九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
今井 猛(いまい たけし) データ更新日:2023.11.22



主な研究テーマ
神経科学
キーワード:回路形成、嗅覚
2017.04~2017.04.
研究業績
主要原著論文
1. Aihara S, Fujimoto S, Sakaguchi R, Imai T., BMPR-2 gates activity-dependent stabilization of primary dendrites during mitral cell remodeling, Cell Reports, https://doi.org/10.1016/j.celrep.2021.109276, 12, 22, 109276, 2021.06, Developing neurons initially form excessive neurites and then remodel them based on molecular cues and neuronal activity. Developing mitral cells in the olfactory bulb initially extend multiple primary dendrites. They then stabilize single primary dendrites while eliminating others. However, the mechanisms underlying selective dendrite remodeling remain elusive. Using CRISPR-Cas9-based knockout screening combined with in utero electroporation, we identify BMPR-2 as a key regulator for selective dendrite stabilization. Bmpr2 knockout and its rescue experiments show that BMPR-2 inhibits LIMK without ligands and thereby permits dendrite destabilization. In contrast, the overexpression of antagonists and agonists indicates that ligand-bound BMPR-2 stabilizes dendrites, most likely by releasing LIMK. Using genetic and FRET imaging experiments, we demonstrate that free LIMK is activated by NMDARs via Rac1, facilitating dendrite stabilization through F-actin formation. Thus, the selective stabilization of primary dendrites is ensured by concomitant inputs of BMP ligands and neuronal activity..
2. Inagaki S, Iwata R, Iwamoto M, Imai T., Widespread inhibition, antagonism, and synergy in mouse olfactory sensory neurons in vivo, Cell Reports, https://doi.org/10.1016/j.celrep.2020.107814, 13, 107814, 107814, 2020.06, Sensory information is selectively or non-selectively enhanced and inhibited in the brain, but it remains unclear whether and how this occurs at the most peripheral level. Using in vivo calcium imaging of mouse olfactory bulb and olfactory epithelium in wild-type and mutant animals, we show that odors produce not only excitatory but also inhibitory responses in olfactory sensory neurons (OSNs). Heterologous assays indicate that odorants can act as agonists to some but inverse agonists to other odorant receptors. We also demonstrate that responses to odor mixtures are extensively suppressed or enhanced in OSNs. When high concentrations of odors are mixed, widespread antagonism suppresses the overall response amplitudes and density. In contrast, a mixture of low concentrations of odors often produces synergistic effects and boosts the faint odor inputs. Thus, odor responses are extensively tuned by inhibition, antagonism, and synergy at the most peripheral level, contributing to robust sensory representations..
3. Richi Sakaguchi, Marcus N. Leiwe, Takeshi Imai, Bright multicolor labeling of neuronal circuits with fluorescent proteins and chemical tags, ELIFE, 10.7554/eLife.40350, 7, 2018.11, The stochastic multicolor labeling method 'Brainbow' is a powerful strategy to label multiple neurons differentially with fluorescent proteins; however, the fluorescence levels provided by the original attempts to use this strategy were inadequate. In the present study, we developed a stochastic multicolor labeling method with enhanced expression levels that uses a tetracycline-operator system (Tetbow). We optimized Tetbow for either plasmid or virus vector-mediated multicolor labeling. When combined with tissue clearing, Tetbow was powerful enough to visualize the three-dimensional architecture of individual neurons. Using Tetbow, we were able to visualize the axonal projection patterns of individual mitral/tufted cells along several millimeters in the mouse olfactory system. We also developed a Tetbow system with chemical tags, in which genetically encoded chemical tags were labeled with synthetic fluorophores. This was useful in expanding the repertoire of the fluorescence labels and the applications of the Tetbow system. Together, these new tools facilitate light-microscopy-based neuronal tracing at both a large scale and a high resolution..
4. Ryo Iwata, Hiroshi Kiyonari, Takeshi Imai, Mechanosensory-Based Phase Coding of Odor Identity in the Olfactory Bulb, Neuron, 10.1016/j.neuron.2017.11.008, 96, 5, 1139-1152.e7, 2017.12, [URL], Mitral and tufted (M/T) cells in the olfactory bulb produce rich temporal patterns of activity in response to different odors. However, it remains unknown how these temporal patterns are generated and how they are utilized in olfaction. Here we show that temporal patterning effectively discriminates between the two sensory modalities detected by olfactory sensory neurons (OSNs): odor and airflow-driven mechanical signals. Sniff-induced mechanosensation generates glomerulus-specific oscillatory activity in M/T cells, whose phase was invariant across airflow speed. In contrast, odor stimulation caused phase shifts (phase coding). We also found that odor-evoked phase shifts are concentration invariant and stable across multiple sniff cycles, contrary to the labile nature of rate coding. The loss of oscillatory mechanosensation impaired the precision and stability of phase coding, demonstrating its role in olfaction. We propose that phase, not rate, coding is a robust encoding strategy of odor identity and is ensured by airflow-induced mechanosensation in OSNs. Iwata et al. demonstrate that phase coding, but not rate coding, in mitral cells is useful for concentration-invariant odor identity coding. They also found that mechanosensation in olfactory sensory neurons facilitates, rather than masks, the robust phase coding of odors..
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
学会活動
所属学会名
日本神経科学学会
日本発生生物学会
北米神経科学会
日本生理学会
Society for Neuroscience
日本神経科学学会
学協会役員等への就任
2019.05~2019.03, 日本生理学会, 評議員.
学会大会・会議・シンポジウム等における役割
2018.03.13~2018.03.14, 新学術領域「スクラップ&ビルドによる脳機能の動的制御」技術講習会 透明化イメージング講習会, 企画立案・運営等.
2019.12.02, Mini-symposium: Frontiers in Neuronal Development and Physiology, 企画立案・運営等.
2020.11.06~2020.11.07, 第71回西日本生理学会, 企画立案・運営等.
2017.11~2017.11, ISMNTOP2017, organizing commettee.
その他の研究活動
外国人研究者等の受入れ状況
2022.05~2023.05, 1ヶ月以上, India.
2018.10~2018.11, 1ヶ月以上, University of Iceland, Iceland, .
受賞
2007年 GE&Science Prize for Young Life Scientists, 2007.12.
文部科学大臣表彰若手科学者賞, 文部科学省, 2015.04.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2023年度~2024年度, 学術変革領域研究(A), 思春期に発達する皮質神経回路の解明.
2023年度~2025年度, 基盤研究(B), シナプス競合の分子機構の解明.
2021年度~2022年度, 新学術領域研究, 代表, 微細構造の3Dアトラスから迫る樹状突起のコンパートメント制御と精神疾患.
寄附金の受入状況
2019年度, 公益財団法人 持田記念医学薬学振興財団  シナプス入力の時空間的制御機構の解析 .

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。