Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
hayashi katsuhiko Last modified date:2018.07.13





E-Mail
Phone
092-642-4844
Fax
092-642-4846
Academic Degree
PhD
Country of degree conferring institution (Overseas)
No
Field of Specialization
Developmental biology, Reproductive biology, Stem cell biology
Total Priod of education and research career in the foreign country
00years00months
Research
Research Interests
  • (1) Understanding of molecular mechanisms underlying primordial germ cell specification
    (2) Understanding of functional interaction between germ cells and gonadal somatic cells
    (3) Reconstitution of germ cell development in vitro
    keyword : Germ cells, Stem cells, Embryo
    2014.10~2014.10.
Academic Activities
Papers
1. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K., Reconstitution in vitro of the entire cycle of the mouse female germ line., Nature, doi: 10.1038/nature20104. , 2016.11, The female germ line undergoes a unique sequence of differentiation processes that confers totipotency to the egg. The reconstitution of these events in vitro using pluripotent stem cells is a key achievement in reproductive biology and regenerative medicine. Here we report successful reconstitution in vitro of the entire process of oogenesis from mouse pluripotent stem cells. Fully potent mature oocytes were generated in culture from embryonic stem cells and from induced pluripotent stem cells derived from both embryonic fibroblasts and adult tail tip fibroblasts. Moreover, pluripotent stem cell lines were re-derived from the eggs that were generated in vitro, thereby reconstituting the full female germline cycle in a dish. This culture system will provide a platform for elucidating the molecular mechanisms underlying totipotency and the production of oocytes of other mammalian species in culture..
2. Katsuhiko Hayashi, Sugako Ogushi, Kazuki Kurimoto, So Shimamoto, Hiroshi Ohta, Mitinori Saitou, Offspring from Oocytes Derived from in Vitro Primordial Germ Cell-like Cells in Mice, Science, 10.1126/science.1226889, 338, 6109, 971-975, 2012.10, Reconstitution of female germ cell development in vitro is a key challenge in reproductive biology and medicine. We show here that female (XX) embryonic stem cells and induced pluripotent stem cells in mice are induced into primordial germ cell-like cells (PGCLCs), which, when aggregated with female gonadal somatic cells as reconstituted ovaries, undergo X-reactivation, imprint erasure, and cyst formation, and exhibit meiotic potential. Upon transplantation under mouse ovarian bursa, PGCLCs in the reconstituted ovaries mature into germinal vesicle-stage oocytes, which then contribute to fertile offspring after in vitro maturation and fertilization. Our culture system serves as a robust foundation for the investigation of key properties of female germ cells, including the acquisition of totipotency, and for the reconstitution of whole female germ cell development in vitro..
3. Katsuhiko Hayashi, Hiroshi Ohta, Kazuki Kurimoto, Shinya Aramaki, Mitinori Saitou, Reconstitution of the Mouse Germ Cell Specification Pathway in Culture by Pluripotent Stem Cells, 10.1016/j.cell.2011.06.052, 146, 4 , 519-532 , 2011.08, The generation of properly functioning gametes in vitro requires reconstitution of the multistepped pathway of germ cell development. We demonstrate here the generation of primordial germ cell-like cells (PGCLCs) in mice with robust capacity for spermatogenesis. PGCLCs were generated from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) through epiblast-like cells (EpiLCs), a cellular state highly similar to pregastrulating epiblasts but distinct from epiblast stem cells (EpiSCs). Reflecting epiblast development, EpiLC induction from ESCs/iPSCs is a progressive process, and EpiLCs highly competent for the PGC fate are a transient entity. The global transcription profiles, epigenetic reprogramming, and cellular dynamics during PGCLC induction from EpiLCs meticulously capture those associated with PGC specification from the epiblasts. Furthermore, we identify Integrin-beta 3 and SSEA1 as markers that allow the isolation of PGCLCs with spermatogenic capacity from tumorigenic undifferentiated cells. Our findings provide a paradigm for the first step of in vitro gametogenesis..
4. Katsuhiko Hayashi, Susana Lopes, Fuchou Tang, Azim Surani, Dynamic Equilibrium and Heterogeneity of Mouse Pluripotent Stem Cells with Distinct Functional and Epigenetic States, 10.1016/j.stem.2008.07.027, 3, 4, 391-401, 2008.10, Embryonic stem cells (ESCs) are apparently homogeneous self-renewing cells, but we observed heterogeneous expression of Stella in ESCs, which is a marker of pluripotency and germ cells. Here we show that, whereas Stella-positive ESCs were like the inner cell mass (ICM), Stella-negative cells were like the epiblast cells. These states were interchangeable, which reflects the metastability and plasticity of ESCs. The established equilibrium was skewed reversibly in the absence of signals from feeder cells, which caused a marked shift toward an epiblast-like state, while trichostatin A, an inhibitor of histone deactelylase, restored Stella-positive population. The two populations also showed different histone modifications and striking functional differences, as judged by their potential for differentiation. The Stella-negative ESCs were more like the postimplantation epiblast-derived stem cells (EpiSCs), albeit the stella locus was repressed by DNA methylation in the latter, which signifies a robust epigenetic boundary between ESCs and EpiSCs..
5. Katsuhiko Hayashi, Kayo Yoshida, Yasuhisa Matsui, A histone H3 methyltransferase controls epigenetic events required for meiotic prophase, 10.1038/nature04112, 438 , 7066 , 374-378 , 2005.11, Epigenetic modifications of histones regulate gene expression and chromatin structure(1,2). Here we show that Meisetz (meiosis-induced factor containing a PR/SET domain and zinc-finger motif) is a histone methyltransferase that is important for the progression of early meiotic prophase. Meisetz transcripts are detected only in germ cells entering meiotic prophase in female fetal gonads and in postnatal testis. Notably, Meisetz has catalytic activity for trimethylation, but not mono- or dimethylation, of lysine 4 of histone H3, and a transactivation activity that depends on its methylation activity. Mice in which the Meisetz gene is disrupted show sterility in both sexes due to severe impairment of the double-stranded break repair pathway, deficient pairing of homologous chromosomes and impaired sex body formation. In Meisetz-deficient testis, trimethylation of lysine 4 of histone H3 is attenuated and meiotic gene transcription is altered. These findings indicate that meiosis-specific epigenetic events in mammals are crucial for proper meiotic progression..
Presentations
1. Katsuhiko Hayashi, Generation of eggs from mouse embryonic stem cells , Society of Reproduction and Fertility, 2014.09, Artificial gametes that are produced in culture from pluripotent stem cells would have a huge impact on not only infertility treatment but also understanding of molecular mechanism underlying germ cell development. Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are able to differentiate into all cell lineages of the embryo proper, including germ cells. We recently established a culture system that induces functional mouse primordial germ cells (PGCs) from ESCs/iPSCs. PGCs produced from ESCs/iPSCs are fully potent, since they differentiate into oocytes, which in turn give rise to healthy individuals. There are, however, many isues to be overcome for the robust generation of mature gametes or for application of the culture system to other species, including humans and livestock. In the meeting, I will discuss recent data and perspectives of germ cell production in vitro..
Membership in Academic Society
  • Japanese Society of Developmental Biologists
  • The Molecular Biology Society of Japan
  • The Society of Reproduction and Development