Kyushu University Academic Staff Educational and Research Activities Database
List of Books
Nana Shirakigawa Last modified date:2024.04.23

Assistant Professor / Molecular and Biochemical Systems Engineering / Department of Chemical Engineering / Faculty of Engineering


Books
1. Hiroshi Mizumoto, Nana Shirakigawa, Hiroyuki Ijima, Current Status and New Challenges of the Artificial Liver, Wiley, DOI:10.1002/9781119296034, 2018.02, The development of a functional artificial liver has been desired to save patients’ lives with serious liver failure. For the past 60 years, the removal rate of toxins in blood by artificial systems was improved. As a result, the effectiveness of recovery has been significantly improved by the non-biological artificial liver. On the other hand, the bioartificial liver (BAL), which is expected to compensate for important functions of the liver, has been developed as a practical treatment system by ingenious improvement of the devices. Furthermore, tissue- and organ-engineered livers are hoped to be a new fundamental treatment for severe liver failure, independent of a donor. In the future, it is expected that high efficiency treatment will be developed by the combination of these systems..
2. Shirakigawa N., Ijima H., Decellularization of Liver and Organogenesis in Rats, Humana Press, 2017.08, Recently, organ construction has been attempted using decellularized organs. In this study, we used decellularized rat liver to construct liver tissue by recellularization. The right lobe of the rat liver was decellularized with 4% Triton X-100 solution, recellularized with 10^7 rat hepatocytes, and albumin synthesis in the recellularized right lobe was observed. Therefore, we introduce a method of decellularizing rat liver, which retains its fine vascular structure after removal of all the cells, perform organogenesis using the decellularized liver, and evaluate the structural and functional properties of the products..
3. Nana Shirakigawa, Hiroyuki Ijima, Decellularized tissue engineering, Springer Verlag, 10.1007/978-981-10-3328-5_5, 185-226, 2017.01, Tissue Engineering consists of cells, a scaffold and cytokines. Decellularization represents the removal of cells from tissues or organs. Recently, decellularized tissue has been investigated as a scaffold for tissue engineering, termed decellularized tissue engineering. Importantly, the decellularized organ retains its original structure, which is then used as a template for organ construction. The decellularized organ also retains the tissue-specific extracellular matrix. Therefore, decellularized tissue can be used as a matrix to provide a suitable microenvironment for inoculated cells. Based on these concepts, the reconstruction of tissues/organs with decellularized tissue/organ has been attempted using decellularized tissue engineering. In this chapter, we introduce the typical methods used, history and attainment level for the reconstruction of specific tissues/organs. First, the different decellularized techniques and characteristics are introduced. Then, the commonly used analysis methods and cautionary points during decellularization and reconstruction with decellularized tissues/organs are explained. Next, the specific methods and characteristics of decellularized tissue engineering for specific tissues/organs are introduced. In these sections, the current conditions, problems and future work are explained. Finally, we conclude with a summary of this chapter..