Updated on 2024/07/28

Information

 

写真a

 
YASUDA YOKO
 
Organization
Faculty of Medical Sciences Department of Health Sciences Assistant Professor
School of Medicine Department of Health Sciences(Concurrent)
Title
Assistant Professor
External link

Degree

  • Doctor of Philosophy

Research Interests・Research Keywords

  • Research theme: Elucidation of the mechanism of cancer metastasis based on typeⅠ transmembrane in cytokine-induced EMT cells

    Keyword: EMT, cytokine, transmembrane, epigenome, gastric cancer

    Research period: 2023.4 - 2024.3

Papers

  • Computational analysis of morphological and molecular features in gastric cancer tissues Reviewed International journal

    @Yoko Yasuda, @Kazuaki Tokunaga, @Tomoaki Koga, @Chiyomi Sakamoto, @Ilya G. Goldberg, @Noriko Saitoh, @Mitsuyoshi Nakao

    Cancer Medicine   2020.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Biological morphologies of cells and tissues represent their physiological and pathological conditions. The importance of quantitative assessment of morphological information has been highly recognized in clinical diagnosis and therapeutic strategies. In this study, we used a supervised machine learning algorithm wndchrm to classify hematoxylin and eosin (H&E)‐stained images of human gastric cancer tissues. This analysis distinguished between noncancer and cancer tissues with different histological grades. We then classified the H&E‐stained images by expression levels of cancer‐associated nuclear ATF7IP/MCAF1 and membranous PD‐L1 proteins using immunohistochemistry of serial sections. Interestingly, classes with low and high expressions of each protein exhibited significant morphological dissimilarity in H&E images. These results indicated that morphological features in cancer tissues are correlated with expression of specific cancer‐associated proteins, suggesting the usefulness of biomolecular‐based morphological classification.

    DOI: DOI: 10.1002/cam4.2885

  • Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli Reviewed International journal

    @Ayaka Matsumoto, @Chiyomi Sakamoto, @Haruka Matsumori, @Jun Katahira, @Yoko Yasuda, @Katsuhide Yoshidome, @Masahiko Tsujimoto, @Ilya G Goldberg, @Nariaki Matsuura, @Mitsuyoshi Nakao, @Noriko Saitoh, @Miki Hieda

    NUCLEUS   7   68 - 83   2016.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1080/19491034.2016.1149664

  • Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells Reviewed International journal

    @Kazuaki Tokunaga, @Noriko Saitoh, @Ilya G. Goldberg, @Chiyomi Sakamoto, @Yoko Yasuda, @Yoshinori Yoshida, @Shinya Yamanaka & @Mitsuyoshi Nakao

    SCIENTIFIC REPORTS   2014.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/srep06996

Presentations

  • Morphological and molecular analysis of gastric cancer tissues using machine-learning algorithm

    @安田洋子,@徳永和明,@@古賀友紹,@Ilya G. Goldberg,@坂本智代美,@斉藤典子,@中尾光善

    第42回日本分子生物学会  2019.12 

     More details

    Event date: 2019.12

    Language:Japanese  

    Venue:福岡国際会議場   Country:Japan  

    Accumulation of genetic and epigenetic abnormalities in cancer leads to dysregulation of gene expression, which may affect dynamic changes of cell and tissue formation. It is critical to understand morphological and molecular features of cells/tissues for cancer diagnosis and therapeutic application.
    Hematoxylin and eosin (H&E) stain is routinely utilized for pathological assessment of cancer, and it provides essential information of morphological contexts underlying various molecular events. In this study, we quantitatively evaluated morphological changes of H&E images in gastric cancer tissues using machine-learning algorithm, wndchrm. This analysis revealed that both hematoxylin (nuclear) and eosin (cytoplasmic) images contain morphological features enough to distinguish cancer tissues from normal tissues. We then performed a fact-driven analysis, which is the classification of H&E images by expression levels of cancer-associated nuclear ATF7IP/MCAF1 or membranous PD-L1 protein, to test a correlation between morphological changes and molecular expressions. The results showed high classification performance (90% for ATF7IP/MCAF1 and 86% for PD-L1), based on the high or low expression level of each antigen.
    These results show that morphological differences in H&E images are precisely detected by the machine-learning method, and our fact-driven analysis propose an objective identification to assess a biological link between morphologies and molecular expression patterns.

  • Evaluation of morphological dissimilarity in H&E images using machine-learning algorithm

    @Yoko Yasuda,@Kazuaki Tokunaga,@Tomoaki Koga,@Ilya G. Goldberg,@Chiyomi Sakamoto,@Noriko Saitoh,@Mitsuyoshi Nakao

    第58回日本臨床細胞学会  2019.11 

     More details

    Event date: 2019.11

    Language:English  

    Venue:ANAクラウンプラザホテル岡山   Country:Japan  

    Dynamic changes of cell morphology in cancer tissue reflect accumulation of genetic and epigenetic abnormalities. H&E slide is a conventional tool in pathological diagnosis and provide useful information of a morphological context underlying various molecular events. It is important for cancer therapy and diagnosis to understand the molecular mechanism behind morphological changes, however, little is known.
    Here, we quantified morphological dissimilarity of H&E images of gastric cancer with machine-learning algorithm, wndchrm. First, we verified that wndchrm algorithm reproduced cancer classification and differentiated grades based on human vision with acceptable accuracy. We next found that both hematoxylin (nuclear) and eosin (cytoplasmic) images equally contain morphological features enough to distinguish cancer grades. To investigate links between morphological change and molecular expression, we performed a fact-driven analysis, an image classification of H&E corresponding to expression level of ATF7IP/MCAF1 (nuclear protein) or PD-L1 (non-nuclear protein), resulting in high classification performance (90% for ATF7IP/MCAF1; 86% for PD-L1).
    Our data shows that quantitative evaluation of H&E images by machine-learning algorithm accurately detected morphological differences and propose the usefulness of machine-learning algorithm as a tool to elucidate a link between morphologies and molecular expression patterns.

  • Quantification analysis of morphological changes in pathological images by machine-learning algorithm

    @安田洋子,@徳永和明,@古賀友紹,@Ilya G. Goldberg,@坂本智代美,@斉藤典子,@中尾光善

    第78回日本癌学会学術総会  2019.9 

     More details

    Event date: 2019.9

    Language:Japanese  

    Venue:国立京都国際会館   Country:Japan  

    Morphologies of cells and tissues correlate with physiological status reflecting cumulative information of genetic and epigenetic abnormalities. Although its elucidation may give advantages for cancer therapy and diagnosis, molecular link between the morphologies and the abnormalities is largely unknown.
    Here, we utilized machine-learning algorithm, wndchrm, to analyze the morphological changes of gastric cancer tissues. We succeeded to quantify the morphological information of tissues, and also found that both hematoxylin (nuclear) and eosin (cytoplasmic) images equally contain morphological features enough to distinguish cancer grades. We next performed a fact-driven analysis, an image classification of H&E-stained slides based on expression level of ATF7IP/MCAF1 (nuclear protein) or PD-L1 (non-nuclear protein), resulting in high classification performance (90% for ATF7IP/MCAF1; 88% for PD-L1).
    Our data showed that quantification of morphologies objectively interpreted morphological changes of the tissue images and it might be a potential tool for elucidation of the molecular mechanisms behind morphological changes.

  • Computational image analysis of tissue morphologies using machine learning algorithms, wndchrm International conference

    @Yoko Yasuda, @Kazuaki Tokunaga, @Chiyomi Sakamoto, @Ilya G Goldberg, @Tomoaki Koga, @Noriko Saitoh, @Mitsuyoshi Nakao

    KEY Forum:The 3rd International Symposium on Stem Cell Trairs and Developmental Systems  2018.1 

     More details

    Event date: 2018.1

    Language:Others  

    Venue:Kumamoto City International Center, Japan   Country:Japan  

    Structure and function of cells and tissues are closely correlated in physiology and pathology, together with genetic and epigenetic regulation. For example, in differentiating cells and cancer cells, we can observe characteristic morphological features. However, molecular mechanisms behind these morphologies remain unclear because of our qualitative and descriptive assessments. Recently, automated image analysis has been developed and widely used for biomedical researches. A supervised machine learning algorithm, wndchrm (weighted neighbor distances using a compound hierarchy of algorithms representing morphology), is useful for automated image classification and quantification. We previously reported that wndchrm discriminated between completely multipotent iPS cells and incomplete non-iPS cells by measuring the morphological differences of the colony formation. In the present study, we investigated normal and cancer tissue morphologies with the wndchrm. We collected a large number of HE-stained tissue images from gastric cancer patients using tissue microarrays, and then asked whether wndchrm can discriminate morphological differences between normal and cancer tissues with malignant grades. Cancer tissue images were classified with 91% sensitivity and 99% specificity. When the classification was performed with cell nuclear region in the tissues, we obtained 87.5% sensitivity and 67.5% specificity. Our data showed that wndchrm successfully detected morphological differences between cancer and normal tissues, and that nuclear changes may contribute to the classifications, as is the nuclear atypia in routine pathological examinations. Collectively, computational image analyses are likely to contribute to morphological assessments and future clinical applications.

  • Quantitative analysis of tissue images using machine learning algorithms, wndchrm

    @Yoko Yasuda, Kazuaki Tokunaga, Chiyomi Sakamoto, Ilya G Goldberg, @Hitoshi Katsuta, Noriko Saitoh, Mitsuyoshi Nakao

    第76回日本癌学会学術総会  2017.9 

     More details

    Event date: 2017.9

    Language:Japanese  

    Venue:パシフィコ横浜   Country:Japan  

  • Discrimination between normal and cancer gastric tissue images using machine learning algorithms, wndchrm

    Yoko Yasuda, Kazuaki Tokunaga, Ilya G Goldberg, Noriko Saitoh, Mitsuyoshi Nakao

    第39回日本分子生物学会年会  2016.11 

     More details

    Event date: 2016.11 - 2016.12

    Language:Japanese  

    Venue:パシフィコ横浜   Country:Japan  

    Nuclear and chromatin structures dynamically change in diseases, especially cancer. Tissue architecture also dramatically changes in cancer tissue. Nuclear morphological changes reflect genetic and epigenetic alteration, and further cellular status. It is widely employed as criteria by cytopathologists to evaluate whether some lesions correspond to benign or malignancy. The assessment requires observer’s skills because of the lack of standardized methods to quantify morphological changes. We try to establish quantitative evaluation of cancer tissue, and to make a possible contribution to development of objective cytopathological diagnosis.
    We evaluated applied pattern recognition software, wndchrm that is a supervised machine learning algorithm. We made a set of image folders for classifications; normal and cancers at different grades. Then, training was performed to calculate image features on each image in all of the folders, and then test was followed. This software could discriminate between normal and cancer cells with relatively high sensitivity and specificity.
    We suggest that quantitative evaluation of cell morphologies may allow cancer diagnosis objectively and efficiently.

  • パターン認識プログラムと細胞核形態に着目した癌組織の定量化

    安田 洋子, 徳永和明, Ilya G Goldberg, 坂本智代美, 斉藤典子, 中尾光善

    2016 バイオイメージ・インフォマティクスWS  2016.6 

     More details

    Event date: 2016.8

    Language:Japanese  

    Venue:大阪大学   Country:Japan  

    臨床病理では、癌診断において組織構築や核形態やなどを指標としている。しかし、これらの判定は目視で行われており、観察者の経験に依存する側面があることから、客観的評価法を確立することは医療への貢献に繋がると考えられる。

  • 細胞核形態の定量化とパターン認識プログラムを用いた癌組織の判別

    安田 洋子, 徳永和明, Ilya G Goldberg, 坂本智代美, 斉藤典子, 中尾光善

    2015 バイオイメージ・インフォマティクスワークショップ  2015.6 

     More details

    Event date: 2016.6

    Language:Japanese  

    Venue:九州大学馬出キャンパス コラボステーション   Country:Japan  

  • Evaluation of the nuclear shapes in human cancer tissue International conference

    Yoko Yasuda, Kazuaki Tokunaga, Ilya G Goldberg, Noriko Saitoh, Mitsuyoshi Nakao

    The 4D Nucleome 2014  2014.12 

     More details

    Event date: 2014.12

    Language:Japanese  

    Venue:Hiroshima   Country:Japan  

▼display all

Professional Memberships

  • 日本臨床衛生検査技師会

  • 日本臨床細胞学会

  • 日本超音波検査学会

  • 日本分子生物学会

  • 日本癌学会

Research Projects

  • サイトカイン依存性発現変動を示すVasorinに着目した胃がん転移メカニズムの解明

    Grant number:23K14596  2023 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Early-Career Scientists

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

Educational Activities

  • I instruct histology and pathology practicum and medical engineering practicum for medical technology course's students.

Class subject

  • 組織・病理検査学および実習Ⅰ

    2023.10 - 2024.3   Second semester

  • 組織・病理検査学および実習Ⅲ

    2023.10 - 2024.3   Second semester

  • 一般検査学および実習

    2023.10 - 2024.3   Second semester

  • 組織・病理検査学および実習Ⅱ

    2023.4 - 2023.9   First semester

  • 組織・病理検査学および実習Ⅰ

    2022.10 - 2023.3   Second semester

  • 組織・病理検査学および実習Ⅲ

    2022.10 - 2023.3   Second semester

  • 組織・病理検査学および実習Ⅱ

    2022.4 - 2022.9   First semester

  • 臨床検査学概論Ⅰ

    2022.4 - 2022.9   First semester

  • 組織・病理検査学および実習Ⅰ

    2021.10 - 2022.3   Second semester

  • 一般検査学および実習

    2021.10 - 2022.3   Second semester

  • 組織・病理検査学および実習Ⅲ

    2021.10 - 2022.3   Second semester

  • 国際感染症学および実習

    2021.4 - 2021.9   First semester

  • 組織・病理検査学および実習Ⅱ

    2021.4 - 2021.9   First semester

  • 臨床検査学概論Ⅰ

    2021.4 - 2021.9   First semester

  • 組織・病理検査学および実習Ⅰ

    2020.10 - 2021.3   Second semester

  • 一般検査学および実習

    2020.10 - 2021.3   Second semester

  • 組織・病理検査学および実習Ⅲ

    2020.10 - 2021.3   Second semester

  • 生化学・臨床化学実習

    2020.10 - 2021.3   Second semester

  • 臨床検査学概論Ⅰ

    2020.10 - 2020.12   Fall quarter

  • 検査基礎技術

    2020.4 - 2020.9   First semester

  • 組織・病理検査学および実習Ⅱ

    2020.4 - 2020.9   First semester

  • 臨床検査学概論Ⅰ

    2020.4 - 2020.6   Spring quarter

▼display all

FD Participation

  • 2023.9   Role:Participation   Title:九州大学ラーニングアナリティクスセンター第2回シンポジウム聴講「生成系AIとラーニングアナリティクスによる新たな教育学習支援の可能性」

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2023.8   Role:Participation   Title:令和5年度4部局合同男女共同参画FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.9   Role:Participation   Title:令和4年度 九州大学大学院医学研究院保健学部門FD

    Organizer:Undergraduate school department

  • 2022.3   Role:Participation   Title:大学教職員職能開発FD 「TA制度の未来を考える〜九州大学の実践例を参考に〜」

    Organizer:University-wide

  • 2022.2   Role:Participation   Title:令和3年度馬出地区4部局合同男女共同参画FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.2   Role:Participation   Title:令和3年度馬出地区4部局合同男女共同参画FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.11   Role:Participation   Title:令和3年度 九州大学大学院医学研究院保健学部門FD

    Organizer:Undergraduate school department

  • 2021.7   Role:Participation   Title:生体防御医学研究所FD(web開催)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.11   Role:Participation   Title:令和2年度 馬出地区4部局合同男女共同参画FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.11   Role:Participation   Title:令和2年度 九州大学大学院医学研究院保健学部門FD

    Organizer:Undergraduate school department

  • 2019.9   Role:Participation   Title:平成31年度 九州大学大学院医学研究院保健学部門FD

    Organizer:Undergraduate school department

  • 2018.10   Role:Participation   Title:IDE大学協会九州支部・九州大学

    Organizer:University-wide

  • 2018.9   Role:Participation   Title:医学研究院 保健学部門 検査技術科学分野FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2018.3   Role:Participation   Title:医学研究院 保健学部門 検査技術科学分野FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2017.9   Role:Other   Title:平成29年度九州大学大学院医学研究院保健学部門FD

    Organizer:Undergraduate school department

  • 2017.9   Role:Other   Title:医学研究院 保健学部門 検査技術科学分野FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2017.3   Role:Other   Title:医学研究院 保健学部門 検査技術科学分野FD

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2017.2   Role:Participation   Title:災害時の教員の対応に関するFD

    Organizer:Undergraduate school department

  • 2016.9   Role:Participation   Title:平成28年度九州大学大学院医学研究院保健学部門FD

    Organizer:Undergraduate school department

  • 2015.9   Role:Participation   Title:平成27年度九州大学大学院医学研究院保健学部門FD

    Organizer:Undergraduate school department

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2023  博多メディカル専門学校・臨床工学士科  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:前期

  • 2023  久留米歯科衛生専門学校  Classification:Part-time lecturer  Domestic/International Classification:Japan 

    Semester, Day Time or Duration:前期(分担)

Participation in international educational events, etc.

  • 2023.11

    保健学部門

    2023年度保健学部門 国際フォーラム

  • 2022.11

    保健学部門

    保健学部門・国際フォーラム

  • 2021.11

    保健学部門

    保健学部門・国際フォーラム

  • 2020.11

    保健学部門

    保健学部門・国際フォーラム

  • 2019.11

    保健学部門

    保健学部門・国際フォーラム

  • 2018.11

    保健学部門

    保健学部門・国際フォーラム

  • 2017.11

    保健学部門

    保健学部門・国際フォーラム

  • 2016.11

    保健学部門

    保健学部門・国際フォーラム

  • 2015.11

    保健学部門

    保健学部門・国際フォーラム

▼display all

Other educational activity and Special note

  • 2023  Class Teacher  学部

  • 2022  Class Teacher  学部

  • 2021  Class Teacher  学部

  • 2020  Class Teacher  学部

Social Activities

  • 高大ジョイントセミナー(出前講義)

    福岡県立城南高等学校  2023.7

     More details

    Audience:Infants, Schoolchildren, Junior students, High school students

    Type:Seminar, workshop

  • 不明

    第16回 九州大学医学部保健学科公開講座  九州大学病院キャンパス 医学部保健学科棟  2018.9

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Lecture

  • 子宮頸癌検診啓発活動

    日本臨床細胞学会福岡地区  博多大丸パサージュ広場  2016.4

     More details

    Audience:General, Scientific, Company, Civic organization, Governmental agency

    Type:Other