Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
Hiroshi Sato Last modified date:2023.10.06

Assistant Professor / Division of Oral Health, Growth & Development / Department of Dental Science / Faculty of Dental Science


Papers
1. Yuta Chiba, Keigo Yoshizaki, Hiroshi Sato, Tomoko Ikeuchi, Craig Rhodes, Mitsuki Chiba, Kan Saito, Takashi Nakamura, Tsutomu Iwamoto, Aya Yamada, Yoshihiko Yamada, Satoshi Fukumoto, Deficiency of G protein-coupled receptor Gpr111/Adgrf2 causes enamel hypomineralization in mice by alteration of the expression of kallikrein-related peptidase 4 (Klk4) during pH cycling process., FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 10.1096/fj.202202053R, 37, 4, e22861, 2023.04.
2. Aya Yamada, Keigo Yoshizaki, Kan Saito, Masaki Ishikawa, Yuta Chiba, Seira Hoshikawa, Mitsuki Chiba, Ryoko Hino, Yuriko Maruya, Hiroshi Sato, Keiji Masuda, Haruyoshi Yamaza, Takashi Nakamura, Tsutomu Iwamoto, Satoshi Fukumoto , GSK3beta inhibitor-induced dental mesenchymal stem cells regulate ameloblast differentiation., Journal of oral biosciences, 10.1016/j.job.2022.10.002, 2022.10.
3. Xiao Sun, Shuangshan Dong, Hiroki Kato, Jun Kong, Yosuke Ito, Yuta Hirofuji, Hiroshi Sato, Takahiro A Kato, Yasunari Sakai, Shouichi Ohga, Satoshi Fukumoto, Keiji Masuda, Mitochondrial Calcium-Triggered Oxidative Stress and Developmental Defects in Dopaminergic Neurons Differentiated from Deciduous Teeth-Derived Dental Pulp Stem Cells with MFF Insufficiency., Antioxidants (Basel, Switzerland), 10.3390/antiox11071361, 11, 7, 2022.07, Mitochondrial fission factor (MFF) is an adapter that targets dynamin-related protein 1 from the cytosol to the mitochondria for fission. Loss-of-function MFF mutations cause encephalopathy due to defective mitochondrial and peroxisomal fission 2 (EMPF2). To elucidate the molecular mechanisms that were involved, we analyzed the functional effects of MFF depletion in deciduous teeth-derived dental pulp stem cells differentiating into dopaminergic neurons (DNs). When treated with MFF-targeting small interfering RNA, DNs showed impaired neurite outgrowth and reduced mitochondrial signals in neurites harboring elongated mitochondria. MFF silencing also caused mitochondrial Ca2+ accumulation through accelerated Ca2+ influx from the endoplasmic reticulum (ER) via the inositol 1,4,5-trisphosphate receptor. Mitochondrial Ca2+ overload led DNs to produce excessive reactive oxygen species (ROS), and downregulated peroxisome proliferator-activated receptor-gamma co-activator-1 alpha (PGC-1α). MFF was co-immunoprecipitated with voltage-dependent anion channel 1, an essential component of the ER-mitochondrial Ca2+ transport system. Folic acid supplementation normalized ROS levels, PGC-1α mediated mitochondrial biogenesis, and neurite outgrowth in MFF depleted DNs, without affecting their mitochondrial morphology or Ca2+ levels. We propose that MFF negatively regulates the mitochondrial Ca2+ influx from the ER. MFF-insufficiency recapitulated the EMPF2 neuropathology with increased oxidative stress and suppressed mitochondrial biogenesis. ROS and mitochondrial biogenesis might be potential therapeutic targets for EMPF2..
4. Xiao Sun, Hiroki Kato, Hiroshi Sato, Michiko Torio, Xu Han, Yu Zhang, Yuta Hirofuji, Takahiro A Kato, Yasunari Sakai, Shouichi Ohga, Satoshi Fukumoto, Keiji Masuda, Impaired neurite development and mitochondrial dysfunction associated with calcium accumulation in dopaminergic neurons differentiated from the dental pulp stem cells of a patient with metatropic dysplasia., Biochemistry and biophysics reports, 10.1016/j.bbrep.2021.100968, 26, 100968-100968, 2021.07, Transient receptor potential vanilloid member 4 (TRPV4) is a Ca2+ permeable nonselective cation channel, and mutations in the TRPV4 gene cause congenital skeletal dysplasias and peripheral neuropathies. Although TRPV4 is widely expressed in the brain, few studies have assessed the pathogenesis of TRPV4 mutations in the brain. We aimed to elucidate the pathological associations between a specific TRPV4 mutation and neurodevelopmental defects using dopaminergic neurons (DNs) differentiated from dental pulp stem cells (DPSCs). DPSCs were isolated from a patient with metatropic dysplasia and multiple neuropsychiatric symptoms caused by a gain-of-function TRPV4 mutation, c.1855C>T (p.L619F). The mutation was corrected by CRISPR/Cas9 to obtain isogenic control DPSCs. Mutant DPSCs differentiated into DNs without undergoing apoptosis; however, neurite development was significantly impaired in mutant vs. control DNs. Mutant DNs also showed accumulation of mitochondrial Ca2+ and reactive oxygen species, low adenosine triphosphate levels despite a high mitochondrial membrane potential, and lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial content. These results suggested that the persistent Ca2+ entry through the constitutively activated TRPV4 might perturb the adaptive coordination of multiple mitochondrial functions, including oxidative phosphorylation, redox control, and biogenesis, required for dopaminergic circuit development in the brain. Thus, certain mutations in TRPV4 that are associated with skeletal dysplasia might have pathogenic effects on brain development, and mitochondria might be a potential therapeutic target to alleviate the neuropsychiatric symptoms of TRPV4-related diseases..
5. Accelerated osteoblastic differentiation in patient-derived dental pulp stem cells carrying a gain-of-function mutation of TRPV4 associated with metatropic dysplasia.
6. Novel gain-of-function mutation of TRPV4 associated with accelerated chondrogenic differentiation of dental pulp stem cells derived from a patient with metatropic dysplasia
© 2019 Metatropic dysplasia is a congenital skeletal dysplasia characterized by severe platyspondyly, dumbbell-like deformity of long tubular bones, and progressive kyphoscoliosis with growth. It is caused by mutations in the gene TRPV4, encoding the transient receptor potential vanilloid 4, which acts as a calcium channel. Many heterozygous single base mutations of this gene have been associated with the disorder, showing autosomal dominant inheritance. Although abnormal endochondral ossification has been observed by histological examination of bone in a patient with lethal metatropic dysplasia, the etiology of the disorder remains largely unresolved. As dental pulp stem cells (DPSCs) are mesenchymal stem cells that differentiate into bone lineage cells, DPSCs derived from patients with congenital skeletal dysplasia might be useful as a disease-specific cellular model for etiological investigation. The purpose of this study was to clarify the pathological association between TRPV4 mutation and chondrocyte differentiation by analyzing DPSCs from a patient with non-lethal metatropic dysplasia. We identified a novel heterozygous single base mutation, c.1855C>T in TRPV4. This was predicted to be a missense mutation, p.L619F, in putative transmembrane segment 5. The mutation was repaired by CRISPR/Cas9 system to obtain isogenic control DPSCs for further analysis. The expression of stem cell markers and fibroblast-like morphology were comparable between patient-derived mutant and control DPSCs, although expression of TRPV4 was lower in mutant DPSCs than control DPSCs. Despite the lower TRPV4 expression in mutant DPSCs, the intracellular Ca2+ level was comparable at the basal level between mutant and control DPSCs, while its level was markedly higher following stimulation with 4α-phorbol 12,13-didecanoate (4αPDD), a specific agonist for TRPV4, in mutant DPSCs than in control DPSCs. In the presence of 4αPDD, we observed accelerated early chondrocyte differentiation and upregulated mRNA expression of SRY-box 9 (SOX9) in mutant DPSCs. Our findings suggested that the novel missense mutation c.1855C>T of TRPV4 was a gain-of-function mutation leading to enhanced intracellular Ca2+ level, which was associated with accelerated chondrocyte differentiation and SOX9 upregulation. Our results also suggest that patient-derived DPSCs can be a useful disease-specific cellular model for elucidating the pathological mechanism of metatropic dysplasia..
7. Protective effect of folic acid on vulnerability to oxidative stress in dental pulp stem cells of deciduous teeth from children with orofacial clefts
© 2019 Elsevier Inc. Orofacial clefts (OFCs) are among the most common congenital craniofacial malformations, including cleft lip with or without cleft palate as the core symptoms. Developmental or functional defects in neural crest cells (NCCs) that contribute to craniofacial morphogenesis are involved in OFC development. Previous studies have suggested that oxidative stress in NCCs is involved in the development of OFCs, suggesting that the anti-oxidative activity of folic acid (FA) could have protective effects. However, studies of human-derived NCCs are limited, as these cells are predominantly active during the embryonic stage. In this study, the effects of oxidative stress and FA were evaluated in human OFCs. In particular, NCC-derived stem cells from human exfoliated deciduous teeth (SHEDs) were obtained from 3 children with non-syndromic cleft lip with cleft palate (CLPs) and from 3 healthy children (CTRLs). Mitochondrial reactive oxygen species (ROS) levels were significantly higher in CLPs than in CTRLs and were associated with lower mRNA expression levels of superoxide dismutase 1 (SOD1) and decreased cell mobility. In addition, significantly greater vulnerability to pyocyanin-induced ROS, mimicking exogenous ROS, was observed in CLPs than in CTRLs. These vulnerabilities to endogenous and exogenous ROS in CLPs were significantly improved by FA. These results indicated that the transcriptional dysregulation of SOD1 in NCCs is an oxidative stress-related pathological factor in OFCs, providing novel evidence for the benefits of perinatal anti-oxidant supplementation, including FA, for the management of these common deformities..
8. Positive effect of exogenous brain-derived neurotrophic factor on impaired neurite development and mitochondrial function in dopaminergic neurons derived from dental pulp stem cells from children with attention deficit hyperactivity disorder
© 2019 Elsevier Inc. Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders and is characterized by impaired attention, hyperactivity, and impulsivity. While multiple etiologies are implicated in ADHD, its underlying mechanism(s) remain unclear. Although previous studies have suggested dysregulation of dopaminergic signals, mitochondria, and brain-derived neurotrophic factor (BDNF) in ADHD, few studies have reported these associations directly. Stem cells from human exfoliated deciduous teeth (SHED) can efficiently differentiate into dopaminergic neurons (DNs) and are thus a useful disease-specific cellular model for the study of neurodevelopmental disorders associated with DN dysfunction. This study aimed to elucidate the relationships between DNs, mitochondria, and BDNF in ADHD by analyzing DNs differentiated from SHED obtained from three boys with ADHD and comparing them to those from three typically developing boys. In the absence of exogenous BDNF in the cell culture media, DNs derived from boys with ADHD (ADHD-DNs) exhibited impaired neurite outgrowth and branching, decreased mitochondrial mass in neurites, and abnormal intracellular ATP levels. In addition, BDNF mRNA was significantly decreased in ADHD-DNs. Supplementation with BDNF, however, significantly improved neurite development and mitochondrial function in ADHD-DNs. These results suggest that ADHD-DNs may have impaired neurite development and mitochondrial function associated with insufficient production of BDNF, which may be improved by exogenous BDNF supplementation. Findings such as these, from patient-derived SHED, may contribute to the future development of treatment strategies for aberrant dopaminergic signaling, mitochondrial functioning, and BDNF levels implicated in ADHD pathogenesis..
9. Osteoblastic differentiation improved by bezafibrate-induced mitochondrial biogenesis in deciduous tooth-derived pulp stem cells from a child with Leigh syndrome..
10. Folic acid-mediated mitochondrial activation for protection against oxidative stress in human dental pulp stem cells derived from deciduous teeth..
11. Impaired neurite development associated with mitochondrial dysfunction in dopaminergic neurons differentiated from exfoliated deciduous tooth-derived pulp stem cells of children with autism spectrum disorder..
12. Altered development of dopaminergic neurons differentiated from stem cells from human exfoliated deciduous teeth of a patient with Down syndrome..
13. Saki Hirofuji, Yuta Hirofuji, Hiroki Kato, Keiji Masuda, Haruyoshi Yamaza, Hiroshi Sato, Fumiko Takayama, Michiko Torio, Yasunari Sakai, Shouichi Ohga, Tomoaki Taguchi, Kazuaki Nonaka, Mitochondrial dysfunction in dopaminergic neurons differentiated from exfoliated deciduous tooth-derived pulp stem cells of a child with Rett syndrome, Biochemical and Biophysical Research Communications, 10.1016/j.bbrc.2018.03.077, 498, 4, 898-904, 2018.04, Rett syndrome is an X-linked neurodevelopmental disorder associated with psychomotor impairments, autonomic dysfunctions and autism. Patients with Rett syndrome have loss-of-function mutations in MECP2, the gene encoding methyl-CpG-binding protein 2 (MeCP2). Abnormal biogenic amine signaling and mitochondrial function have been found in patients with Rett syndrome
however, few studies have analyzed the association between these factors. This study investigated the functional relationships between mitochondria and the neuronal differentiation of the MeCP2-deficient stem cells from the exfoliated deciduous teeth of a child with Rett syndrome. An enrolled subject in this study was a 5-year-old girl carrying a large deletion that included the methyl-CpG-binding domain, transcriptional repression domain, and nuclear localization signal of MECP2. Using the single-cell isolation technique, we found that the two populations of MeCP2-expressing and MeCP2-deficient stem cells kept their MECP2 expression profiles throughout the stages of cell proliferation and neuronal differentiation in vitro. Neurite outgrowth and branching were attenuated in MeCP2-deficient dopaminergic neurons. MeCP2-deficient cells showed reduced mitochondrial membrane potential, ATP production, restricted mitochondrial distribution in neurites, and lower expression of a central mitochondrial fission factor, dynamin-related protein 1 than MeCP2-expressing cells. These data indicated that MeCP2-deficiency dysregulates the expression of mitochondrial factors required for the maturation of dopaminergic neurons. This study also provides insight into the pathogenic mechanism underlying dysfunction of the intracerebral dopaminergic signaling pathway in Rett syndrome..
14. Yumiko I. Matsuishi, Hiroki Kato, Keiji Masuda, Haruyoshi Yamaza, Yuta Hirofuji, Hiroshi Sato, Hiroko Wada, Tamotsu Kiyoshima, Kazuaki Nonaka, Accelerated dentinogenesis by inhibiting the mitochondrial fission factor, dynamin related protein 1, Biochemical and Biophysical Research Communications, 10.1016/j.bbrc.2017.12.026, 495, 2, 1655-1660, 2018.01, Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth..
15. Hiroki Kato, Xu Han, Haruyoshi Yamaza, Keiji Masuda, Yuta Hirofuji, Hiroshi Sato, Thanh Thi Mai Pham, Tomoaki Taguchi, Kazuaki Nonaka, Direct effects of mitochondrial dysfunction on poor bone health in Leigh syndrome, BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 10.1016/j.bbrc.2017.09.045, 493, 1, 207-212, 2017.11, Mitochondrial diseases are the result of aberrant mitochondrial function caused by mutations in either nuclear or mitochondrial DNA. Poor bone health has recently been suggested as a symptom of mitochondrial diseases; however, a direct link between decreased mitochondrial function and poor bone health in mitochondrial disease has not been demonstrated. In this study, stem cells from human exfoliated deciduous teeth (SHED) were isolated from a child with Leigh syndrome (LS), a mitochondrial disease, and the effects of decreased mitochondrial function on poor bone health were analyzed. Compared with control SHED, LS SHED displayed decreased osteoblastic differentiation and calcium mineralization. The intracellular and mitochondrial calcium levels were lower in LS SHED than in control SHED. Furthermore, the mitochondrial activity of LS SHED was decreased compared with control SHED both with and without osteoblastic differentiation. Our results indicate that decreased osteoblast differentiation potential and osteoblast function contribute to poor bone health in mitochondrial diseases. (C) 2017 Elsevier Inc. All rights reserved..
16. Hiroshi Sato, Hiroki Kato, Haruyoshi Yamaza, Keiji Masuda, Huong Thi Nguyen Nguyen, Thanh Thi Mai Pham, Xu Han, Yuta Hirofuji, and Kazuaki Nonaka, Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells, BIOMED RESEARCH INTERNATIONAL, 10.1155/2017/6037159, 2017.03.
17. Hiroki Kato, Thanh Thi Mai Pham, Haruyoshi Yamaza, Keiji Masuda, Yuta Hirofuji, Xu Han, Hiroshi Sato, Tomoaki Taguchi, Kazuaki Nonaka, Mitochondria regulate the differentiation of stem cells from human exfoliated deciduous teeth, Cell structure and function, 10.1247/csf.17012, 42, 2, 105-116, 2017.01, Stem cells from human exfoliated deciduous teeth (SHED) are isolated from the dental pulp tissue of primary teeth and can differentiate into neuronal cells. Although SHED are a desirable type of stem cells for transplantation therapy and for the study of neurological diseases, a large part of the neuronal differentiation machinery of SHED remains unclear. Recent studies have suggested that mitochondrial activity is involved in the differentiation of stem cells. In the present work, we investigated the neuronal differentiation machinery of SHED by focusing on mitochondrial activity. During neuronal differentiation of SHED, we observed increased mitochondrial membrane potential, increased mitochondrial DNA, and elongated mitochondria. Furthermore, to examine the demand for mitochondrial activity in neuronal differentiation, we then differentiated SHED into neuronal cells in the presence of rotenone, an inhibitor of mitochondrial respiratory chain complex I, and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a mitochondrial uncoupler, and found that neuronal differentiation was inhibited by treatment with rotenone and CCCP. These results indicated that increased mitochondrial activity was crucial for the neuronal differentiation of SHED..
18. Yoshiko Misonou, Maiko Kikuchi, Hiroshi Sato, Tomomi Inai, Tsuneyoshi Kuroiwa, Kenji Tanaka, Isamu Miyakawa, Aldehyde dehydrogenase, Ald4p, is a major component of mitochondrial fluorescent inclusion bodies in the yeast Saccharomyces cerevisiae, BIOLOGY OPEN, 10.1242/bio.20147138, 3, 5, 387-396, 2014.05, When Saccharomyces cerevisiae strain 3626 was cultured to the stationary phase in a medium that contained glucose, needle-like structures that emitted autofluorescence were observed in almost all cells by fluorescence microscopy under UV excitation. The needle-like structures completely overlapped with the profile of straight elongated mitochondria. Therefore, these structures were designated as mitochondrial fluorescent inclusion bodies (MFIBs). The MFIB-enriched mitochondrial fractions were successfully isolated and 2D-gel electrophoresis revealed that a protein of 54 kDa was only highly concentrated in the fractions. Determination of the N-terminal amino acid sequence of the 54-kDa protein identified it as a mitochondrial aldehyde dehydrogenase, Ald4p. Immunofluorescence microscopy showed that anti-Ald4p antibody specifically stained MFIBs. Freeze-substitution electron microscopy demonstrated that cells that retained MFIBs had electron-dense filamentous structures with a diameter of 10 nm in straight elongated mitochondria. Immunoelectron microscopy showed that Ald4p was localized to the electron-dense filamentous structures in mitochondria. These results together showed that a major component of MFIBs is Ald4p. In addition, we demonstrate that MFIBs are common features that appear in mitochondria of many species of yeast..
19. Hiroshi Sato, Fumie Masuda, Yuko Takayama, Kohta Takahashi, Shigeaki Saitoh, Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes, CURRENT BIOLOGY, 10.1016/j.cub.2012.02.062, 22, 8, 658-667, 2012.04, Background: The kinetochore is a multiprotein complex that forms on a chromosomal locus designated as the centromere, which links the chromosome to the spindle during mitosis and meiosis. Most eukaryotes, with the exception of holocentric species, have a single distinct centromere per chromosome, and the presence of multiple centromeres on a single chromosome is predicted to cause breakage and/or loss of that chromosome. However, some stably maintained non-Robertsonian translocated chromosomes have been reported, suggesting that the excessive centromeres are inactivated by an as yet undetermined mechanism.
Results: We have developed systems to generate dicentric chromosomes containing two centromeres by fusing two chromosomes in fission yeast. Although the majority of cells harboring the artificial dicentric chromosome are arrested with elongated cell morphology in a manner dependent on the DNA structure checkpoint genes, a portion of the cells survive by converting the dicentric chromosome into a stable functional monocentric chromosome; either centromere was inactivated epigenetically or by DNA rearrangement. Mutations compromising kinetochore formation increased the frequency of epigenetic centromere inactivation. The inactivated centromere is occupied by heterochromatin and frequently reactivated in heterochromatin- or histone deacetylase-deficient mutants.
Conclusions: Chromosomes with multiple centromeres are stabilized by epigenetic centromere inactivation, which is initiated by kinetochore disassembly. Consequent hetero-chromatinization and histone deacetylation expanding from pericentric repeats to the central domain prevent reactivation of the inactivated centromere..
20. Isamu Miyakawa, Miwako Kanayama, Yuka Fujita, Hiroshi Sato, Morphology and protein composition of the mitochondrial nucleoids in yeast cells lacking Abf2p, a high mobility group protein, JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 56, 6, 455-464, 2010.12, To elucidate the role of Abf2p, a major mitochondria! DNA-binding protein in the yeast Saccharomyces cerevisiae, we examined the morphology of the mitochondrial nucleoids (mt-nucleoids) in an ABF2-deficient mutant (Delta abf2) in vivo and in vitro by 4',6-diamidino-2-phenylindole (DAPI) staining. The mt-nucleoids appeared as diffuse structures with irregular-size in Delta abf2 cells that were grown to log phase in YPG medium containing glycerol, in contrast to the strings-of-beads appearance of mt-nucleoids in wild-type cells. In addition, DAPI-fluorescence intensity of the mt-nucleoids transmitted to the bud was significantly lower in Delta abf2 cells than in wild-type cells at log phase. However, the lack of Abf2p did not affect the morphology or segregation of mitochondria. The protein composition of the mt-nucleoids isolated from Delta abf2 cells grown to stationary phase in YPG medium was very similar to that of the mt-nucleoids isolated from wild-type cells cultured under the same conditions, except for the lack of Abf2p. These results together suggested that in log-phase cells, the lack of Abf2p influences not only the morphology of mt-nucleoids but also their transmission into the bud. On the other hand, our result suggested that in stationary-phase cells, the lack of Abf2p does not significantly alter the protein composition of the mt-nucleoids..
21. Yuko Takayama, Hiroshi Sato, Shigeaki Saitoh, Yuki Ogiyama, Fumie Masuda, Kohta Takahashi, Biphasic incorporation of centromeric histone CENP-A in fission yeast, MOLECULAR BIOLOGY OF THE CELL, 10.1091/mbc.E07-05-0504, 19, 2, 682-690, 2008.02, CENP-A is a centromere-specific histone H3 variant that is essential for kinetochore formation. Here, we report that the fission yeast Schizosaccharomyces pombe has at least two distinct CENP-A deposition phases across the cell cycle: S and G2. The S phase deposition requires Ams2 GATA factor, which promotes histone gene activation. In Delta ams2, CENP-A fails to retain during S, but it reaccumulates onto centromeres via the G2 deposition pathway, which is down-regulated by Hip1, a homologue of HIRA histone chaperon. Reducing the length of G2 in Delta ams2 results in failure of CENP-A accumulation, leading to chromosome missegregation. N-terminal green fluorescent protein-tagging reduces the centromeric association of CENP-A, causing cell death in Delta ams2 but not in wild-type cells, suggesting that the N-terminal tail of CENP-A may play a pivotal role in the formation of centromeric nucleosomes at G2. These observations imply that CENP-A is normally localized to centromeres in S phase in an Ams2-dependent manner and that the G2 pathway may salvage CENP-A assembly to promote genome stability. The flexibility of CENP-A incorporation during the cell cycle may account for the plasticity of kinetochore formation when the authentic centromere is damaged..
22. H Sato, F Shibata, M Murata, Characterization of a Mis12 homologue in Arabidopsis thaliana, CHROMOSOME RESEARCH, 10.1007/s10577-005-1016-3, 13, 8, 827-834, 2005.12, The centromere/kinetochore represents an important complex on chromosomes that contains a large number of proteins and facilitates accurate chromosome segregation during cell division. Fission yeast Mis12 and its human homologue hMis12 have been identified as essential kinetochore components. Although homologues have been suggested to exist in plants, their function remains to be determined. In this study the full-length cDNA of the Mis12 homologue from Arabidopsis thaliana (AtMIS12) was successfully cloned by RACE-and RT-PCR and the DNA sequence determined. The 238 amino acid sequence deduced from the cDNA contains two conserved blocks and a coiled-coil motif, despite the poor overall similarity to fission yeast and human Mis12. The antibody raised against a partial peptide of AtMIS12 recognized a 27-kDa protein corresponding to the predicted molecular weight. Immunofluorescence labeling using the antibody revealed that AtMIS12 localizes at centromeric regions, like the centromeric histone H3 variant HTR12, throughout the cell cycle. These results indicate that AtMIS12 is a constitutive component of Arabidopsis kinetochores..
23. H Sato, Miyakawa, I, A 22 kDa protein specific for yeast mitochondrial nucleoids is an unidentified putative ribosomal protein encoded in open reading frame YGL068W, PROTOPLASMA, 10.1007/s00709-004-0040-z, 223, 2-4, 175-182, 2004.06, Mitochondrial-nucleoid (mt-nucleoid) proteins of the yeast Saccharomyces cerevisiae were separated by two-dimensional gel electrophoresis. Analysis of the N-terminal amino acid sequence showed that a 22 kDa protein which is unique in the nit-nucleoid fraction is an unidentified protein encoded in the open reading frame YGL068W and shows a homology with the ribosomal protein L7/L12 of bacteria. We named this protein Mnp1p (for the mitochondrial-nucleoid protein 1). Immunoblotting of each fraction with an anti-Mnp1p antibody during the mt-nucleoid isolation showed that Mnp1p is highly concentrated in the mt-nucleoid fraction. Immunofluorescence microscopy suggested that Mnp1p is localized to mitochondria in vivo, and a significant amount of Mnp1p is associated with the mt-nucleoids. On the other hand. Northern blotting showed that a large amount of large and small mitochondrial ribosomal RNAs was not associated with the mt-nucleoids and remained in the supernatant after the isolation of mt-nucleoids. The null mutation of MNP1 led to a respiratory-deficient phenotype, but the morphology of the mt-nucleoids in the transformants carrying the null mutation was normal. These results suggest that a significant amount of Mnp1p plays a role as a major component of the mt-nucleoids..
24. Y Ogura, F Shibata, H Sato, M Murata, Characterization of a CENP-C homolog in Arabidopsis thaliana, GENES & GENETIC SYSTEMS, 79, 3, 139-144, 2004.06, Centromere protein C (CENP-C) is a component of the kinetochore essential for correct segregation of sister chromatids in mammals. In Arabidopsis thaliana, a single-copy gene encoding a protein homologous to CENP-C has been found by homology in the whole-genome sequence. To investigate the CENP-C homolog (AtCENP-C), we cloned cDNAs by RT-PCR and determined its full-length coding sequence. Antibodies against the synthetic peptide for the C-terminal residues of AtCENP-C detected a polypeptide in Arabidopsis cell extracts on western blots. Immunofluorescence labeling with the antibodies and fluorescence in situ hybridization demonstrated clearly that AtCENP-C is present at the centromeric regions throughout the cell cycle..
25. Miyakawa, I, H Sato, Y Maruyama, T Nakaoka, Isolation of the mitochondrial nucleoids from yeast Kluyveromyces lactis and analyses of the nucleoid proteins, JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 49, 2, 85-93, 2003.04, Mitochondrial (mt) nucleoids were isolated from yeast Kluyveromyces lactis with morphological intactness. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) revealed more than 20 proteins that are associated with the mt-nucleoids. However, the protein profile of the mt-nucleoids of K. lactis was significantly different from that of the mt-nucleoid proteins from Saccharomyces cerevisiae. SDS-DNA PAGE, which detected an Abf2p, a major mitochondrial DNA-binding protein, among the mt-nucleoid proteins of S. cerevisiae on a gel, detected only a 17-kDa protein in the K. lactis mt-nucleoid proteins. The 17-kDa protein was purified as homogeneous from the mt-nucleoids by a combination of acid extraction, hyoroxyapatite chromatography and DNA-cellulose chromatography. The 17-kDa protein introduced a negative supercoil into circular plasmid DNA in the presence of topoisomerase 1, as does S. cerevisiae Abf2p, and it packed K. lactis mtDNA into nucleoid-like particles in vitro. These results, together with the determination of the N-terminal amino acid sequence, suggested that the 17-kDa protein is an Abf2p homologue of K. lactis and plays structural roles in compacting mtDNA in cooperation with other nucleoid proteins..
26. Miyakawa, I, Y Kitamura, TK Jyozaki, H Sato, T Umezaki, Simple detection of a yeast mitochondrial DMA-binding protein, Abf2p, on SDS-DNA gels, JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 46, 6, 311-316, 2000.12, Abf2p, a mitochondrial DNA-binding protein of yeast Saccharomyces cerevisiae, was selectively detected among mitochondrial nucleoid proteins by SDS-DNA polyacrylamide gel electrophoresis (SDS-DNA PAGE) followed by ethidium bromide staining. This method is simple and specific for the detection of Abf2p, and it may be used to identify an Abf2p-like protein that is present in mitochondrial nucleoids from other yeasts..