Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Kin Tadahiro Last modified date:2019.06.25



Graduate School
Undergraduate School


Academic Degree
Ph.D.
Field of Specialization
Radiation Measurement, Particle Beam Engineering
Research
Research Interests
  • Radiation detector development (for cosmic-ray muon radiography,
    monitoring air dose rate, and so on).
    keyword : radiation detector, cosmic-ray muon, radiography, air dose rate
    2013.04.
  • A development of a method to produce radio isotopes for medicine, engineering and so on, using accelerator based neutron sources.
    keyword : medical radio isotope, accelerator based neutron source, RI production method, nuclear reaction
    2008.07.
  • Development of machine learning gamma-ray spectrometry for trace element analysis
    keyword : radiation measurement, trace element analysis, gamma-ray spectrometry
    2018.04.
  • Development of a radiation detector made by a 3D-printer.
    keyword : 3D-printer, scintillator, radiation detector
    2014.04~2020.03.
Academic Activities
Papers
1. Tadahiro Kin1, Md. Kawchar Ahmed Patwary, Masaki Kamida, Katsumi Aoki, Naoto Araki, Kosuke Yoshinami, Yukinobu Watanabe, Masatoshi Itoh, Development of Radioisotopes Production Method by Accelerator-Based Neutron: Activity at Kyushu University, JPS Conference Proceedings (Proceedings of the Second International Symposium on Radiation Detectors and Their Uses (ISRD2018)) 24, 011010 (2019), https://doi.org/10.7566/JPSCP.24.011031, 24, 011031, 6 pages, 2019.01, We have studied Radioisotopes (RIs) production by the accelerator-based neutron method with neutrons generated via the (d,n) reaction on C or Be in the incident energy range less than 50 MeV. The study has been conducted by the two approaches: proposal of new production routes or new RIs with the accelerator-based neutron method and systematic measurements of double-differential thick-target neutron yields (DDTTNYs). In the study, we have proposed effective production methods of 64Cu for a new PET RI and 92Y for application of radio immunotherapy. Moreover, the DDTTNYs have been systematically measured by the multiple-foil activation method, and a new unfolding code with artificial neural network was developed for the unfolding process. In the present paper, our research activity and results are reviewed comprehensively to show examples of 64Cu production and a TTNY measurement of C(d,n) reaction at 12-MeV deuteron..
2. Kullapha Chaiwongkhot1, Tadahiro Kin, Ryo Sasaki, Hikaru Sato, Yuta Nagata, Tomohiro Komori, Yukinobu Watanabe, A Feaibility Study of 3D Cosmic-Ray Muon Tomography with a Portable Muography Detector, JPS Conference Proceedings (Proceedings of the Second International Symposium on Radiation Detectors and Their Uses (ISRD2018)) 24, 011010 (2019), https://doi.org/10.7566/JPSCP.24.011010, 24, 011010, 6 pages, 2019.01, The Maximum Likelihood-Expectation Maximization (ML-EM) method was applied to 3D image reconstruction of cosmic-ray muon tomography. The feasibility was examined by using Monte Carlo simulation for a simple configuration where two lead blocks were placed at a different height from a muography detector. The 2D projection of the average thickness of the blocks as a function of the muon direction was simulated for multiple detection positions. The 3D image of the density profile was reconstructed by applying the ML-EM method to the simulated projections. It was found that the image reproduces reasonably well the position of the two blocks. The effect of the limited number of detection positions and the number of iteration in the ML-EM method on the image reconstruction was investigated in detail..
3. Tadahiro KIN, Takaya Kawagoe, Shouhei Araki, Yukinobu Watanabe, Production of high-purity medical radio isotope 64Cu with accelerator-based neutrons generated with 9 and 12 MeV deuterons, Journal of Nuclear Science and Technology, http://dx.doi.org/10.1080/00223131.2017.1344585, 54, 10, 1123-1130, 2017.07, We conducted a feasibility study for producing a high-purity medical radioisotope 64Cu from natural zinc with accelerator-based neutrons. 64Cu isotopes were produced via the 64Zn(n,p) reaction. The accelerator-based neutrons were generated via the C(d,n) reaction using low-energy deuterons of 9 and 12 MeV on a 1-mm-thick carbon target. First, the production purity was estimated using the evaluated nuclear data library JENDL-4.0 and our previously measured thick target neutron yield. We found that even when natural zinc was used as the starting material, significantly high-purity 64Cu could be obtained. Next, irradiation experiments for producing 64Cu using natural zinc were conducted at Kyushu University Tandem Laboratory, with the amounts of 64Cu isotopes and other gamma-emission nuclides measured by a high-purity germanium detector. As a result, high-purity 64Cu isotopes of 1.11(49) × 100 and 3.70 (17) × 100 Bq/g/uC were produced with incident deuteron energies of 9 and 12 MeV, respectively..
4. Tadahiro KIN, Kullapha Chaiwongkhot, Hiroaki Ohno, Kazuhiro Kondo, Yukinobu Watanabe, Measurement of Zenith and Azimuth Angular Differential Flux of Cosmic-ray Muons Using a Prototype Portable Muography Detector, JPS Conference Proceedings, http://dx.doi.org/10.7566/JPSCP.11.070006, 11, 070006, 6 pages, 2016.11, We have developed a prototype portable muography detector and applied it to measurement of zenith and azimuth angular differential fluxes of cosmic-ray muons on the ground. The detector system was operated stably and the obtained angular fluxes were consistent with the well-known ones. This result demonstrated that the prototype detector has basic performance for muography after careful realignment..
5. Takaya Kawagoe, Tadahiro KIN, Shouhei Araki, Yukinobu Watanabe, Measurement of neutron yield by multiple-foil activation unfolding method for medical radioisotopes production using accelerator neutrons, the 2014 Symposium on Nuclear Data, http://dx.doi.org/10.11484/jaea-conf-2015-003, JAEA-Conf 2015-003, 297-302, 2016.03, We measured the angle-differential TTNYs of the C(d,n) reaction at Ed = 12 MeV using multiple-foil activation unfolding method. The spectral shape was in good agreement with previous experimental data..
6. Tadahiro KIN, Yukinobu Watanabe, Development of a Remote and Multipoint Air-dose Rate Monitoring System Using Webcams, 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, 3 pages, 2015.11, We propose a new webcam-based air-dose rate monitoring system, in which multiple webcams are driven remotely by a single PC..
7. Tadahiro KIN, Yasuki Nagai, Nobuyuki Iwamoto, Futoshi Minato, Osamu Iwamoto, Yuichi Hatsukawa, Mariko Segawa, Hideo Harada, Chikara Konno, Kentaro Ochiai, Kosuke Takakura, New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons, Journal of the Physical Society of Japan, 82, 034201-8 pages, 2013.02, We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from natC(d,n) with 40MeV 5mA deuterons. We used the present result together with the evaluated cross section of the (n,x) reaction on Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 hours of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu should be noted to be produced by using fast neutrons..
8. T. KIN, K. Furutaka, S. Goko, H. Harada, J. Hori, M. Igashira, T. Kamiyama, T. Katabuchi, A. Kimura, K. Kino, F. Kitatani, Y. Kiyanagi, M. Koizumi, M. Mizumoto, S. Nakamura, M. Ohta, M. Oshima, and Y. Toh, THE “4π GERMANIUM SPECTROMETER” FOR MEASUREMENTS OF NEUTRON CAPTURE CROSS SECTIONS BY THE TIME-OF-FLIGHT METHOD AT THE J-PARC/MLF/NNRI, Journal of the Korean Physical Society, 59, 1769, 2011.08.
9. Tadahiro Kin, Masumi Oshima, Kazuyoshi Furutaka, Mitsuo Koizumi, Yosuke Toh, Atsushi Kimura, Identification of Nuclear Levels of 34S for Determination of the Neutron Capture Cross Section, Capture Gamma-Ray Spectroscopy and Related Topics, AIP Conference Proceedings 1090, 575, 2009.01.
10. Tadahiro Kin, Ken-ichi Makino, Nobuo Noda, Kazuharu Koide and Masahiro Nakano, The Molecular Dynamics Calculation of Clathrate Hydrate Structure Stability for Innovative Organ Preservation Method, International Journal of Innovative Computing, Information and Control, 4, 2, 249, 2008.02.
11. Tadahiro Kin, Masumi Oshima, Kazuyoshi Furutaka, Mitsuo Koizumi, Yosuke Toh and Atsushi Kimura, Development of a Spectrometer for Multiple Prompt Gamma-Ray Measurement to Identify Nuclear Levels, FRONTIERS IN NUCLEAR STRUCTURE, ASTROPHYSICS, AND REACTIONS “FINUSTAR 2”, AIP CONFERENCE PROCEEDINGS 1012, 374, 2008.01.
12. Tadahiro KIN, Ken-ichi MAKINO, Kazuharu KOIDE, Tetsuya NEMOTO, Molecular Dynamics Simulation of Complex Phase Transition of Clathrate Hydrates in Living Body, 2006 International Conference on Innovative Computing, Information and Control, 556, 2007.01.
13. Tadahiro Kin, Fuminobu Saiho, Sin-ya Hohara, Katsuhiko Ikeda, Kiyohisa Ichikawa, Yusuke Yamashita, Minoru Imamura, Genichiro Wakabayashi, Nobuo Ikeda, Yusuke Uozumi, Masaru Matoba, Norihiko Koori, Proton Production Cross Sections for Reactions Induced by 300 and 392 MeV Protons, International Conference on Nuclear Data for Science & Technology ND2004, 769, Part One, 207-210, 2005.08.
14. Tadahiro Kin, Fuminobu Saiho, Shinya Hohara, Katsuhiko Ikeda, Kiyohisa Ichikawa, Yusuke Yamashita, Minoru Imamura, Genichiro Wakabayashi, Nobuo Ikeda, Yusuke Uozumi, Masaru Matoba, Masahiro Nakano, Norihiko Koori, Proton production cross sections for reactions by 300- and 392-MeV protons on carbon, aluminum and niobium., Physical Review C, 10.1103/PhysRevC.72.014606, 72, 1, 014606, 2005.07.
Presentations
1. Tadahiro Kin, Md. Kawchar Ahmed Patwary, Masaki Kamida, Katsumi Aoki, Naoto Araki, Kosuke Yoshinami, Yukinobu Watanabe, Masatoshi Itoh, Development of Radioisotopes Production Method by Accelerator-based Neutron: Activity at Kyushu University, ISRD2018 : International Symposium on Radiation Detectors and Their Uses, 2018.01, Recently, applications of accelerator-based neutron source have been widely expanding in various fields. Among all, we have focused on radioisotopes (RIs) production. The deuteron induced reactions on a thick target made of carbon or beryllium have large advantages to generate high intense neutron [1]. Moreover, since the neutron spectra induced by deuteron have a peak around a half of incident energy, the spectra can be adjusted to reduce amount of by-products, as reported in [2]. For the RI production, deuteron incident energy from 10 to 50 MeV is useful to suppress by-products, because above 50 MeV, too many uncontrollable reactions occur. To estimate quantity and quality of the RI product and to design radiation shielding, double differential thick target neutron yields (DDTTNYs) are required on carbon or beryllium targets for the energy region. However, there is no systematic experimental data available, so far. To overcome the situation, we have systematically measuring DDTTNYs at CYRIC, Tohoku University by means of the multiple-foil activation method. The measurements of the C(d,n) reaction at incident deuteron energies of 12, 16, 20, and 25 MeV and Be(d,n) reaction at those of 16 and 25 MeV were conducted. The DDTTNYs were determined by using unfolding technique from activity of irradiated multiple foils. The analysis method has been also developed by comparison of various conventional unfolding codes as well as an original artificial neural network unfolding code. In addition, production experiment and practical tests were performed for some of feasible RIs such as Cu-64 (a new PET nuclide), Mo-99 (mother of conventional SPECT nuclide Tc-99m), and Cs-132 (a new environmental tracer). We will show details of the analysis method to determine DDTTNYs for the C(d,n) reaction at incident deuteron energies of 12 and 20 MeV. Furthermore as an example of feasibility study, development of chemical process to recover highly enriched Mo-100 target in the Mo-99 production will be given in the presentation.
References
[1] Y. Nagai, et al., J. Phys. Soc. Jpn., 82 (2013) 1.
[2] T. Kin, et al., J. Nucl. Sci. Technol., 54 (2017) 1123..
2. T. Kin, Y. Sanzen, M. Kamida, K. Aoki, N. Araki, Y. Watanabe, Artificial Neural Network for Unfolding Accelerator-based Neutron Spectrum by Means of Multiple Foil Activation Method, 2017 IEEE Nuclear Science Symposium & Medical Imaging Conference, 2017.10, Recently, applications of accelerator-based neutron are widely spread to many fields. Among all, we have focused on the medical RIs production. In the study, accelerator-based neutrons are generated by 10- to 40-MeV deuteron induced reactions on thick target made of C or Be. For design of irradiation system and estimation of production rate and purity, double differential thick target neutron yields (DDTTNY) are required. There are, however, not sufficient available data. Therefore, in the medical RI production study, the DDTTNY is necessary to be measured. We adopted the multiple foil activation method for the measurement. It is appropriate for the medical RI production study, because the direct activation power of the neutron source can be obtained. The DDTTNY should be derived by an unfolding technique from measured yields of atoms produced via the activation reactions. Performances of conventional unfolding codes are strongly dependent on the initial guess spectrum and a human-inducible parameter of convergence condition. We have developed an unfolding code using artificial neural network (ANN) which requires no initial guess spectrum and no human-inducible convergence condition. Once the ANN is trained, neutron spectrum can be derived from inputting yields of atoms produced via the activation reactions only. To demonstrate the ability to derive the DDTTNY by the ANN unfolding code, we input yields of produced atoms obtained by a multiple foil activation experiment conducted at Kyushu University Tandem Laboratory. The resultant DDTTNY is compared with that by GRAVEL code, which is one of the conventional codes. Since there is no large discrepancy, we found that the ANN unfolding code has same ability to GRAVEL code even without the initial guess spectrum..
3. Tadahiro Kin, Muography Project at Kyushu University, MUOGRAPHERS 17 General Assembly, 2017.10.
4. Tadahiro Kin, Muography at Kyushu University, MUOGRAPHERS 16 General Assembly, 2016.11.
5. Kin Tadahiro, Yukimasa Sanzen, Masaki Kamida, Yukinobu Watanabe, Masatoshi Itoh, Production of 92Y via the 92Zr(n,p) reaction using the C(d,n) accelerator neutron source, International Conference on Nuclear Data for Science and Technology 2016, 2016.09, Medical radioisotopes are widely applied not only for diagnostic but also therapeutic purposes.
In particular, radioimmunotherapy (RIT) plays an important role in cancer therapy in recent years.
Yttrium-90-ibritumomab tiuxetan is the first RIT agent approved by the U.S. Food and Drug Administration (FDA).
After that it has been approved in more than 40 countries.
Until Nov. 2011, assessment of biodistribution by using 111In-ibritumomab tiuxetan before administration of 90Y-ibritumomab tiuxetan (called “bioscan”) was required in United States, Japan and Switzerland. The FDA removed the bioscan at Nov. 2011 and the first reason was “analysis of data in 253 patients showed that the In-111 imaging dose and bioscan was not a reliable predictor of altered Y-90 ZEVALIN (the trade name of ibritumomab tiuxetan) bio-distribution”.
If ibritumomab tiuxetan is labeled with an Yttrium isotope, it has to be a reliable predictor.
Since gamma-ray imaging is used for the bioscan, gamma-ray emitter has to be used as the labelling nuclide.
There are a few Yttrium isotopes which emit gamma ray. Among all we focus on 92Y, because it has relatively-long half-life (3.5 h) and decays to a stable isotope (92Zr).
We propose a new method to produce 92Y using accelerator neutrons. Yttrium-92 is produced via the (n,p) reaction on 92Zr.
A feasibility experiment was performed at Cyclotron and Radioisotope Center in Tohoku University. A carbon thick target was irradiated by 20 MeV deuterons to produce accelerator neutrons.
The thick target neutron yield (TTNY) was measured by using the multiple foils activation method. The foils were made of Al, Fe, Co, Ni, Zn, Zr, Nb, and Au. The amount of 92Y production and induced impurities were estimated by simulation with the measured TTNY.
The details of the data analysis and the results are shown in the presentation..
6. Tadahiro KIN, Kullapha Chaiwongkhot, 大野 裕明, 近藤 和博, 渡辺 幸信, Measurement of Zenith and Azimuth Angular Differential Flux of Cosmic-ray Muons Using a Prototype Portable Muography Detector, International Symposium on Radiation Detectors and Their Uses, 2016.01, We have developed a prototype portable muography detector and applied it to measurement of zenith and azimuth angular differential fluxes of cosmic-ray muons on the ground..
7. Tadahiro KIN, 渡辺 幸信, Development of a Remote and Multipoint Air-dose Rate Monitoring System Using Webcams, 2015 IEEE Nuclear Science Symposium & Medical Imaging Conference, 2015.11, We propose a new webcam-based air-dose rate monitoring system, in which multiple webcams are driven remotely by a single PC..
8. Tadahiro KIN, 渡辺 幸信, Accelerator-based Neutron Source for Medical RI Production, the AFAD 6th Asian Forum for Accelerators and Detectors, 2015.01, Accelerator-based neutron sources have been used for various studies: fundamental physics, engineering application, medical application, and so on. Recently, the applications have been spread to medical RI production. In 2013, a new method for Generation of Radioisotopes (RI) with Accelerator Neutrons by Deuterons (GRAND) has been proposed.
In the method for GRAND, two types of neutron sources with deuteron-induced reactions have been considered: one is the DT reaction and the other is the C(d,n) or the Be(d,n) reaction. We focused on the latter reaction. For the reaction, deuterons are accelerated up to a few ~ 40 MeV and bombard on a neutron converter made of thick carbon or beryllium. Thick target neutron yields (TTNYs) of the reactions are very important to predict the amount of medical RIs, however, experimental data are not sufficient. We can simulate TTNYs with calculation codes e.g. PHITS, but the reproducibility is not satisfactory.
At the Kyushu University Tandem Accelerator, we have so far measured TTNYs of the X(d,n) reactions systematically (here, X= natC to 181Ta) not only to improve insufficient experimental data but also to modify/develop theoretical models. In addition, we have carried out some test experiments of medical RI production e.g. 58Co and 64Cu for positron emission tomography. At the end of FY2014, however, the accelerator will be shut down, and a new 8 MV Tandem accelerator is now in preparation to star up in FY 2015 at the Center for Accelerator and Beam Applied Science, Kyushu University. Now we have a plan to develop a dedicated beam line as a neutron source to proceed and expand our research work.
Our past relevant results and future plan will be reported in the forum.
.
9. 川越 敬也, Tadahiro KIN, 荒木 祥平, 渡辺 幸信, Measurement of neutron yield by foils activation unfolding method for medical radioisotopes production using accelerator neutrons, 2014 Symposium on Nuclear Data, 2014.11, Accelerator neutrons have been proposed to produce medical radioisotopes. The C(d,n) reaction is one of the candidates to produce neutrons. The data of thick target neutron yields (TTNYs) is needed for reliable prediction of the amount of production. We measured the angle-differential TTNYs of the C(d,n) reaction at Ed = 12 MeV using multiple-foil activation unfolding method. The spectral shape was in good agreement with previous experimental data. This demonstrates that the experimental method is applicable to prediction of the amount of medical radioisotopes produced with accelerator neutrons..
Membership in Academic Society
  • The Japan Society of Applied Physics
  • Atomic Energy Society of Japan
  • The Japanese Society of Nuclear Medicine