Updated on 2024/11/25

Information

 

写真a

 
OKUMOTO KANJI
 
Organization
Faculty of Science Department of Biology Assistant Professor
School of Sciences Department of Biology(Concurrent)
Graduate School of Systems Life Sciences Department of Systems Life Sciences(Concurrent)
Title
Assistant Professor
Contact information
メールアドレス
Tel
0926426341
Profile
Research: The system regulating homeostasis of peroxisomes, including the biogenesis, morphology, and metabolic functions. Peroxisome biogenesis and its dysfunction in human disorders. Educatuion: Two experimental classes (fundamental biological experiments and applied cell biology); A class of molecular cell biology. Social activity: "ESSP ver.2", the high-level scientific program for high school students.
Homepage
External link

Degree

  • Studies on RING finger peroxins, Pex10p and Pex12p: cDNA cloning and functional analysis

Research Interests・Research Keywords

  • Research theme: Studies on peroxisome biogenesis and the homeostasis

    Keyword: Peroixsome, homeostasis, ubiquitin, phosphorylation

    Research period: 2003.2

Awards

  • 第17回井上研究奨励賞

    2000.12   井上科学振興財団  

Papers

  • Analysis of Peroxisome Biogenesis by Phos-Tag SDS-PAGE. Reviewed International journal

    Kanji Okumoto, Yukio Fujiki

    Methods in molecular biology (Clifton, N.J.)   2643   207 - 215   2023.3   ISSN:10643745

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Methods in Molecular Biology  

    Phos-tag, a selective phosphate-binding molecule, and Phos-tag-based methodologies have been developed to investigate the phosphoproteome. In various analytical techniques using Phos-tag derivatives, phosphate-affinity electrophoresis using Phos-tag acrylamide, called Phos-tag SDS-PAGE, enables separation of phosphorylated proteins with a slower migration from non-phosphorylated proteins in polyacrylamide gels. The procedures for Phos-tag SDS-PAGE are largely common to those for conventional SDS-PAGE, thus being readily available for all laboratories. Phos-tag SDS-PAGE is widely applied to quantitative analysis of the overall phosphorylation state depending on the number and/or sites of the phosphate group. Phos-tag SDS-PAGE has also been introduced to the field of peroxisome study, including oxidative stress-induced and mitosis-specific phosphorylation of Pex14, a central component of the translocation machinery complex for peroxisomal matrix proteins. Here, we describe a practical protocol for Phos-tag SDS-PAGE and its application to peroxisome biogenesis research.

    DOI: 10.1007/978-1-0716-3048-8_15

    Scopus

    PubMed

    researchmap

  • Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders Reviewed International journal

    Yukio Fujiki, Kanji Okumoto, Masanori Honsho, Yuichi Abe

    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research   1869 ( 11 )   119330 - 119330   2022.11   ISSN:0167-4889 eISSN:1879-2596

     More details

    Language:Others   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5–PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.

    DOI: 10.1016/j.bbamcr.2022.119330

    Web of Science

    Scopus

    PubMed

    researchmap

  • Regulation of Myt1 kinase activity via its N-terminal region in Xenopus meiosis and mitosis. Reviewed International journal

    Yukito Aiba, Jihoon Kim, Arata Imamura, Kanji Okumoto, Nobushige Nakajo

    Cells and Development   169   203754   2022.3   ISSN:2667-2901

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Cells and Development  

    Immature animal oocytes are naturally arrested at the first meiotic prophase (Pro-I), which corresponds to the G2 phase of the cell cycle. In Xenopus oocytes, Myt1 kinase phosphorylates and inactivates cyclin-dependent kinase 1 (Cdk1) at Pro-I, thereby preventing oocytes from entering meiosis I (MI) prematurely. Previous studies have shown that, upon resuming MI, Cdk1 and p90rsk, which is a downstream kinase of the Mos-MAPK pathway, in turn phosphorylate the C-terminal region of Myt1, to suppress its activity, thereby ensuring high Cdk1 activity during M phase. However, the roles of the N-terminal region of Myt1 during meiosis and mitosis remain to be elucidated. In the present study, we show that the N-terminal region of Myt1 participates in the regulation of Myt1 activity in the Xenopus cell cycle. In particular, we found that a short, conserved sequence in the N-terminal region, termed here as the PAYF motif, is required for the normal activity of Myt1 in oocytes. Furthermore, multiple phosphorylations by Cdk1 at the Myt1 N-terminal region were found to be involved in the negative regulation of Myt1. In particular, phosphorylations at Thr11 and Thr16 of Myt1, which are adjacent to the PAYF motif, were found to be important for the inactivation of Myt1 in the M phase of the cell cycle. These results suggest that in addition to the regulation of Myt1 activity via the C-terminal region, the N-terminal region of Myt1 also plays an important role in the regulation of Myt1 activity.

    DOI: 10.1016/j.cdev.2021.203754

    Web of Science

    Scopus

    PubMed

    researchmap

  • Peroxisome Biogenesis Disorders Reviewed

    Masanori Honsho, Kanji Okumoto, Shigehiko Tamura, Yukio Fujiki

    Advances in Experimental Medicine and Biology   45 - 54   2020.12

     More details

    Language:Others  

    DOI: 10.1007/978-3-030-60204-8_4

  • Peroxisome: Metabolic Functions and Biogenesis Reviewed

    Kanji Okumoto, Shigehiko Tamura, Masanori Honsho, Yukio Fujiki

    Advances in Experimental Medicine and Biology   3 - 17   2020.12

     More details

    Language:Others  

    DOI: 10.1007/978-3-030-60204-8_1

  • The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation Reviewed International journal

    Kanji Okumoto, Mahmoud El Shermely, Masanao Natsui, Hidetaka Kosako, Ryuichi Natsuyama, Toshihiro Marutani, Yukio Fujiki

    eLife   9   2020.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Most of peroxisomal matrix proteins including a hydrogen peroxide (H2O2)-decomposing enzyme, catalase, are imported in a peroxisome-targeting signal type-1 (PTS1)-dependent manner. However, little is known about regulation of the membrane-bound protein import machinery. Here, we report that Pex14, a central component of the protein translocation complex in peroxisomal membrane, is phosphorylated in response to oxidative stresses such as H2O2 in mammalian cells. The H2O2-induced phosphorylation of Pex14 at Ser232 suppresses peroxisomal import of catalase in vivo and selectively impairs in vitro the interaction of catalase with the Pex14-Pex5 complex. A phosphomimetic mutant Pex14-S232D elevates the level of cytosolic catalase, but not canonical PTS1-proteins, conferring higher cell resistance to H2O2. We thus suggest that the H2O2-induced phosphorylation of Pex14 spatiotemporally regulates peroxisomal import of catalase, functioning in counteracting action against oxidative stress by the increase of cytosolic catalase.

    DOI: 10.7554/elife.55896

  • Recent insights into peroxisome biogenesis and associated diseases Reviewed

    Yukio Fujiki, Yuichi Abe, Yuuta Imoto, Akemi J. Tanaka, Kanji Okumoto, Masanori Honsho, Shigehiko Tamura, Non Miyata, Toshihide Yamashita, Wendy K. Chung, Tsuneyoshi Kuroiwa

    Journal of Cell Science   133 ( 9 )   jcs236943   2020.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Peroxisomes are single-membrane organelles present in eukaryotes. The functional importance of peroxisomes in humans is represented by peroxisome-deficient peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. Defects in the genes that encode the 14 peroxins that are required for peroxisomal membrane assembly, matrix protein import and division have been identified in PBDs. A number of recent findings have advanced our understanding of the biology, physiology and consequences of functional defects in peroxisomes. In this Review, we discuss a cooperative cell defense mechanisms against oxidative stress that involves the localization of BAK (also known as BAK1) to peroxisomes, which alters peroxisomal membrane permeability, resulting in the export of catalase, a peroxisomal enzyme. Another important recent finding is the discovery of a nucleoside diphosphate kinase-like protein that has been shown to be essential for how the energy GTP is generated and provided for the fission of peroxisomes. With regard to PBDs, we newly identified a mild mutation, Pex26-F51L that causes only hearing loss. We will also discuss findings from a new PBD model mouse defective in Pex14, which manifested dysregulation of the BDNF-TrkB pathway, an essential signaling pathway in cerebellar morphogenesis. Here, we thus aim to provide a current view of peroxisome biogenesis and the molecular pathogenesis of PBDs.

    DOI: 10.1242/jcs.236943

  • Systematic Identification of Regulators of Oxidative Stress Reveals Non-canonical Roles for Peroxisomal Import and the Pentose Phosphate Pathway Reviewed

    Michael M. Dubreuil, David W. Morgens, Kanji Okumoto, Masanori Honsho, Kévin Contrepois, Brittany Lee-McMullen, Gavin Mc Allister Traber, Ria S. Sood, Scott J. Dixon, Michael P. Snyder, Yukio Fujiki, Michael C. Bassik

    Cell Reports   30 ( 5 )   1417 - 1433.e7   2020.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Reactive oxygen species (ROS) play critical roles in metabolism and disease, yet a comprehensive analysis of the cellular response to oxidative stress is lacking. To systematically identify regulators of oxidative stress, we conducted genome-wide Cas9/CRISPR and shRNA screens. This revealed a detailed picture of diverse pathways that control oxidative stress response, ranging from the TCA cycle and DNA repair machineries to iron transport, trafficking, and metabolism. Paradoxically, disrupting the pentose phosphate pathway (PPP) at the level of phosphogluconate dehydrogenase (PGD) protects cells against ROS. This dramatically alters metabolites in the PPP, consistent with rewiring of upper glycolysis to promote antioxidant production. In addition, disruption of peroxisomal import unexpectedly increases resistance to oxidative stress by altering the localization of catalase. Together, these studies provide insights into the roles of peroxisomal matrix import and the PPP in redox biology and represent a rich resource for understanding the cellular response to oxidative stress. Despite its importance in metabolism and disease, a comprehensive analysis of the cellular response to oxidative stress is lacking. Here, Dubreuil et al. use genome-wide screens to identify cellular regulators of oxidative stress. They investigate paradoxical mechanisms by which disruption of the pentose phosphate and peroxisomal import pathways protect cells.

    DOI: 10.1016/j.celrep.2020.01.013

  • A newly identified mutation in the PEX26 gene is associated with a milder form of Zellweger spectrum disorder Reviewed

    Akemi J. Tanaka, Kanji Okumoto, Shigehiko Tamura, Yuichi Abe, Yoel Hirsch, Liyong Deng, Joseph Ekstein, Wendy K. Chung, Yukio Fujiki

    Cold Spring Harbor Molecular Case Studies   5 ( 1 )   a003483 - a003483   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Using clinical exome sequencing (ES), we identified an autosomal recessive missense variant, c.153C>A (p.F51L), in the peroxisome biogenesis factor 26 gene (PEX26) in a 19-yr-old female of Ashkenazi Jewish descent who was referred for moderate to severe hearing loss. The proband and three affected siblings are all homozygous for the c.153C>A variant. Skin fibroblasts from this patient show normal morphology in immu-nostaining of matrix proteins, although the level of catalase was elevated. Import rate of matrix proteins was significantly decreased in the patient-derived fibroblasts. Binding of Pex26-F51L to the AAA ATPase peroxins, Pex1 and Pex6, is severely impaired and affects peroxisome assembly. Moreover, Pex26 in the patient’s fibroblasts is reduced to ∼30% of the control, suggesting that Pex26-F51L is unstable in cells. In the patient’s fibroblasts, peroxisome-targeting signal 1 (PTS1) proteins, PTS2 protein 3-ketoacyl-CoA thiolase, and catalase are present in a punctate staining pattern at 37°C and in a diffuse pattern at 42°C, suggesting that these matrix proteins are not imported to peroxisomes in a temperature-sensitive manner. Analysis of peroxisomal metabolism in the patient’s fibroblasts showed that the level of docosahexaenoic acid (DHA) (C22:6n-3) in ether phospholipids is decreased, whereas other lipid metabolism, including peroxisomal fatty acid β-oxidation, is normal. Collectively, the functional data support the mild phenotype of nonsyndromic hearing loss in patients harboring the F51L variant in PEX26.

    DOI: 10.1101/mcs.a003483

  • Dynamics of the nucleoside diphosphate kinase protein DYNAMO2 correlates with the changes in the global GTP level during the cell cycle of Cyanidioschyzon merolae Reviewed

    Yuuta Imoto, Yuichi Abe, Kanji Okumoto, Mio Ohnuma, Haruko Kuroiwa, Tsuneyoshi Kuroiwa, Yukio Fujiki

    Proceedings of the Japan Academy Series B: Physical and Biological Sciences   95 ( 2 )   75 - 85   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    GTP is an essential source of energy that supports a large array of cellular mechanochemical structures ranging from protein synthesis machinery to cytoskeletal apparatus for maintaining the cell cycle. However, GTP regulation during the cell cycle has been difficult to investigate because of heterogenous levels of GTP in asynchronous cell cycles and genetic redundancy of the GTP-generating enzymes. Here, in the unicellular red algae Cyanidioschyzon merolae, we demonstrated that the ATP-GTP-converting enzyme DYNAMO2 is an essential regulator of global GTP levels during the cell cycle. The cell cycle of C. merolae can be highly synchronized by light/dark stimulations to examine GTP levels at desired time points. Importantly, the genome of C. merolae encodes only two isoforms of the ATP-GTP-converting enzyme, namely DYNAMO1 and DYNAMO2. DYNAMO1 regulates organelle divisions, whereas DYNAMO2 is entirely localized in the cytoplasm. DYNAMO2 protein levels increase during the S-M phases, and changes in GTP levels are correlated with these DYNAMO2 protein levels. These results indicate that DYNAMO2 is a potential regulator of global GTP levels during the cell cycle.

    DOI: 10.2183/pjab.95.007

  • A newly isolated Pex7-binding, atypical PTS2 protein P7BP2 is a novel dynein-type AAA+ protein Reviewed

    Hajime Niwa, Yasuhiro Miyauchi-Nanri, Kanji Okumoto, Satoru Mukai, Kentaro Noi, Teru Ogura, Yukio Fujiki

    Journal of Biochemistry   164 ( 6 )   437 - 447   2018.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    A newly isolated binding protein of peroxisomal targeting signal type 2 (PTS2) receptor Pex7, termed P7BP2, is transported into peroxisomes by binding to the longer isoform of Pex5p, Pex5pL, via Pex7p. The binding to Pex7p and peroxisomal localization of P7BP2 depends on the cleavable PTS2 in the N-terminal region, suggesting that P7BP2 is a new PTS2 protein. By search on human database, three AAA+ domains are found in the N-terminal half of P7BP2. Protein sequence alignment and motif search reveal that in the C-terminal region P7BP2 contains additional structural domains featuring weak but sufficient homology to AAA+ domain. P7BP2 behaves as a monomer in gel-filtration chromatography and the single molecule observed under atomic force microscope shapes a disc-like ring. Collectively, these results suggest that P7BP2 is a novel dynein-type AAA+ family protein, of which domains are arranged into a pseudo-hexameric ring structure.

    DOI: 10.1093/jb/mvy073

  • Onsite GTP fuelling via DYNAMO1 drives division of mitochondria and peroxisomes Reviewed

    Yuuta Imoto, Yuichi Abe, Masanori Honsho, Kanji Okumoto, Mio Ohnuma, Haruko Kuroiwa, Tsuneyoshi Kuroiwa, Yukio Fujiki

    Nature Communications   9 ( 1 )   2018.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Mitochondria and peroxisomes proliferate by division. During division, a part of their membrane is pinched off by constriction of the ring-shaped mitochondrial division (MD) and peroxisome-dividing (POD) machinery. This constriction is mediated by a dynamin-like GTPase Dnm1 that requires a large amount of GTP as an energy source. Here, via proteomics of the isolated division machinery, we show that the 17-kDa nucleoside diphosphate kinase-like protein, dynamin-based ring motive-force organizer 1 (DYNAMO1), locally generates GTP in MD and POD machineries. DYNAMO1 is widely conserved among eukaryotes and colocalizes with Dnm1 on the division machineries. DYNAMO1 converts ATP to GTP, and disruption of its activity impairs mitochondrial and peroxisomal fissions. DYNAMO1 forms a ring-shaped complex with Dnm1 and increases the magnitude of the constricting force. Our results identify DYNAMO1 as an essential component of MD and POD machineries, suggesting that local GTP generation in Dnm1-based machinery regulates motive force for membrane severance.

    DOI: 10.1038/s41467-018-07009-z

  • New splicing variants of mitochondrial Rho GTPase-1 (Miro1) transport peroxisomes Reviewed

    Kanji Okumoto, Tatsuaki Ono, Ryusuke Toyama, Ayako Shimomura, Aiko Nagata, Yukio Fujiki

    Journal of Cell Biology   217 ( 2 )   619 - 633   2018.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Microtubule-dependent long-distance movement of peroxisomes occurs in mammalian cells. However, its molecular mechanisms remain undefined. In this study, we identified three distinct splicing variants of human mitochondrial Rho GTPase-1 (Miro1), each containing amino acid sequence insertions 1 (named Miro1-var2), 2 (Miro1-var3), and both 1 and 2 (Miro1-var4), respectively, at upstream of the transmembrane domain. Miro1-var4 and Miro1-var2 are localized to peroxisomes in a manner dependent on the insertion 1 that is recognized by the cytosolic receptor Pex19p. Exogenous expression of Miro1-var4 induces accumulation of peroxisomes at the cell periphery and augments long-range movement of peroxisomes along microtubules. Depletion of all Miro1 variants by knocking down MIRO1 suppresses the long-distance movement of peroxisomes. Such abrogated movement is restored by reexpression of peroxisomal Miro1 variants. Collectively, our findings identify for the first time peroxisome-localized Miro1 variants as adapter proteins that link peroxisomes to the microtubule-dependent transport complexes including TRAK2 in the intracellular translocation of peroxisomes in mammalian cells.

    DOI: 10.1083/jcb.201708122

  • Identification of peroxisomal protein complexes with PTS receptors, pex5 and pex7, in mammalian cells Reviewed

    Kanji Okumoto, Non Miyata, Yukio Fujiki

    Subcellular Biochemistry   287 - 298   2018.1

     More details

    Language:English  

    Pex5 and Pex7 are cytosolic receptors for peroxisome targeting signal type-1 (PTS1) and type-2 (PTS2), respectively, and play a pivotal role in import of peroxisomal matrix proteins. Recent advance in mass spectrometry analysis has facilitated comprehensive analysis of protein-protein interaction network by a combination with immunoprecipitation or biochemical purification. In this chapter, we introduce several findings obtained by these methods applied to mammalian cells. Exploring Pex5-binding partners in mammalian cells revealed core components comprising the import machinery complex of matrix proteins and a number of PTS1-type cargo proteins. Biochemical purification of the Pex5-export stimulating factor from rat liver cytosol fraction identified Awp1, providing further insight into molecular mechanisms of the export step of mono-ubiquitinated Pex5. Identification of DDB1 (damage-specific DNA-binding protein 1), a component of CRL4 (Cullin4A-RING ubiquitin ligase) E3 complex, as a Pex7-interacting protein revealed that quality control of Pex7 by CRL4A is important for PTS2 protein import by preventing the accumulation of dysfunctional Pex7. Furthermore, analysis of binding partners of an intraperoxisomal processing enzyme, trypsin-domain containing 1 (Tysnd1), showed a protein network regulating peroxisomal fatty acid β-oxidation.

    DOI: 10.1007/978-981-13-2233-4_12

  • Cell death or survival against oxidative stress Reviewed International journal

    Non Miyata, Kanji Okumoto, Yukio Fujiki

    Subcellular Biochemistry   463 - 471   2018.1

     More details

    Language:English  

    Peroxisomes contain anabolic and catabolic enzymes including oxidases that produce hydrogen peroxide as a by-product. Peroxisomes also contain catalase to metabolize hydrogen peroxide. It has been recognized that catalase is localized to cytosol in addition to peroxisomes. A recent study has revealed that loss of VDAC2 shifts localization of BAK, a pro-apoptotic member of Bcl-2 family, from mitochondria to peroxisomes and cytosol, thereby leading to release of peroxisomal matrix proteins including catalase to the cytosol. A subset of BAK is localized to peroxisomes even in wild-type cells, regulating peroxisomal membrane permeability and catalase localization. The cytosolic catalase potentially acts as an antioxidant to eliminate extra-peroxisomal hydrogen peroxide.

    DOI: 10.1007/978-981-13-2233-4_20

  • BAK regulates catalase release from peroxisomes Reviewed

    Yukio Fujiki, Non Miyata, Satoru Mukai, Kanji Okumoto, Emily H. Cheng

    Molecular & Cellular Oncology   4 ( 3 )   2017.3

     More details

    Language:English  

    Loss of voltage-dependent anion channel 2 (VDAC2) leads to impaired peroxisome biogenesis in mammalian cells. Knockdown of BAK restores peroxisomal biogenesis in VDAC2-deficient cells, where BAK localization shifts from mitochondria to peroxisomes. Moreover, overexpression of BAK activators in wild-type cells permeabilizes peroxisomes in a BAK-dependent manner. Together, BAK most likely regulates peroxisomal membrane permeability.

  • The VDAC2-BAK axis regulates peroxisomal membrane permeability Reviewed

    Ken-ichiro Hosoi, Non Miyata, Satoru Mukai, Satomi Furuki, Kanji Okumoto, Emily H. Cheng, Yukio Fujiki

    Journal of Cell Biology   216 ( 3 )   709 - 722   2017.3

     More details

    Language:English  

    Peroxisomal biogenesis disorders (PBDs) are fatal genetic diseases consisting of 14 complementation groups (CGs). We previously isolated a peroxisome-deficient Chinese hamster ovary cell mutant, ZP114, which belongs to none of these CGs. Using a functional screening strategy, VDAC2 was identified as rescuing the peroxisomal deficiency of ZP114 where VDAC2 expression was not detected. Interestingly, knockdown of BAK or overexpression of the BAK inhibitors BCL-XL and MCL-1 restored peroxisomal biogenesis in ZP114 cells. Although VDAC2 is not localized to the peroxisome, loss of VDAC2 shifts the localization of BAK from mitochondria to peroxisomes, resulting in peroxisomal deficiency. Introduction of peroxisome-targeted BAK harboring the Pex26p transmembrane region into wild-type cells resulted in the release of peroxisomal matrix proteins to cytosol. Moreover, overexpression of BAK activators PUMA and BIM permeabilized peroxisomes in a BAK-dependent manner. Collectively, these findings suggest that BAK plays a role in peroxisomal permeability, similar to mitochondrial outer membrane permeabilization.

    DOI: 10.1083/jcb.201605002

  • Localization of protein kinase NDR2 to peroxisomes and its role in ciliogenesis Reviewed

    Shoko Abe, Tomoaki Nagai, Moe Masukawa, Kanji Okumoto, Yuta Homma, Yukio Fujiki, Kensaku Mizuno

    Journal of Biological Chemistry   292 ( 10 )   4089 - 4098   2017.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Nuclear Dbf2-related (NDR) kinases, comprising NDR1 and NDR2, are serine/threonine kinases that play crucial roles in the control of cell proliferation, apoptosis, and morphogenesis. We recently showed that NDR2, but not NDR1, is involved in primary cilium formation; however, the mechanism underlying their functional difference in ciliogenesis is unknown. To address this issue, we examined their subcellular localization. Despite their close sequence similarity, NDR2 exhibited punctate localization in the cytoplasm, whereas NDR1 was diffusely distributed within the cell. Notably, NDR2 puncta mostly co-localized with the peroxisome marker proteins, catalase and CFP-SKL (cyan fluorescent protein carrying the C-terminal typical peroxisome-targeting signal type-1 (PTS1) sequence, Ser-Lys-Leu). NDR2 contains the PTS1-like sequence, Gly-Lys-Leu, at the C-terminal end, whereas the C-terminal end of NDR1 is Ala-Lys. An NDR2 mutant lacking the C-terminal Leu, NDR2(ΔL), exhibited almost diffuse distribution in cells. Additionally, NDR2, but neither NDR1 nor NDR2(ΔL), bound to the PTS1 receptor Pex5p. Together, these findings indicate that NDR2 localizes to the peroxisome by using the C-terminal GKL sequence. Intriguingly, topology analysis of NDR2 suggests that NDR2 is exposed to the cytosolic surface of the peroxisome. The expression of wild-type NDR2, but not NDR2(ΔL), recovered the suppressive effect of NDR2 knockdown on ciliogenesis. Furthermore, knockdown of peroxisome biogenesis factor genes (PEX1 or PEX3) partially suppressed ciliogenesis. These results suggest that the peroxisomal localization of NDR2 is implicated in its function to promote primary cilium formation.

    DOI: 10.1074/jbc.M117.775916

  • Blue native PAGE Applications to study peroxisome biogenesis Reviewed International journal

    Kanji Okumoto, Shigehiko Tamura, Yukio Fujiki

    Methods in Molecular Biology   1595   197 - 205   2017.1

     More details

    Language:English  

    Blue native polyacrylamide gel electrophoresis (BN-PAGE) is one of the useful methods to isolate protein complexes including membrane proteins under native conditions. In BN-PAGE, Coomassie Brilliant Blue G-250 binds to proteins and provides a negative charge for the electrophoretic separation without denaturing at neutral pH, allowing the analysis of molecular mass, oligomeric state, and composition of native protein complexes. BN-PAGE is widely applied to the characterization of soluble protein complexes as well as isolation of membrane protein complexes from biological membranes such as the complexes I–V of the mitochondrial respiratory chain and subcomplexes of the mitochondrial protein import machinery. BN-PAGE has also been introduced in the field of peroxisome research, for example, analysis of translocation machinery for peroxisomal matrix proteins embedded in the peroxisomal membrane. Here, we describe a basic protocol of BN-PAGE and its application to the study of peroxisome biogenesis.

    DOI: 10.1007/978-1-4939-6937-1_18

  • Peroxisomal membrane and matrix protein import using a semi-intact mammalian cell system Reviewed International journal

    Kanji Okumoto, Masanori Honsho, Yuqiong Liu, Yukio Fujiki

    Methods in Molecular Biology   1595   213 - 219   2017.1

     More details

    Language:English  

    Peroxisomes are essential intracellular organelles that catalyze a number of essential metabolic pathways including β-oxidation of very long chain fatty acids, synthesis of plasmalogen, bile acids, and generation and degradation of hydrogen peroxide. These peroxisomal functions are accomplished by strictly and spatiotemporally regulated compartmentalization of the enzymes catalyzing these reactions. Defects in peroxisomal protein import result in inherited peroxisome biogenesis disorders in humans. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes and transported to peroxisomes in a manner dependent on their specific targeting signals and their receptors. Peroxisomal protein import can be analyzed using a semi-intact assay system, in which targeting efficiency is readily monitored by immunofluorescence microscopy. Furthermore, cytosolic factors required for peroxisomal protein import can be manipulated, suggesting that the semi-intact system is a useful and convenient system to uncover the molecular mechanisms of peroxisomal protein import.

    DOI: 10.1007/978-1-4939-6937-1_20

  • Generation of peroxisome-deficient somatic animal cell mutants Reviewed International journal

    Kanji Okumoto, Yukio Fujiki

    Methods in Molecular Biology   1595   319 - 327   2017.1

     More details

    Language:English  

    Cell mutants with a genetic defect affecting various cellular phenotypes are widely utilized as a powerful tool in genetic, biochemical, and cell biological research. More than a dozen complementation groups of animal somatic mutant cells defective in peroxisome biogenesis have been successfully isolated in Chinese hamster ovary (CHO) cells and used as a model system reflecting fatal human severe genetic disorders named peroxisome biogenesis disorders (PBD). Isolation and characterization of peroxisome-deficient CHO cell mutants has allowed the identification of PEX genes and the gene products peroxins, which directly leads to the accomplishment of isolation of pathogenic genes responsible for human PBDs, as well as elucidation of their functional roles in peroxisome biogenesis. Here, we describe the procedure to isolate peroxisome-deficient mammalian cell mutants from CHO cells, by making use of an effective, photo-sensitized selection method.

    DOI: 10.1007/978-1-4939-6937-1_29

  • Defining the dynamin-based ring organizing center on the peroxisome-dividing machinery isolated from Cyanidioschyzon merolae Reviewed

    Yuuta Imoto, Yuichi Abe, Kanji Okumoto, Masanori Honsho, Haruko Kuroiwa, Tsuneyoshi Kuroiwa, Yukio Fujiki

    Journal of Cell Science   130 ( 5 )   853 - 867   2017.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Organelle division is executed through contraction of a ring-shaped supramolecular dividing machinery. A core component of the machinery is the dynamin-based ring conserved during the division of mitochondrion, plastid and peroxisome. Here, using isolated peroxisome-dividing (POD) machinery from a unicellular red algae, Cyanidioschyzon merolae, we identified a dynamin-based ring organizing center (DOC) that acts as an initiation point for formation of the dynamin-based ring. C. merolae contains a single peroxisome, the division of which can be highly synchronized by light-dark stimulation; thus, intact POD machinery can be isolated in bulk. Dynamin-based ring homeostasis is maintained by the turnover of the GTP-bound form of the dynamin-related protein Dnm1 between the cytosol and division machinery via the DOC. A single DOC is formed on the POD machinery with a diameter of 500-700 nm, and the dynamin-based ring is unidirectionally elongated from the DOC in a manner that is dependent on GTP concentration. During the later step of membrane fission, the second DOC is formed and constructs the double dynamin-based ring to make the machinery thicker. These findings provide new insights to define fundamental mechanisms underlying the dynamin-based membrane fission in eukaryotic cells.

    DOI: 10.1242/jcs.199182

  • Protein Import into Peroxisomes: the principles and methods of studying (version 2.0) Reviewed International journal

    Yukio Fujiki, Kanji Okumoto, Masanori Honsho

    Encyclopedia of Life Sciences   2015.4

     More details

    Language:English  

  • Peroxisome biogenesis in mammalian cells Reviewed

    Yukio Fujiki, Kanji Okumoto, Satoru Mukai, Masanori Honsho, Shigehiko Tamura

    Frontiers in Physiology   5   307   2014.8

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.3389/fphys.2014.00307

  • Distinct Modes of Ubiquitination of Peroxisome-targeting Signal Type 1 (PTS1) Receptor Pex5p Regulate PTS1 Protein Import Reviewed

    Kanji Okumoto, Hiromi Noda, Yukio Fujiki

    Journal of Biological Chemistry   289 ( 20 )   14089 - 14108   2014.5

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1074/jbc.m113.527937

  • Molecular Basis for Peroxisome Biogenesis Disorders Reviewed

    Y. Fujiki, K. Okumoto, S. Mukai, S. Tamura

    Molecular Machines Involved in Peroxisome Biogenesis and Maintenance   91 - 110   2014.5

     More details

    Language:Others  

    DOI: 10.1007/978-3-7091-1788-0_5

  • System to quantify the import of peroxisomal matrix proteins by fluorescence intensity Reviewed International journal

    Masafumi Noguchi, Kanji Okumoto, Yukio Fujiki

    GENES TO CELLS   18 ( 6 )   476 - 492   2013.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/gtc.12051

  • Pex5p stabilizes Pex14p: a study using a newly isolated pex5 CHO cell mutant, ZPEG101 Reviewed International journal

    Ryuichi Natsuyama, Kanji Okumoto, Yukio Fujiki

    Biochem J.   449 ( 1 )   195 - 207   2013.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Pex5p [PTS (peroxisome-targeting signal) type 1 receptor] plays an essential role in peroxisomal matrix protein import. In the present study, we isolated a novel PEX5-deficient CHO (Chinese-hamster ovary) cell mutant, termed ZPEG101, showing typical peroxisomal import defects of both PTS1 and PTS2 proteins. ZPEG101 is distinct from other known pex5 CHO mutants in its Pex5p expression. An undetectable level of Pex5p in ZPEG101 results in unstable Pex14p, which is due to inefficient translocation to the peroxisomal membrane. All of the mutant phenotypes of ZPEG101 are restored by expression of wild-type Pex5pL, a longer form of Pex5p, suggesting a role for Pex5p in sustaining the levels of Pex14p in addition to peroxisomal matrix protein import. Complementation analysis using various Pex5p mutants revealed that in the seven pentapeptide WXXXF/Y motifs in Pex5pL, known as the multiple binding sites for Pex14p, the fifth motif is an auxiliary binding site for Pex14p and is required for Pex14p stability. Furthermore, we found that Pex5p–Pex13p interaction is essential for the import of PTS1 proteins as well as catalase, but not for that of PTS2 proteins. Therefore ZPEG101 with no Pex5p would be a useful tool for investigating Pex5p function and delineating the mechanisms underlying peroxisomal matrix protein import.

    DOI: 10.1042/BJ20120911.

  • AWP1/ZFAND6 functions in Pex5 export by interacting with cys-monoubiquitinated Pex5 and Pex6 AAA ATPase Reviewed International journal

    宮田暖, 奥本寛治, 向井悟, 野口雅史, 藤木幸夫

    Traffic   13 ( 1 )   168 - 183   2012.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    During biogenesis of the peroxisome, a subcellular organelle, the peroxisomal-targeting signal 1 (PTS1) receptor Pex5 functions as a shuttling receptor for PTS1-containing peroxisomal matrix proteins. However, the precise mechanism of receptor shuttling between peroxisomes and cytosol remains elusive despite the identification of numerous peroxins involved in this process. Herein, a new factor was isolated by a combination of biochemical fractionation and an in vitro Pex5 export assay, and was identified as AWP1/ZFAND6, a ubiquitin-binding NF-κB modulator. In the in vitro Pex5 export assay, recombinant AWP1 stimulated Pex5 export and an anti-AWP1 antibody interfered with Pex5 export. AWP1 interacted with Pex6 AAA ATPase, but not with Pex1-Pex6 complexes. Preferential binding of AWP1 to the cysteine-ubiquitinated form of Pex5 rather than to unmodified Pex5 was mediated by the AWP1 A20 zinc-finger domain. Inhibition of AWP1 by RNA interference had a significant effect on PTS1-protein import into peroxisomes. Furthermore, in AWP1 knock-down cells, Pex5 stability was decreased, similar to fibroblasts from patients defective in Pex1, Pex6 and Pex26, all of which are required for Pex5 export. Taken together, these results identify AWP1 as a novel cofactor of Pex6 involved in the regulation of Pex5 export during peroxisome biogenesis.

    DOI: 10.1111/j.1600-0854.2011.01298.x.

  • New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis Reviewed International journal

    藤木幸夫, 名城千加, 宮田暖, 田村茂彦, 奥本寛治

    Biochim. Biophys. Acta   1823 ( 1 )   2012.1

     More details

    Language:English  

    DOI: 10.1111/j.1600-0854.2011.01298.x.

  • Two Proteases, Trypsin Domain-containing 1 (Tysnd1) and Peroxisomal Lon Protease (PsLon), Cooperatively Regulate Fatty Acid β-Oxidation in Peroxisomal Matrix Reviewed

    Kanji Okumoto, Yukari Kametani, Yukio Fujiki

    Journal of Biological Chemistry   286 ( 52 )   44367 - 44379   2011.12

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1074/jbc.m111.285197

  • Cysteine-ubiquitination of peroxisome-targeting-signal type 1 (PTS1)-receptor Pex5p regulates Pex5p import and export Reviewed International journal

    Kanji Okumoto, Sachi Misono, Non Miyata, Yui Matsumoto, Satoru Mukai, Yukio Fujiki

    Traffic   2011.5

     More details

    Language:English  

    DOI: 10.1111/j.1600-0854.2011.01217.x

  • Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants Reviewed

    Yukio Fujiki, Kanji Okumoto, Naohiko Kinoshita, Kamran Ghaedi

    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research   1763 ( 12 )   1374 - 1381   2006.12

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bbamcr.2006.09.012

  • cDNA cloning and characterization of the third isoform in human peroxin Pex11p. Reviewed International journal

    田中敦, 奥本寛治, 藤木幸夫

    Biochem. Biophys. Res. Commun.   300 ( 4 )   819 - 823   2003.1

     More details

    Language:English  

    DOI: 10.1016/S0006-291X(02)02936-4

  • Molecular Anatomy of the Peroxin Pex12p: RING Finger domain is essential for Pex12p function and interacts with the peroxisome-targeting signal type 1-receptor Pex5p and a RING Peroxin, Pex10p Reviewed

    Kanji Okumoto, Isao Abe, Yukio Fujiki

    Journal of Biological Chemistry   275 ( 33 )   25700 - 25710   2000.8

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1074/jbc.m003303200

  • The peroxin Pex3p initiates membrane assembly in peroxisome biogenesis. Reviewed International journal

    Ghaedi Kamran, 田村茂彦, 奥本寛治, 松園裕嗣, 藤木幸夫

    Mol. Biol. Cell   11 ( 6 )   2085 - 2102   2000.6

     More details

    Language:English  

  • Peroxisome biogenesis and molecular defects in peroxisome assembly disorders Reviewed International journal

    藤木幸夫, 奥本寛治, 大寺秀典, 田村茂彦

    Cell Biochem. Biophys.   32 ( 1 )   155 - 164   2000.4

     More details

    Language:English  

    DOI: 10.1385/CBB:32:1-3:155

  • Isolation and characterization of novel peroxisome biogenesis-defective Chinese hamster ovary cell mutants using green fluorescent protein. Reviewed International journal

    Ghaedi Kamran, 川井淳, 奥本寛治, 他4名, 藤木幸夫

    Exp, Cell Res.   248 ( 2 )   489 - 497   1999.5

     More details

    Language:English  

    DOI: 10.1006/excr.1999.4413

  • The peroxin Pex14p, cDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis. Reviewed International journal

    志水信弘, 伊藤竜太, 他5名, 奥本寛治, 原野友之, 藤木幸夫

    J. Biol. Chem   274 ( 18 )   12593 - 12604   1999.4

     More details

    Language:English  

    DOI: 10.1074/jbc.274.18.12593

  • Mutations in PEX10 is the cause of Zellweger peroxisome deficiency syndrome of complementation group B Reviewed

    K Okumoto, R Itoh, N Shimozawa, Y Suzuki, S Tamura, N Kondo, Y Fujiki

    Human Molecular Genetics   7 ( 9 )   1399 - 1405   1998.9

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/hmg/7.9.1399

  • Newly identified Chinese hamster ovary cell mutants are defective in biogenesis of peroxisomal membrane vesicles (peroxisomal ghosts), representing a novel complementation group in mammals. Reviewed International journal

    木下尚彦, Ghaedi Kamran, 下沢伸行, Wanders R.J.A., 松園裕嗣, 今中常雄, 奥本寛治, 他2名, 藤木幸夫

    J. Biol. Chem.   273 ( 37 )   24122 - 24130   1998.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1074/jbc.273.37.24122

  • PEX12 , the Pathogenic Gene of Group III Zellweger Syndrome: cDNA Cloning by Functional Complementation on a CHO Cell Mutant, Patient Analysis, and Characterization of Pex12p Reviewed

    Kanji Okumoto, Nobuyuki Shimozawa, Atsusi Kawai, Shigehiko Tamura, Toshiro Tsukamoto, Takashi Osumi, Hugo Moser, Ronald J. A. Wanders, Yasuyuki Suzuki, Naomi Kondo, Yukio Fujiki

    Molecular and Cellular Biology   18 ( 7 )   4324 - 4336   1998.7

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    ABSTRACT

    Rat PEX12 cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP109 (K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, Exp. Cell Res. 233:11–20, 1997), using a transient transfection assay and an ectopic, readily visible marker, green fluorescent protein. This cDNA encodes a 359-amino-acid membrane protein of peroxisomes with two transmembrane segments and a cysteine-rich zinc finger, the RING motif. A stable transformant of ZP109 with the PEX12 was morphologically and biochemically restored for peroxisome biogenesis. Pex12p was shown by expression of bona fide as well as epitope-tagged Pex12p to expose both N- and C-terminal regions to the cytosol. Fibroblasts derived from patients with the peroxisome deficiency Zellweger syndrome of complementation group III (CG-III) were also complemented for peroxisome biogenesis with PEX12 . Two unrelated patients of this group manifesting peroxisome deficiency disorders possessed homozygous, inactivating PEX12 mutations: in one, Arg180Thr by one point mutation, and in the other, deletion of two nucleotides in codons for 291 Asn and 292 Ser, creating an apparently unchanged codon for Asn and a codon 292 for termination. These results indicate that the gene encoding peroxisome assembly factor Pex12p is a pathogenic gene of CG-III peroxisome deficiency. Moreover, truncation and site mutation studies, including patient PEX12 analysis, demonstrated that the cytoplasmically oriented N- and C-terminal parts of Pex12p are essential for biological function.

    DOI: 10.1128/mcb.18.7.4324

  • Clofibrate-inducible, 28-kDa peroxisomal integral membrane protein is encoded by PEX11. Reviewed International journal

    阿部巧, 奥本寛治, 田村茂彦, 藤木幸夫

    FEBS Lett.   431 ( 3 )   468 - 472   1998.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/S0014-5793(98)00815-1

  • Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I. Reviewed International journal

    田村茂彦, 奥本寛治, 他6名, 藤木幸夫

    Proc. Natl. Acad. Sci. USA.   95 ( 8 )   4350 - 4355   1998.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.95.8.4350

  • Peroxisome biogenesis disorders: identification of a new complementation group distinct from peroxisome-deficient CHO mutants and not complemented by human PEX13. Reviewed International journal

    下沢伸行, 鈴木康之, 他5名, 奥本寛治, 藤木幸夫, 折井忠夫, Barth P.G., Wanders R.J.A., 近藤直美

    Biochem. Biophys. Res. Commun.   243 ( 2 )   368 - 371   1998.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1006/bbrc.1997.8067

  • Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Reviewed International journal

    大手秀典, 奥本寛治, 他8名, 藤木幸夫

    Mol. Cell. Biol.   18 ( 1 )   388 - 399   1998.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    <title>ABSTRACT</title>
    To investigate the mechanisms of peroxisome assembly and the molecular basis of peroxisome assembly disorders, we isolated and characterized a peroxisome-deficient CHO cell mutant, ZP139, which was found to belong to human complementation group II, the same group as that of our earlier mutant, ZP105. These mutants had a phenotypic deficiency in the import of peroxisomal targeting signal type 1 (PTS1) proteins. Amino-terminal extension signal (PTS2)-mediated transport, including that of 3-ketoacyl coenzyme A thiolase, was also defective in ZP105 but not in ZP139. <italic>PEX5</italic> cDNA, encoding the PTS1 receptor (PTS1R), was isolated from wild-type CHO-K1 cells. PTS1R’s deduced primary sequence comprised 595 amino acids, 7 amino acids less than the human homolog, and contained seven tetratricopeptide repeat (TPR) motifs at the C-terminal region. Chinese hamster PTS1R showed 94, 28, and 24&#37; amino acid identity with PTS1Rs from humans, <italic>Pichia pastoris</italic>, and <italic>Saccharomyces cerevisiae</italic>, respectively. A PTS1R isoform (PTS1RL) with 632 amino acid residues was identified in CHO cells; for PTS1R, 37 amino acids were inserted between residues at positions 215 and 216 of a shorter isoform (PTS1RS). Southern blot analysis of CHO cell genomic DNA suggested that these two isoforms are derived from a single gene. Both types of <italic>PEX5</italic> complemented impaired import of PTS1 in mutants ZP105 and ZP139. PTS2 import in ZP105 was rescued only by PTS1RL. This finding strongly suggests that PTS1RL is also involved in the transport of PTS2. Mutations in<italic>PEX5</italic> were determined by reverse transcription-PCR: a G-to-A transition resulted in one amino acid substitution: Gly298Glu of PTS1RS (G335E of PTS1RL) in ZP105 and Gly485Glu of PTS1RS (G522E of PTS1RL) in ZP139. Both mutations were in the TPR domains (TPR1 and TPR6), suggesting the functional consequence of these domains in protein translocation. The implications of these mutations are discussed.

    DOI: 10.1128/mcb.18.1.388

  • PEX12 encodes an integral membrane protein of peroxisomes Reviewed

    Kanji Okumoto, Yukio Fujiki

    Nature Genetics   17 ( 3 )   265 - 266   1997.11

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/ng1197-265

  • Newly identified Chinese hamster ovary cell mutants defective in peroxisome biogenesis represent two novel complementation groups in mammals Reviewed

    Keita Tateishi, Kanji Okumoto, Nobuyuki Shimozawa, Toshiro Tsukamoto, Takashi Osumi, Yasuyuki Suzuki, Naomi Kondo, Ichiro Okano, Yukio Fujiki

    European Journal of Cell Biology   73 ( 4 )   352 - 359   1997.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We isolated peroxisome biogenesis mutants from Chinese hamster ovary (CHO) cells, using the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/UV) method and wild-type CHO-K1 cells that had been stably transfected with cDNA encoding Pex2p (formerly peroxisome assembly factor-1, PAF-1). Three mutant cell clones, ZP110, ZP111, and ZP114, showed cytosolic localization of catalase, thereby indicating a defect in peroxisome biogenesis, whereas ZP112 and ZP113 contained fewer but larger catalase-positive particles. Mutant ZP115 displayed an aberrant, tubular structure immunoreactive to anti-catalase antibody. Mutants lacking morphologically recognizable peroxisomes also showed the typical peroxisome assembly-defective phenotype such as severe loss of catalase latency and resistance to 12-(1'-pyrene)dodecanoic acid (P12)/UV treatment. ZP110 and ZP111, and ZP114 were found to belong to two novel complementation groups, respectively, by complementation group analysis with cDNA transfection and cell fusion. Cell fusion with fibroblasts from patients with peroxisome biogenesis disorders such as Zellweger syndrome revealed that ZP110 and ZP114 could not be classified to any of human complementation groups. Thus, ZP110/ZP111 and ZP114 are the first, two peroxisome-deficient cell mutants of newly identified complementation groups distinct from the ten mammalian groups previously characterized.

  • Isolation and characterization of peroxisome-deficient Chinese hamster ovary cell mutants representing human complementation group III Reviewed

    Kanji Okumoto, Akemi Bogaki, Keita Tateishi, Toshiro Tsukamoto, Takashi Osumi, Nobuyuki Shimozawa, Yasuyuki Suzuki, Tadao Orii, Yukio Fujiki

    Experimental Cell Research   233 ( 1 )   11 - 20   1997.5

     More details

    Language:Others   Publishing type:Research paper (scientific journal)  

    DOI: 10.1006/excr.1997.3552

  • Isolation of a new peroxisome-deficient CHO cell mutant defective in peroxisome targeting signal-1 receptor Reviewed

    Toshiro Tsukamoto, Akemi Bogaki, Kanji Okumoto, Keita Tateishi, Yukio Fujiki, Nobuyuki Shimozawa, Yasuyuki Suzuki, Naomi Kondo, Takashi Osumi

    Biochemical and Biophysical Research Communications   230 ( 2 )   402 - 406   1997.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    For the study of mechanism of peroxisome biogenesis, we attempted to isolate CHO cell mutants deficient in peroxisome biogenesis. We used as the parent strain a stable CHO transformant of rat PEX2 (formerly named peroxisome assembly factor-1) cDNA, to avoid unusually frequent isolation of Pex2 mutants. Among the three peroxisome-deficient mutants obtained, ZP102 was a new CHO mutant of complementation group 2, and was restored for peroxisome assembly by the transfection of human PEX5 (formerly called PXR1 or PTS1R) cDNA. This approach would facilitate the isolation of new complementation gorups of peroxisome-deficient CHO mutants and the identification of essential genes for peroxisome biogenesis.

    DOI: 10.1006/bbrc.1996.5971

▼display all

Presentations

  • Pex14のリン酸化を介したペルオキシソームへのカタラーゼ輸送の抑制と細胞の酸化ストレス耐性応答

    奥本寛治、小迫英尊、藤木幸夫

    第43回日本分子生物学会年会  2020.12 

     More details

    Event date: 2020.12

    Language:Japanese  

    Venue:オンライン   Country:Japan  

  • 過酸化水素分解酵素カタラーゼの細胞内輸送の抑制は細胞の酸化ストレス応答として機能する

    奥本寛治、小迫英尊、藤木幸夫

    令和2年度日本生化学会九州支部例会  2020.5 

     More details

    Event date: 2020.5

    Language:Japanese  

    Venue:九州大学病院キャンパス、福岡   Country:Japan  

  • H2O2-induced phosphorylation of Pex14p suppresses peroxisomal import of catalase to counteract oxidative stress. Invited

    奥本寛治、小迫英尊、藤木幸夫

    第42回日本分子生物学会年会  2019.12 

     More details

    Event date: 2019.12

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:福岡国際会議場、福岡   Country:Japan  

  • ペルオキシソーム局在性テイルアンカー型タンパク質ACBD5の翻訳アレストを介した局在化効率獲得

    #小山 桂恵奈, 奥本 寛治, 田村 茂彦, 藤木 幸夫

    第42回日本分子生物学会年会  2019.12 

     More details

    Event date: 2019.12

    Language:Japanese  

    Venue:福岡国際会議場、福岡   Country:Japan  

  • ペルオキシソーム局在性テイルアンカー型膜タンパク質の輸送局在化機構

    奥本 寛治, 田村 茂彦, 八木田 悠一, 本庄 雅則, 藤木 幸夫

    第41回日本分子生物学会年会  2018.11 

     More details

    Event date: 2018.11

    Language:Japanese  

    Venue:パシフィコ横浜、神奈川   Country:Japan  

  • Biogenesis of peroxisomal tail-anchored membrane proteins, new splicing variants of Miro1, acyl-CoA binding domain containing protein 5 (ACBD5), and peroxin Pex26p. International conference

    Kanji Okumoto, Yuichi Yagita, Masanori Honsho, and Yukio Fujiki

    International Symposium on “Proteins: From the Cradle to the Grave”  2018.8 

     More details

    Event date: 2018.8

    Language:English  

    Venue:Enryakuji Kaikan, Shiga   Country:Japan  

  • ペルオキシソームの機能と細胞内配置・運動性の新たな制御機構 Invited

    奥本寛治, #小野立晃, 外山隆介, #細井謙一郎, 宮田暖, 向井悟, Cheng E. H., Yukio Fujiki

    2017年度生命科学系学会合同年次大会  2017.12 

     More details

    Event date: 2017.12

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:神戸国際会議場   Country:Japan  

  • ペルオキソソームの恒常性:膜およびマトリックスタンパク質輸送の分子基盤 Invited

    Yukio Fujiki, Kanji Okumoto, Yuichi Yagita, and Shigehiko Tamura

    第17回日本蛋白質科学会年会  2017.6 

     More details

    Event date: 2017.6

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:仙台国際会議場(宮城)   Country:Japan  

  • ペルオキシソーム局在型Miro1バリアントによるペルオキシソームの細胞内移動制御

    奥本寛治, #小野立晃, #下村紋子, 外山隆介, Yukio Fujiki

    第89回日本生化学会大会  2016.9 

     More details

    Event date: 2016.9

    Language:Japanese  

    Venue:仙台国際センター   Country:Japan  

  • ペルオキシソーム移行シグナル1型(PTS1)レセプターPex5pの結合因子、P5BP1の機能解析

    Kanji Okumoto, Yuri Shirahama, Yukio Fujiki

    第66回日本細胞生物学会大会  2014.6 

     More details

    Event date: 2014.6

    Language:Japanese  

    Venue:東大寺総合文化センター(奈良市)   Country:Japan  

    Functional analysis of P5BP1, a novel protein interacting with PTS1 recepor Pex5p

  • RING peroxin complexes comprising Pex10p and Pex12p ubiquitinate the PTS1 receptor Pex5p and regulate its shuttling between peroxisomes and the cytosol. International conference

    Kanji Okumoto, Hiromi Noda, Yukio Fujiki

    PerFuMe Kick-off Conference  2013.12 

     More details

    Event date: 2013.12

    Language:English  

    Venue:Hampshire Hotel Plaza Groningen (グローニンゲン・オランダ)   Country:Netherlands  

    RING peroxin complexes comprising Pex10p and Pex12p ubiquitinate the PTS1 receptor Pex5p and regulate its shuttling between peroxisomes and the cytosol.

  • ペルオキシソーム移行シグナル1型(PTS1)レセプターPex5pの新規結合因子、P5BP1の同定

    Kanji Okumoto, Yuri Shirahama, Yukio Fujiki

    第86回日本生化学会大会  2013.9 

     More details

    Event date: 2013.9

    Language:Japanese  

    Venue:パシフィコ横浜(横浜市)   Country:Japan  

    Identification of P5BP1, a novel protein interacting with PTS1 recepor Pex5p

  • Pex14pの安定性に関わるPTS1レセプターPex5pの新たな機能:新規PEX5欠損CHO変異細胞ZPEG101を用いた解析

    Ryuichi Natsuyama, Kanji Okumoto, Yukio Fujiki

    第85回日本生化学会大会  2012.12 

     More details

    Event date: 2012.12

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:福岡国際会議場(福岡市)   Country:Japan  

    Novel function of peroxisome-targeting signal type 1 (PTS1)-receptor Pex5p in Pex14p stability

  • PTS1レセプターPex5pは複数種のユビキチン化修飾を受け、ペルオキシソームマトリクスタンパク質輸送を制御する

    Kanji Okumoto, Yukio Fujiki

    35回日本分子生物学会年会  2012.12 

     More details

    Event date: 2012.12

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:福岡国際会議場(福岡市)   Country:Japan  

    Several distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1)-receptor Pex5p regulate peroxisomal matrix protein import

  • Pex14リン酸化を介したカタラーゼの細胞内局在制御による新規酸化ストレス応答機構 International conference

    奥本寛治, 藤木幸夫

    第44回日本分子生物学会年会  2021.12 

     More details

    Language:Others   Presentation type:Symposium, workshop panel (public)  

    Country:Other  

    Novel counteracting mechanism against oxidative stress by regulating intracellular localization of catalase via Pex14 phosphorylation

  • カタラーゼの局在制御を介したストレス応答機構を調節するリン酸化シグナル伝達経路 International conference

    奥本寛治, 藤木幸夫

    第95回日本生化学会大会  2022.11 

     More details

    Language:Others  

    Venue:名古屋国際会議場   Country:Japan  

    Novel counteracting mechanism against oxidative stress by regulating intracellular localization of catalase via Pex14 phosphorylation

  • ペルオキシソームを介した細胞の酸化ストレス応答機構 Invited International conference

    奥本寛治, 藤木幸夫

    第96回日本生化学会大会  2023.11 

     More details

    Language:Others   Presentation type:Symposium, workshop panel (public)  

    Venue:福岡国際会議場   Country:Japan  

    Oxidative stress response via peroxisome

  • 過酸化水素分解酵素カタラーゼの細胞内局在制御による酸化ストレス応答の分子機構

    藤木幸夫、奥本寛治、宮田暖、Emily Cheng

    第14回日本臨床ストレス応答学会  2019.11 

     More details

    Event date: 2019.11

    Language:Japanese  

    Venue:大阪市立大学、大阪   Country:Japan  

  • ペルオキシソーム⽋損症病因遺伝⼦PEX26の新規変異同定とその障害の分⼦メカニズム

    ⽥村茂彦, 奥本寛治, Tanaka Akemi J., 阿部雄⼀, Hirsch Yoel, Deng Liyong, Ekstein Joseph, Chung Wendy K., 藤⽊幸夫

    第92回⽇本⽣化学会⼤会  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese  

    Venue:パシフィコ横浜、神奈川   Country:Japan  

  • Local GTP fueling via nucleoside diphosphate kinase like protein DYNAMO1 drives division of peroxisome and mitochondrion. Invited International conference

    Yukio Fujiki, Yuuta Imoto, Yuichi Abe, Masanori Honsho, Kanji Okumoto, Mio Ohnuma, Haruko Kuroiwa, and Tsuneyoshi Kuroiwa

    ASCB/EMBO 2018 Meeting  2018.12 

     More details

    Event date: 2018.12

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:San Diego   Country:United States  

  • テイルアンカー型タンパク質ACBD5 の 翻訳速度とペルオキシソームへの輸送・局在化効率の関連性の検討

    #小山桂恵奈, 奥本寛治, 田村茂彦, 藤木幸夫

    平成30年度日本生化学会九州支部例会  2018.6 

     More details

    Event date: 2018.6 - 2018.7

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:九州大学、福岡   Country:Japan  

  • VDAC2-BAK axis regulates peroxisomal membrane permeability and catalase release. Invited International conference

    Yukio Fujiki, Miyata, N., Mukai, S.,Hosoi, K., Okumoto, K., and Cheng, E.H.

    Gordon Research Conference on Organellar Channels & Transporters  2017.7 

     More details

    Event date: 2017.7

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:West Dover, VT   Country:United States  

  • NDR2 のペルオキシソーム膜への局在と一次繊毛形成における役割 Invited

    増川萌瑛 , 阿部彰子, 永井友朗, 奥本寛治, 本間悠太, 藤木幸夫, 水野健作

    第69回日本細胞生物学会大会  2017.6 

     More details

    Event date: 2017.6

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:仙台国際会議場(宮城)   Country:Japan  

  • Identification of a novel protein interacting with peroxisome targeting signal type 1 (PTS1) receptor, Pex5p.

    Yuri Shirahama, Kanji Okumoto, Yukio Fujiki

    第36回日本分子生物学会年会  2013.12 

     More details

    Event date: 2013.12

    Language:Japanese  

    Venue:神戸国際会議場(神戸市)   Country:Japan  

    Identification of a novel protein interacting with peroxisome targeting signal type 1 (PTS1) receptor, Pex5p.

  • Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal Lon protease (PsLon), cooperatively regulate fatty acid β-oxidation in peroxisomal matrix

    奥本寛治、亀谷紫、藤木幸夫

    第45回日本発生生物学会、第64回日本細胞生物学会合同年会  2012.5 

     More details

    Event date: 2012.5

    Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:神戸国際会議場(神戸市)   Country:Japan  

    Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal Lon protease (PsLon), cooperatively regulate fatty acid β-oxidation in peroxisomal matrix

  • PTS1レセプターPex5pのペルオキシソーム-細胞質間リサイクリングはシステイン残基のユビキチン化修飾により制御される

    奥本寛治、美園紗知、宮田暖、松元由依、向井悟、藤木幸夫

    第35回日本分子生物学会年会  2011.12 

     More details

    Event date: 2011.12

    Venue:パシフィコ横浜(横浜市)   Country:Japan  

    Cysteine-ubiquitination of peroxisome-targeting-signal type 1 (PTS1)-receptor Pex5p regulates Pex5p recycling

  • A Novel Function of AWP1/ZFAND6: Regulation of Pex5p Export by Interacting with Cys-monoubiquitinated Pex5p and AAA ATPase, Pex6p International conference

    宮田暖、奥本寛治、向井悟、野口雅史、藤木幸夫

    The American Society for Cell Biology Annual Meeting 2011  2011.12 

     More details

    Event date: 2011.12

    Venue:デンバー(アメリカ合衆国)   Country:United States  

    A Novel Function of AWP1/ZFAND6: Regulation of Pex5p Export by Interacting with Cys-monoubiquitinated Pex5p and AAA ATPase, Pex6p

  • PTS1レセプターPex5pのユビキチン化修飾によるペルオキシソームマトリクスタンパク質輸送の制御

    奥本寛治、藤木幸夫

    平成23年度日本生化学会九州支部例会  2011.5 

     More details

    Event date: 2011.5

    Presentation type:Oral presentation (general)  

    Venue:久留米大学医学部(久留米市)   Country:Japan  

  • Functional roles of two serine proteases, Tysnd1 and PsLon, in peroxisome matrix International conference

    奥本寛治、亀谷紫、藤木幸夫

    The 3rd International Symposium on Protein Community  2010.9 

     More details

    Event date: 2010.9

    Venue:日航ホテル奈良(奈良市)   Country:Japan  

  • Characterization of peroxisome membrane protein TMEM135/ PMP52. International conference

    奥本寛治、藤木幸夫

    第62回日本細胞生物学会大会  2010.5 

     More details

    Event date: 2010.5

    Venue:大阪国際会議場(大阪市)   Country:Japan  

  • The complex of RING peroxins, Pex10p and Pex12p, functions as an ubiquitin ligase for the PTS1 receptor Pex5p and regulates peroxisomal matrix protein import. International conference

    奥本寛治、野田浩美、藤木幸夫

    第32回日本分子生物学会年会  2009.12 

     More details

    Event date: 2009.12

    Venue:パシフィコ横浜(横浜市)   Country:Japan  

  • Domain mapping of RING peroxins essential for peroxisomal localization and interaction with peroxisome targeting signal type-1 receptor Pex5p International conference

    奥本寛治、古賀敬子、藤木幸夫

    第20回IUBMB国際生化学学会  2006.6 

     More details

    Venue:京都国際会議場   Country:Japan  

  • Novel function of peroxisome targeting signal type-1 receptor Pex5p in Pex14p stability: study using a newly isolated peroxisome-deficient CHO mutant, ZPEG101. International conference

    奥本寛治、夏山竜一、藤木幸夫

    第40回日本発生生物学会・第59回日本細胞生物学会合同大会  2007.5 

     More details

    Venue:福岡国際会議場   Country:Japan  

  • Construction and Characterization of a Dominant-Negative Mutant of Peroxisome Targeting Signal Type-1 Receptor Pex5p International conference

    奥本寛治、藤木幸夫

    第47回アメリカ細胞生物学会年会  2007.12 

     More details

    Venue:ワシントンコンベンションセンター(ワシントンDC)   Country:United States  

  • ペルオキシソーム移行シグナル1型レセプターPex5pのドミナントネガティブ変異体を用いたペルオキシソームマトリクスタンパク質輸送機構の解析 International conference

    奥本寛治、藤木幸夫

    第30回日本分子生物学会年会・第80回日本生化学会 合同大会  2007.12 

     More details

    Venue:パシフィコ横浜(横浜市)   Country:Japan  

▼display all

MISC

  • ペルオキシソームの動態と機能制御研究の新展開 Reviewed

    奥本 寛治, 阿部 雄一, 藤木 幸夫

    生化学   2023.12

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • ペルオキシソームの輸送と分解を基盤とした恒常性制御機構

    奥本 寛治, 藤木 幸夫

    2018.12

     More details

    Language:Japanese  

  • オルガネラ間の協奏によるペルオキシソームの機能と恒常性の制御

    藤木幸夫, 奥本寛治, 本庄雅則

    2018.11

     More details

    Language:Japanese  

  • ペキソファジー:ペルオキシソームの形成・機能制御と分解機構

    藤木 幸夫, 山下俊一, 奥本 寛治, 本庄 雅則

    2017.7

     More details

    Language:Japanese  

  • Molecular basis for peroxisome biogenesis disorders

    Yukio Fujiki, 奥本 寛治, 向井 悟, 田村 茂彦

    Molecular machines involved in peroxisome biogenesis and maintenance, Springer-Verlag, Wien, Austria. pp. 91-110   2014.10

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • ペルオキシソームの形成・制御とその障害

    藤木 幸夫, 宮田 暖, 奥本 寛治, 田村 茂彦, 糸山 彰徳, 本庄 雅則

    2012.10

     More details

    Language:Japanese  

  • ペルオキシソームの形成・制御の分子基盤

    Yukio Fujiki, Kanji Okumoto, Akinori Itoyama

    2011.11

     More details

    Language:Japanese  

  • ペルオキシソームの形成障害と分子病態 (共著)

    藤木幸夫, 奥本寛治, 田村茂彦

    実験医学   2003.9

     More details

    Language:Japanese  

  • ペルオキシソームの形成とその異常症(共著)

    藤木幸夫, 奥本寛治

    蛋白質核酸酵素   2000.4

     More details

    Language:Japanese  

  • 【細胞小器官の形成,活性調節およびストレス応答研究の新展開】ペルオキシソームの動態と機能制御研究の新展開

    奥本 寛治, 阿部 雄一, 藤木 幸夫

    生化学   95 ( 6 )   719 - 729   2023.12   ISSN:0037-1017

     More details

    Authorship:Lead author   Language:Japanese   Publisher:(公社)日本生化学会  

    ペルオキシソームは極長鎖脂肪酸のβ酸化をはじめとした多様かつ重要な代謝機能を有する細胞小器官(オルガネラ)である.ペルオキシソーム形成に必須な多数のペルオキシン遺伝子(PEX)の同定,およびその翻訳産物であるペルオキシンの機能解析が大きく進展し,ペルオキシソーム欠損症の全病因PEX遺伝子の解明に続いてペルオキシソームの形成機構が明らかとなってきた.ここでは,ペルオキシソーム構成タンパク質の輸送局在化やペルオキシソームの分裂,形態制御,分解などの統合的制御によるペルオキシソーム形成機構を概説し,ペルオキシソームタンパク質の輸送局在化機構や酸化ストレス応答におけるペルオキシソームの役割に関する最新の知見について,哺乳類ペルオキシソームを中心に我々の成果を紹介する.(著者抄録)

  • Molecular basis of local energy generation during mitochondrial and peroxisomal division Reviewed

    Imoto Y., Abe Y., Honsho M., Okumoto K., Ohnuma M., Kuroiwa H., Kuroiwa T., and Fujiki Y.

    2021.3

     More details

    Language:English  

    DOI: 10.5685/plmorphol.32.59

  • Protein Import into Peroxisomes: the principles and methods of studying (version 2.0)

    Yukio Fujiki, Kanji Okumoto, Masanori Honsho

    Encyclopedia of Life Sciences   2015.4

     More details

    Language:Others  

  • Isolation and characterization of three newly identified complementation groups of peroxisome-deficient mammalian cell mutants.

    Y Fujiki, K Okumoto, K Tateishi, T Tsukamoto, T Osumi, N Shimozawa, Y Suzuki

    MOLECULAR BIOLOGY OF THE CELL   1996.12

     More details

    Language:English  

▼display all

Professional Memberships

  • The Molecular Biology Society of Japan

  • The Japanese Biochemistry Society

  • Japan Society for Cell Biology

Academic Activities

  • 実行委員 International contribution

    第85回日本生化学会大会  ( Japan ) 2012.12

     More details

    Type:Competition, symposium, etc. 

    Number of participants:4,000

  • 実行委員

    第40回日本発生生物学会・第59回日本細胞生物学会合同大会  ( Japan ) 2007.5 - Present

     More details

    Type:Competition, symposium, etc. 

    Number of participants:2,000

  • 組織委員

    第28回日本分子生物学会  ( Japan ) 2005.12 - Present

     More details

    Type:Competition, symposium, etc. 

    Number of participants:10,000

Research Projects

  • リン酸化修飾が制御するペルオキシソームタンパク質輸送と酸化ストレス応答

    Grant number:21K06155  2021 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 過酸化水素分解酵素カタラーゼの細胞内局在制御による酸化ストレス応答の分子機構の解明

    2018

    日本応用酵素協会 酵素研究助成 2018年度

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • リン酸化修飾を介したペルオキシソーム恒常性制御

    Grant number:17K07310  2017 - 2019

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • ペルオキシソーム–小胞体接触領域の形成機構とその生理機構

    2016

    QRプログラム わかばチャレンジ

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

  • リン酸化シグナル伝達によるペルオキシソーム形成調節機構

    Grant number:26440032  2014 - 2016

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 抗細胞老化物質の探索を目指した、カタラーゼのペルオキシソーム輸送効率測定法の確立

    2013

    科学技術振興機構 研究成果展開事業研究成果最適展開支援プログラム(A-STEP)

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • システイン残基修飾を介したペルオキシソームタンパク質輸送の制御

    Grant number:24770130  2012 - 2013

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • ユビキチン化修飾によるペルオキシソームマトリクスタンパク質輸送の調節機構

    Grant number:21770117  2009 - 2010

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • ペルオキシソームの形成・制御と障害

    Grant number:19058011  2007 - 2011

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Priority Areas

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • ユビキチン化修飾によるペルオキシソーム形成機構の制御

    Grant number:19770087  2007 - 2008

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 細胞内小器官ペルオキシソームのマトリックスタンパク質輸送におけるユビキチンリガーゼの役割

    2006

    日本応用酵素協会 平成18年度研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

  • ペルオキシソーム形成および細胞機能の制御:ペルオキシン群の分子機能と動態

    Grant number:17028042  2005 - 2006

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Priority Areas

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • ペルオキシソーム形成因子群の膜インタフェイス機能と制御

    Grant number:17048020  2005 - 2006

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Priority Areas

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • ペルオキシソーム形成因子群複合体の構成と機能制御

    Grant number:17053020  2005

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Priority Areas

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • ペルオキシソームマトリクスタンパク質輸送機構におけるタンパク質翻訳後修飾の役割

    Grant number:16770101  2004 - 2005

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • ペルオキシソームマトリクスタンパク質輸送におけるタンパク質翻訳後修飾の役割

    2004

    花王芸術・科学財団 平成16年度研究助成

      More details

    Authorship:Principal investigator  Grant type:Contract research

▼display all

Educational Activities

  • A experimental class of Applied Cell Physiology.
    Classes of General Science Experiments, Molecular Cell Biology, and Research Administration I .

Class subject

  • 分子細胞生物学

    2024.10 - 2025.3   Second semester

  • 応用細胞機能学実験

    2024.4 - 2024.9   First semester

  • 分子細胞生物学

    2023.10 - 2024.3   Second semester

  • 応用細胞機能学実験

    2023.4 - 2023.9   First semester

  • 分子細胞生物学

    2022.10 - 2023.3   Second semester

  • 応用細胞機能学実験

    2022.4 - 2022.9   First semester

  • 分子細胞生物学

    2021.10 - 2022.3   Second semester

  • 自然科学総合実験(生物科学)

    2021.4 - 2021.9   First semester

  • 応用細胞機能学実験

    2021.4 - 2021.9   First semester

  • 応用細胞機能学実験

    2020.10 - 2021.3   Second semester

  • 分子細胞生物学

    2020.10 - 2021.3   Second semester

  • 自然科学総合実験(生物科学)

    2019.10 - 2020.3   Second semester

  • 分子細胞生物学

    2019.10 - 2020.3   Second semester

  • 応用細胞機能学実験

    2019.4 - 2019.9   First semester

  • 自然科学総合実験(生物科学)

    2018.10 - 2019.3   Second semester

  • 応用細胞生物学実験

    2018.4 - 2018.9   First semester

  • 自然科学総合実験(生物科学)

    2017.10 - 2018.3   Second semester

  • 応用細胞生物学実験

    2017.4 - 2017.9   First semester

  • 自然科学総合実験(生物科学)

    2016.10 - 2017.3   Second semester

  • 応用細胞生物学実験

    2016.4 - 2016.9   First semester

  • 自然科学総合実験(生物科学)

    2015.10 - 2016.3   Second semester

  • 応用細胞生物学実験

    2015.4 - 2015.9   First semester

  • 自然科学総合実験(生物科学)

    2014.10 - 2015.3   Second semester

  • 応用細胞生物学実験

    2014.4 - 2014.9   First semester

  • 自然科学総合実験(生物科学)

    2013.4 - 2013.9   First semester

  • 代謝生理学実験

    2012.10 - 2013.3   Second semester

  • 自然科学総合実験(生物科学)

    2012.4 - 2012.9   First semester

  • 代謝生理学実験

    2011.10 - 2012.3   Second semester

  • 自然科学総合実験(生物科学)

    2011.4 - 2011.9   First semester

  • 代謝生理学実験

    2010.10 - 2011.3   Second semester

  • 自然科学総合実験(生物科学)

    2010.4 - 2010.9   First semester

  • 代謝生理学実験

    2009.10 - 2010.3   Second semester

  • 自然科学総合実験(生物科学)

    2009.4 - 2009.9   First semester

  • 代謝生理学実験

    2008.10 - 2009.3   Second semester

  • 自然科学総合実験(生物科学)

    2008.4 - 2008.9   First semester

  • 代謝生理学実験

    2007.10 - 2008.3   Second semester

  • 代謝生理学実験

    2006.10 - 2007.3   Second semester

  • 代謝生理学実験

    2005.10 - 2006.3   Second semester

  • 代謝生理学実験

    2004.10 - 2005.3   Second semester

  • 代謝生理学実験

    2003.10 - 2004.3   Second semester

▼display all

FD Participation

  • 2024.3   Role:Participation   Title:有体物管理センターの業務および 成果有体物収入の配分率の変更について

    Organizer:University-wide

  • 2023.3   Role:Participation   Title:【生物学科】大学発明の出願・権利化に関するFD

    Organizer:Undergraduate school department

  • 2022.3   Role:Participation   Title:入学者選抜試験に関するFD

    Organizer:Undergraduate school department

  • 2022.3   Role:Participation   Title:全学FD:メンタルヘルス講演会

    Organizer:University-wide

  • 2020.12   Role:Participation   Title:新型コロナウィルス感染拡大状況での学生のメンタルヘルス

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.10   Role:Participation   Title:(生物学科FD)科研費改革後の学術研究動向について

    Organizer:Undergraduate school department

  • 2018.5   Role:Participation   Title:生物学科教育支援室の5年間とこれから

    Organizer:Undergraduate school department

  • 2016.8   Role:Participation   Title:高大連携・大学からのアプローチ

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2014.6   Role:Participation   Title:改定GPA制度の実施のためのFD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2013.3   Role:Participation   Title:理学研究院 化学部門・理学研究院 共同開催 平成24年度FD・HD講演会「アクティブ・ラーニング:入門と実践」

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2008.12   Role:Participation   Title:平成20年度システム生命科学府ファカルティディベロップメント

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2005.3   Role:Participation   Title:平成16年度理学部ファカルティディベロップメント

    Organizer:[Undergraduate school/graduate school/graduate faculty]

▼display all

Outline of Social Contribution and International Cooperation activities

  • ESSP (Excellent Students in Science) project for high school students

Social Activities

  • エクセレント・スチューデント・イン・サイエンス育成プロジェクト(ESSP ver.2)の実施(高校生対象)。 試験で選抜した少人数の高校生に対して、5日間の講義、実験を行った。

    2023.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop

  • エクセレント・スチューデント・イン・サイエンス育成プロジェクト(ESSP ver.2)の実施(高校生対象)。 試験で選抜した少人数の高校生に対して、5日間の講義、実験を行った。

    2022.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop

  • エクセレント・スチューデント・イン・サイエンス育成プロジェクト(ESSP ver.2)の実施(高校生対象)。 試験で選抜した少人数の高校生に対して、5日間の講義、実験を行った。

    2021.8

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop

Travel Abroad

  • 2013.12

    Staying countory name 1:Netherlands   Staying institution name 1:Hampshire Hotel Plaza Groningen

  • 2011.2 - 2011.11

    Staying countory name 1:Singapore   Staying institution name 1:National University of Singapore

  • 2009.11

    Staying countory name 1:United States   Staying institution name 1:Institute for Systems Biology

  • 2003.5

    Staying countory name 1:Germany   Staying institution name 1:リンダウ国際会議場