Kyushu University Academic Staff Educational and Research Activities Database
Researcher information (To researchers) Need Help? How to update
HOOMAN FARZANEH Last modified date:2018.06.22

Graduate School
Other Organization

Energy and Environmental Systems Laboratory .
Energy and Environmental Systems|Academic Staff| .
Field of Specialization
Energy systems integration, Energy efficiency and management, Energy policy
Outline Activities
Our research group focuses on identifying strategies and policies that could facilitate solutions for the long term energy-related problems—including global energy supply and environmental challenges facing our society. We pursue this goal through developing analytical methods and using computational models in order to understand the role of science and technology in shaping better energy and environmental policies at all levels.
1) Multiple Benefits Assessment of the Low Emission Development Strategies in Asia Pacific Cities:
This research aims to develop and demonstrate a new strategic planning mechanism for achieving multiple benefits of Low Emission Development Strategies (LEDS) in Asia-Pacific cities, together with a robust analytical framework that can be used to assess those benefits during the development and implementation process. In this research:

- We plan to develop a modeling framework in order to quantify the effect of LEDS on four main areas of energy systems, environment, public health and local economy at the city level;
- We create an executive package of policies with an assessment of implementation challenges in each city and
- We develop a strategic plan of the urban multiple benefits of LEDS based on the comparative analysis among the selected cities as the main output of this research.
The six global cities which are evaluated in detail in this research consists of: Tokyo, Sydney, Shanghai, Kuala Lumpur, Seoul and Delhi. In this research the focus would be on 'Buildings', 'Waste' and 'Transport' as the key sectors as they can offer substantial urban climate mitigation potential through the implementation of LEDS in the selected cities.

2) Modeling of thermal behavior of the Organic Photovoltaic (OPV) greenhouse:
The utilization of photovoltaic technology and integrated systems have led to the development of solar greenhouses. The interest of the developers and designers is now to seek new approaches to combine the electricity and food production optimally. Organic Photovoltaics (OPV) are an emerging technology currently being developed for large scale manufacture and with the potential to be scaled to production speeds of megawatts per day. Yet low efficiency of the technologies may limit their deployment in certain regions due to the large land areas that would be required. Although organic photovoltaics have received huge interest in the academic literature, there has been limited analysis of the application of the technology.
In this research, a micro-simulation model created in TRNSYS software was employed for the simulation of thermal energy use in an innovative solar greenhouse with organic photovoltaic system. The model makes it possible to determine both the energy and the humidity balances in a greenhouse.

3) Toward a CO2 zero emission global energy system in the oil and gas producing countries:
Climate change and energy security are global challenges requiring concerted attention and action by all of the world’s countries. Under these conditions, energy supplier and exporter countries in the Middle East region are experiencing further challenges, such as increasing domestic energy demand while energy exports have to concurrently be kept at high levels. Middle East countries process the largest proven oil and gas reserves in the world and contribute a large fraction of the world's CO2 emissions from the use of these as fuels both domestically and internationally. This research addresses different policies that could dramatically change the future course of the Middle East region towards a zero CO2 emission energy system. To this aim, an integrated energy supply-demand model has been developed to analyze required commitments include renewable energy and energy efficiency targets and the potential of nuclear power, all of which should need to be considered in order to reduce CO2 emissions by 2100.

4) Techno-Economic Analysis of an innovative PV-Hydrogen-Biomass system for off-grid power supply:
Developing the Hybrid Renewable Energy Systems (HRES) offer alternative energy options that could be considered as one of the executive policies to support the low carbon energy system in cities. This research investigates the Techno-Economic Analysis (TEA) of an innovative HRES based on the integration of hydrogen generation from biomass gasification, solar power generation, hydrogen generation from water electrolysis, a hydrogen storage device and a Fuel Cell providing heat and power. The main unique concept of the proposed HRSE in this study is the combination of a Super Critical Water (SCW) biomass gasifier which uses water over its critical point as the gasifying agent with a fuel cell system. The SCW biomass gasifier is still in an early development stage and has an ability to use very wet biomass sources with a high gasification efficiency. The electric power and heat generated by this combination would not be affected by the weather, and could therefore be used in combination with photovoltaic modules, to form a composite energy system capable of all-weather operation. The originality of this study lies in the simultaneous optimization of the power and heat management strategy through the detailed modelling of the components of the proposed HRES in order to manage the time mismatch between energy production and load requirements.
Research Interests
  • Energy systems modelling - Integration of multi-vector energy systems across operation and investment, local district and national level infrastructures
    - Multiple impact assessment of Low Emission Development Strategies in urban areas
    - Techno-Economic Analysis of renewable energy, cleaner fossil energy system, carbon capture technology, Smart grid and Demand Response Technology
    - Energy planning under uncertainties – design of sustainable energy systems under multi-dimensional uncertainties.
    - Integration of renewable energy sources – role and value of emerging technologies and systems in supporting the integration of variable renewable generation and distributed energy resources, system integration costs.
    keyword : Sustainable Development Goals (SDGs), Low Carbon Society (LCS), Low Emission Development Strategies (LEDS), Clean energy technologies, Techno-Economic-Analysis, Mathematical programming
Academic Activities
1. Hooman Farzaneh, Devising a clean energy strategy for Asian cities, 978-981-13-0781-2, Springer, 2018.08.
1. Miguel Esteban, Joana Portugal-Pereira , Benjamin C. Mclellan , Jeremy Bricker , Hooman Farzaneh, Nigora Djalilova , Keiichi N. Ishihara , Hiroshi Takagi , Volker Roeber, 100% renewable energy system in Japan: Smoothening and ancillary services, Applied Energy, 224 (2018) 698-707, 2018.06.
2. Hooman Farzaneh, Multiple benefits assessment of the clean energy development in Asian Cities, Energy Procedia, 136 (2017 ) 8 – 13, 2017.06.
3. Hideaki Ohgaki, Hooman Farzaneh, Nasrudin Abd Rahim, HangSengChe, Mohd Amran Mohd Radzi, Wallace ShungHui Wong, Lai Chean Hung, Study on Quality of Life Change for Rural Community through Rural Electrification by Renewable Energy: Preliminary Result, ASEAN JOURNAL OF MANAGEMENT & INNOVATION, 10.14456/ajmi.2017.16, 4, 2, 1-8, 2017.06.
4. Hooman Farzaneh, Development of a Bottom-up Technology Assessment Model for Assessing the Low Carbon Energy Scenarios in the Urban System, Energy Procedia, 107, 321 – 326, 2017.06.
5. Hooman Farzaneh, Christopher N.H. Doll and Jose Antonio Puppim de Oliveira, An integrated supply-demand model for the optimization of energy flow in the urban energy system, Journal of Cleaner Production, 14 (2016); 269 – 285, 2016.06.
6. Hooman Farzaneh, Majid Fahimi, Yadollah Saboohi, Optimal power generation from low concentration coal bed methane in Iran, Journal of Energy sources, Part A: Recovery, Utilization and Environmental Effects, 38 (2016), 4; 590–596, 2016.06.
7. Hooman Farzaneh, Benjamin McLellan and Keiichi N. Ishihara, Toward a CO2 zero emissions energy system in the Middle East Region, International Journal of Green Energy, 13 (2016),7; 682–694, 2016.06.
8. Jose A. Puppim de Oliveira, Christopher N. H. Doll1, José Siri , Magali Dreyfus , Hooman Farzaneh, Anthony Capon, Urban governance and the systems approaches to health-environment co-benefits in cities, Cad. Saúde Pública, 31 (2015); 25-38, 2015.06.
9. Mehrangiz Ghazi, Majid Amidpour, Madjid Abbaspour, Hooman Farzaneh, Developing of constructal theory concept to the total site cogeneration heat and power retrofit, International Journal of Exergy, 17 (2015) , 2; 171-191, 2015.06.
10. Benjamin C. McLellan, Qi Zhang, N. Agya Utama, Hooman Farzaneh, Keiichi N. Ishihara, Analysis of Japan’s post-Fukushima energy strategy, Energy Strategy Reviews, 190-198, 2013.06.
11. Hooman Farzaneh, Keiichi N. Ishihara, Nuki Agya Utama, Benjamin Mclelan and Tetsuo Tezuka, An optimization supply model for crude oil and natural gas in the Middle East, Zero-carbon energy Kyoto 2012, Green energy and technology, 17-29, 2013.06.
12. Y.Saboohi and Hooman Farzaneh, Model for developing eco-driving strategy of a passenger vehicle, Applied Energy, 86 (2009), 10; 1925-1932, 2009.06.
13. Y.Saboohi and Hooman Farzaneh, Model for optimizing energy efficiency through controlling speed and gear ratio, Energy Efficiency Journal, 1 (2008); 37-45, 2008.06.
Educational Activities
Teaching Energy Analysis for graduate level