Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
Takeshi Yanagida Last modified date:2019.06.18



Graduate School


Academic Degree
PhD
Field of Specialization
Nano material science
Research
Research Interests
  • Nanomaterial Innovation
    keyword : Material Science
    2015.01~2015.10.
Academic Activities
Papers
1. IF>10の学術論文に掲載 , Unusual Oxygen Partial Pressure Dependence of Electrical Transport of Single-Crystalline Metal Oxide Nanowires Grown by the Vapor–Liquid–Solid Process, Nano Letters, org/10.1021/acs.nanolett.8b04668, 19, 3, 1675-1681, 2019.03, 単結晶金属酸化物ナノワイヤは金属や半導体など材料系には見られない多彩な機能物性を示す興味深いナノ材料群である。Vapor-Liquid-Solid法は高結晶性のナノワイヤ構造体を構築可能な方法論であるが、本手法を用いて作製された単結晶金属酸化物ナノワイヤは大きなバンドギャップを有する絶縁体であるにも関わらず、結晶欠陥に由来する「意図しないドーピング」により高い電気伝導性が報告されており、ナノ機能物性抽出・変調へ向けて長年の技術的課題となっていた。本研究では、Vapor-Liquid-Solid成長において金属酸化物ナノワイヤの構成元素である酸素の供給フラックス(酸素圧)を変調させた際に、電気伝導性において異常な酸素圧依存性が観測された。電気伝導性及び化学組成の空間分布評価により、本依存性が気固界面及び液固界面といった競合する2つの結晶成長界面における結晶の本質的な差異に起因することを明らかにした。更に、上記実験結果に基づいて構築した1次元結晶成長モデル(分子動力学シミュレーション)に基づいて界面選択的結晶成長を行うことにより、金属酸化物ナノワイヤの超高結晶化に成功した。.
2. Chen Wang, Takuro Hosomi, Kazuki Nagashima, Tsunaki Takahashi, Guozhu Zhang, Masaki Kanai, Hao Zeng, Wataru Mizukami, Nobutaka Shioya, Takafumi Shimoaka, Takehiro Tamaoka, Hideto Yoshida, Hideto Yoshida Hideto Yoshida, Seiji Takeda, TakaoYasui, Yoshinobu Baba, Yuriko Aoki, Jun Terao, Takeshi Hasegawa, Takeshi Yanagida, Rational Method of Monitoring Molecular Transformations on Metal-Oxide Nanowire Surfaces, Nano Letters, org/10.1021/acs.nanolett.8b05180, 19, 4, 2443-2449, 2019.03, 金属酸化物ナノワイヤは熱・化学的安定性に優れたナノ材料であり、次世代IoT向け分子認識センサの有望材料として注目を集めているが、希薄な揮発性分子と金属酸化物ナノワイヤ表面との相互作用を解析・評価することは困難であり、分子認識センサの機能設計における障壁となっていた。本研究では基板上に1方向に配向制御した単結晶酸化亜鉛ナノワイヤアレイを構築し、その規定された巨大ナノ結晶表面上で生じる分子の吸着・化学変化・脱離現象を各種高感度解析法(ガスクロマトグラフ質量分析・角度可変偏光赤外分光法)により評価することで、肺がんマーカー分子であるノナナールの二量化反応、及び酸化反応についてその反応経路と共に明らかにすることに成功した。更に熱処理による酸化亜鉛ナノワイヤの表面特性変調を行うことで各種反応を任意に制御できることが明らかとなった。本研究は、金属酸化物ナノワイヤによる分子認識センサの機能向上、設計に資する重要な知見であり、本論文で提案したアプローチにより、今後多種多様な揮発性分子群のセンサ表面上での振る舞いが解明されていくと期待される。.