 2016), Local Organizing Committee.
2016.02.04~2016.02.04, Workshop on Thermal Issues for Hydrogen and Related Energy Systems, 幹事.
2015.06.03~2015.06.05, 第52回日本伝熱シンポジウム, 実行委員.
2015.02.04~2015.02.04, Workshop on Thermal Issues for Hydrogen and Related Energy Systems.
2014.09.10~2014.09.13, 2014年度 日本冷凍空調学会 年次大会, 実行委員.
2014.01.31~2014.01.31, Workshop on Thermal Issues for Hydrogen and Related Energy Systems.
2013.09.04~2013.09.06, International Symposium on Innovative Materials for Processes in Energy Systems 2013 (IMPRES 2013), Local Executive Committee.
2012.11~2012.11.15, The Third International Forum on Heat Transfer (IFHT2012), Executive Committee.
2012.06~2012.06.22, 第17回動力・エネルギーシンポジウム, 実行委員.
2012.02~2012.02, Workshop on Thermal Issues for Hydrogen Energy Systems.
2011.09~2012.09.09, The 4th International Conference on Heat Transfer and Fluid Flow in Microscale, Local Executive Committee.
2011.02~2011.02, Workshop on Thermal Issues for Hydrogen Energy Systems.
2010.11~2010.11.19, 第31回日本熱物性シンポジウム, 実行委員.
2010.02~2010.02, Workshop on Thermal Issues for Hydrogen Energy Systems.
2007.08~2007.08.24, The 8th Asian Thermophysical Properties Conference, Local Executive Committee.
2007.11~2007.12.01, Japan-Korea Joint Seminar on Heat Transfer IV -Thermal Solutions for Renewable Energy and Sustainable Development-, Local Staff.
学会誌・雑誌・著書の編集への参加状況
2015.10~2016.10, 熱物性, 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2016年度 16    18 
2015年度    
2014年度      
2013年度     11 
2012年度   10    11 
2009年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
NIST, UnitedStatesofAmerica, 2015.06~2015.06.
Messe Stuttgart, Germany, 2014.10~2014.10.
University of Porto, Portugal, 2014.08~2014.09.
Pusan National University, Korea, 2013.11~2013.11.
NIST, UnitedStatesofAmerica, 2013.10~2013.10.
Karlsruhe Institute of Technology, Germany, 2012.10~2012.12.
NIST, UnitedStatesofAmerica, 2012.06~2012.06.
Rubotherm, Germany, 2009.09~2009.09.
受賞
日本機械学会賞(論文), 日本機械学会, 2016.04.
Young Scientist Award, the 10th Asian Thermophysical Properties Conference (ATPC 2013), 2013.10.
日本熱物性学会賞論文賞, 日本熱物性学会, 2010.11.
日本熱物性学会賞奨励賞, 日本熱物性学会, 2007.10.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2017年度~2019年度, 基盤研究(C), 代表, TypeIII水素混合流体における超臨界域輸送性質の精密測定と動的臨界現象の解明.
2014年度~2016年度, 基盤研究(C), 代表, 超臨界水素混合流体の高精度熱物性計測に基づくマイクロチャンネル内熱流動特性の解明.
2009年度~2010年度, 若手研究(B), 代表, ワイヤー型マイクロ冷凍機の開発と最適設計.
2012年度~2013年度, 若手研究(B), 代表, 超臨界域における水素混合流体の減圧過程に伴う状態変化の研究.
競争的資金(受託研究を含む)の採択状況
2017年度~2017年度, 公益財団法人 岩谷直治記念財団, 代表, 高温水素の金属透過による真空生成を応用した高精度簡易水素純度計の開発.
2012年度~2013年度, 財団法人 ゼネラル石油研究奨励財団, 代表, 高圧水素を溶解する多成分系超臨界流体の熱的性質に関する研究.
学内資金・基金等への採択状況
2013年度~2013年度, 産学官地域連携による水素社会実証研究, 代表, 高圧水素放出過程における熱流動特性の研究.
2012年度~2012年度, JSPS組織的な若手研究者等海外派遣プログラム, 代表, Study on Cooling Process of Water Flowing in a Micro Heat Exchanger.
2012年度~2012年度, 産学官地域連携による水素社会実証研究, 代表, 高圧水素放出過程の熱解析.

九大関連コンテンツ