Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
Eiji Gotoh Last modified date:2019.05.22

Assistant Professor / Forest Sciences / Department of Agro-environmental Sciences / Faculty of Agriculture


Papers
1. Hanyong Zhang, Erika Okii, Eiji Gotoh, Susumu Shiraishi, High mitochondrial genome diversity and intricate population structure of Bursaphelenchus xylophilus in Kyushu, Japan, Journal of Nematology, 10.21307/jofnem-2018-034, 50, 3, 281-302, 2018.01, Mitogenomic diversity and genetic population structure of the pinewood nematode (PWN) Bursaphelenchus xylophilus inhabiting Kyushu, Japan were analyzed. A method for performing long PCR using single nematodes and sequencing nematode mitochondrial genomes individually is presented here. About 8 kb (∼55%) of the complete mitochondrial genome was successfully obtained from 285 individuals collected from 12 populations. The 158 single nucleotide polymorphisms detected corresponded to 30 haplotypes, clearly classified into two clades. Haplotype diversity was 0.83, evidencing a remarkable high diversity within Kyushu. The high genetic differentiation among the 12 populations (0.331) might be due to past invasion and expansion routes of PWN in northeastern and southeastern Kyushu. The distinct genetic composition of populations within the northwestern, central western, and southwestern Kyushu seems to be mostly related to the extinction of pine forests and long-range migration of PWN due to human activity. Overall, direct long PCR and sequencing of single nematode individuals are effective methods for investigating mitochondrial polymorphisms, and these are effective tools for PWN population genetics and other intraspecific studies..
2. Eiji Gotoh, Noriyuki Suetsugu, Wataru Yamori, Kazuhiro Ishishita, Ryota Kiyabu, Masako Fukuda, Takeshi Higa, Bungo Shirouchi, Masamitsu Wada, Chloroplast Accumulation Response Enhances Leaf Photosynthesis and Plant Biomass Production, Plant Physiology, 10.1104/pp.18.00484, 178, 3, 1358-1369, 2018.11, Under high light intensity, chloroplasts avoid absorbing excess light by moving to anticlinal cell walls (avoidance response), but under low light intensity, chloroplasts accumulate along periclinal cell walls (accumulation response). In most plant species, these responses are induced by blue light and are mediated by the blue light photoreceptor, phototropin, which also regulates phototropism, leaf flattening, and stomatal opening. These phototropin-mediated responses could enhance photosynthesis and biomass production. Here, using various Arabidopsis (Arabidopsis thaliana) mutants deficient in chloroplast movement, we demonstrated that the accumulation response enhances leaf photosynthesis and plant biomass production. Conspicuously, phototropin2 mutant plants specifically defective in the avoidance response but not in other phototropin-mediated responses displayed a constitutive accumulation response irrespective of light intensities, enhanced leaf photosynthesis, and increased plant biomass production. Therefore, our findings provide clear experimental evidence of the importance of the chloroplast accumulation response in leaf photosynthesis and biomass production..
3. Eiji Gotoh, Kohei Oiwamoto, Shin Ichiro Inoue, Ken Ichiro Shimazaki, Michio Doi, Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana, Journal of Experimental Botany, 10.1093/jxb/ery450, 70, 4, 1367-1374, 2019.02, Blue light (BL) is a fundamental cue for stomatal opening in both C 3 and C 4 plants. However, it is unknown whether crassulacean acid metabolism (CAM) plants open their stomata in response to BL. We investigated stomatal BL responses in the obligate CAM plants Kalanchoe pinnata and Kalanchoe daigremontiana that characteristically open their stomata at night and close them for part of the day, as contrasted with C 3 and C 4 plants. Stomata opened in response to weak BL superimposed on background red light in both intact leaves and detached epidermal peels of K. pinnata and K. daigremontiana. BL-dependent stomatal opening was completely inhibited by tautomycin and vanadate, which repress type 1 protein phosphatase and plasma membrane H + -ATPase, respectively. The plasma membrane H + -ATPase activator fusicoccin induced stomatal opening in the dark. Both BL and fusicoccin induced phosphorylation of the guard cell plasma membrane H + -ATPase in K. pinnata. These results indicate that BL-dependent stomatal opening occurs in the obligate CAM plants K. pinnata and K. daigremontiana independently of photosynthetic CO 2 assimilation mode..
4. Gotoh Eiji, Suetsugu Noriyuki, Higa Takeshi, Matsushita Tomonao, Tsukaya Hirokazu, Wada Masamitsu, Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis, SCIENTIFIC REPORTS, 10.1038/s41598-018-19896-9, 8, 2018.01, Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m−2 s−1), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis..
5. Tomokazu Ushijima, Kousuke Hanada, Eiji Gotoh, Wataru Yamori, Yutaka Kodama, Hiroyuki Tanaka, Miyako Kusano, Atsushi Fukushima, Mutsutomo Tokizawa, Yoshiharu Y. Yamamoto, Yasuomi Tada, Yutaka Suzuki, Tomonao Matsushita, Light Controls Protein Localization through Phytochrome-Mediated Alternative Promoter Selection, Cell, 10.1016/j.cell.2017.10.018, 171, 6, 1316-1325.e12, 2017.11, Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome..
6. Shin-ichiro Inoue, Nozomi Iwashita, Yohei Takahashi, Eiji Gotoh, Eiji Okuma, Maki Hayashi, Ryohei Tabata, Atsushi Takemiya, Yoshiyuki Murata, Michio Doi, Toshinori Kinoshita, 島崎 研一郎, Brassinosteroid Involvement in Arabidopsis thaliana Stomatal Opening, PLANT AND CELL PHYSIOLOGY, 10.1093/pcp/pcx049, 58, 6, 1048-1058, 2017.06.
7. Morihiro Oota, Eiji Gotoh, Masaharu Endo, Takashi Ishida, Tomonao Matsushita, Shinichiro Sawa, Negative phototaxis in M. incognita, International Journal of Biology, 9, 3, 2017.05.
8. Noriyuki Suetsugu*, Takeshi Higa*, Eiji Gotoh*, Masamitsu, Light-Induced Movements of Chloroplasts and Nuclei Are Regulated in Both Cp-Actin-Filament-Dependent and -Independent Manners in Arabidopsis thaliana, PLOS ONE, 10.1371/journal.pone.0157429, 11, 6, *These authors contributed equally., 2016.06.
9. Ishishita Kazuhiro, Noriyuki Suetsugu, Yuki Hirose, Tomonao Matsushita, Takeshi Higa, Masamitsu Wada, Michio Doi, Eiji Gotoh, Functional characterization of blue-light-induced responses and PHOTOTROPIN 1 gene in Welwitschia mirabilis, JOURNAL OF PLANT RESEARCH, 10.1007/s10265-016-0790-7, 129, 2, 175-187, 2016.03.
10. D. V. Thao, A. Y P B C Widyatmoko, L. Guan, Eiji Gotoh, Atsushi Watanabe, S. Shiraishi, Isolation and characterization of tetranucleotide microsatellite markers for Pinus merkusii, Conservation Genetics Resources, 10.1007/s12686-012-9821-4, 5, 2, 433-436, 2013.05.
11. Vivi Yuskianti, Lanhua Guan, Eiji Gotoh, Anthonius Y.P.B.C. Widyatmoko, Susumu Shiraishi, Development of tetranucleotide microsatellite markers in Falcataria moluccana, Nihon Ringakkai Shi/Journal of the Japanese Forestry Society, 94, 2, 92-94, 2012.06.
12. Eiji Gotoh, Yoshichika Kobayashi, Michito Tsuyama, The post-illumination chlorophyll fluorescence transient indicates the RuBP regeneration limitation of photosynthesis in low light in Arabidopsis, FEBS Letters, 10.1016/j.febslet.2010.05.039, 584, 14, 3061-3064, 2010.07, The mechanism of post-illumination chlorophyll fluorescence transient (PIFT) was investigated in Arabidopsis. PIFT was detected in the wild type after illumination with low light. In the fba3-2 (fructose-1,6-bisphosphate aldolase) mutant, in which PIFT is enhanced, strong light also induced PIFT. PIFT was suppressed not only in the triose phosphate/phosphate translocator (tpt-2) mutant, but also in tpt-2 fba3-2, suggesting that triose phosphates, such as dihydroxyacetone phosphate (DHAP), are involved in the PIFT mechanism. We concluded that PIFT is associated with ribulose-1,5-bisphosphate (RuBP)-regeneration limitation of photosynthesis in low light..
13. Eiji Gotoh, Masayoshi Matsumoto, Ken'ichi Ogawa, Yoshichika Kobayashi, Michito Tsuyama, A qualitative analysis of the regulation of cyclic electron flow around photosystem I from the post-illumination chlorophyll fluorescence transient in Arabidopsis
A new platform for the in vivo investigation of the chloroplast redox state, Photosynthesis Research, 10.1007/s11120-009-9525-0, 103, 2, 111-123, 2010.01, A transient in chlorophyll fluorescence after cessation of actinic light illumination, which has been ascribed to electron donation from stromal reductants to plastoquinone (PQ) by the NAD(P)H-dehydrogenase (NDH) complex, was investigated in Arabidopsis thaliana. The transient was absent in air in a mutant lacking the NDH complex (ndhM). However, in ndhM, the transient was detected in CO2-free air containing 2% O2. To investigate the reason, ndhM was crossed with a pgr5 mutant impaired in ferredoxin (Fd)-dependent electron donation from NADPH to PQ, which is known to be redundant for NDH-dependent PQ reduction in the cyclic electron flow around photosystem I (PSI). In ndhM pgr5, the transient was absent even in CO2-free air with 2% O2, demonstrating that the post-illumination transient can also be induced by the Fd- (or PGR5)-dependent PQ reduction. On the other hand, the transient increase in chlorophyll fluorescence was found to be enhanced in normal air in a mutant impaired in plastid fructose-1,6-bisphosphate aldolase (FBA) activity. The mutant, termed fba3-1, offers unique opportunities to examine the relative contribution of the two paths, i.e., the NDH- and Fd- (or PGR5)-dependent paths, on the PSI cyclic electron flow. Crossing fba3-1 with either ndhM or pgr5 and assessing the transient suggested that the main route for the PSI cyclic electron flow shifts from the NDH-dependent path to the Fd-dependent path in response to sink limitation of linear electron flow..
14. Kensuke Kusumi, Yoko Chono, Hiroshi Shimada, Eiji Gotoh, Michito Tsuyama, Koh Iba, Chloroplast biogenesis during the early stage of leaf development in rice, Plant Biotechnology, 27, 1, 85-90, 2010, In rice, the developmental process in leaf formation can be divided into 7 stages (stages P0 to P6). We investigated chloroplast biogenesis and physiological changes in the developing leaves at the stage P4, during which leaf blade elongation and establishment of basic leaf blade structure occur. Chlorophyll content was negligible in the leaves early in the P4 stage and increased rapidly as they enters the late P4 phase. Chlorophyll fluorescence ratio (Fv/Fm) also increased markedly and the final value was comparable with that of mature leaves. Gene expression analysis showed that during the P4 stage, chloroplasts in the leaf cell undergo all three steps of differentiation: (i) plastid division and DNA replication (ii) establishment of plastid genetic system (iii) activation of photosynthetic apparatus. These observations suggest that the P4 is key in the development of a leaf, during which leaf rapidly differentiated both morphologically and physiologically, and that the P4 leaf is suitable for investigation of physiological relationships between chloroplast and leaf development..