Updated on 2024/10/02

Information

 

写真a

 
SAIGO HIROTO
 
Organization
Faculty of Information Science and Electrical Engineering Department of Informatics Associate Professor
School of Sciences Department of Physics(Concurrent)
Graduate School of Information Science and Electrical Engineering Department of Information Science and Technology(Concurrent)
Joint Graduate School of Mathematics for Innovation (Concurrent)
Title
Associate Professor
Contact information
メールアドレス
Tel
0928023783
Profile
His research interest is in developing methods for data mining and artificial intelligence, and applying them to problems in biology and chemistry. He also serves as a program committee member for international conferences in bioinformatics and machine learning.
External link

Degree

  • Doctor of Informatics

Research History

  • 2010-2015 九州工業大学(准教授) 2008-2010 Max Planck Institute for Informatics, Germany (Research Scientist) 2006-2008 Max Planck Institute for Biological Cybernetics, Germany (Research Scientist)

Research Interests・Research Keywords

  • Research theme:Machine Learning for High-Level Radioactive Waste Management: An Approach Based on Control of High-Temperature Multiphase Melts

    Keyword:machine learning, high-level radioactive waste, high-temperature multiphase melts

    Research period: 2023.4

  • Research theme:A machine learning approach to automatic design of genes, proteins and chemical compounds

    Keyword:machine learning, protein squence, chemical compound, design

    Research period: 2022.9

  • Research theme:Development of machine learning methods towards manufacturing informatics

    Keyword:machine learning, data mining, statistics

    Research period: 2018.4

  • Research theme:Development of a GWAS method that considers interaction among genetic factors and environmental factors

    Keyword:GWAS, interaction

    Research period: 2013.3

  • Research theme:Development and application of statistical learning methods to the problems associated with Human Immunodeficiency Virus (HIV).

    Keyword:HIV, statistical learning, pattern mining

    Research period: 2008.6

  • Research theme:Integration of frequent pattern mining with machine learning algorithms

    Keyword:頻出パターンマイニング、ブースティング、線形計画法、SVM

    Research period: 2006.6

  • Research theme:Development of kernel methods for detecting remote homology between protein sequences.

    Keyword:kernel methods, protein homology detection, alignment, SVM

    Research period: 2002.4 - 2006.3

Awards

  • 奨励賞

    2007.6   人工知能学会   奨励賞

  • Best Paper Award

    2006.6   Mining and Learning with Graphs Committee  

Papers

  • Einstein-Roscoe regression for the slag viscosity prediction problem in steelmaking Reviewed International journal

    @Saigo, H., Bahadur, K.C.D, @Saito, N.

    Scientific Reports   12   2022.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Other Link: https://www.nature.com/articles/s41598-022-10278-w

  • Automatically mining relevant variable interactions via sparse Bayesian learning Reviewed International journal

    #Yafune, R., #Sakuma, D., Tabei, Y., @Saito, N., @Saigo, H.

    International Conference on Pattern Recognition   2021.1

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • KDE: a Kernel-based approach to detecting high-order genetic Epistasis Reviewed International journal

    Kodama, K., Saigo, H.

    The 27th International Conference on Genome Informatics (GIW2016)   2016.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Protein Structure Comparison Based on 3D Molecular Visualization Images Reviewed International journal

    Suryanto, C. H., Saigo, H., Fukui, K.

    2016.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Extracting sets of chemical substructures and protein domains governing drug-target interactions Reviewed International journal

    Yamanishi, Y., Pauwels, E., Saigo, H., Stoven, V.

    51 ( 5 )   1183 - 1194   2011.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Learnig from past treatments and their outcome improves prediction of in vivo response t anti-HIV therapy Reviewed International journal

    Saigo, H., Altmann, A., Bogojeska, J., Mueller, F., Nowozin, S., and Lengauer, T.

    10 ( 1 )   2011.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Reaction graph kernels that predict EC numbers of unknown enzymatic reactions in the secondary metabolism of plant Reviewed International journal

    Saigo, H., Hattori, M., Kashima, H., and Tsuda, K.

    Asia Pacific Bioinformatics Conference (APBC2010)   2010.1

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • gBoost: A mathematical programming approach to graph classification and regression Reviewed International journal

    Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., and Tsuda, K.

    75 ( 1 )   69 - 89   2009.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Iterative Subgraph Mining for Principal Component Analysis Reviewed International journal

    Saigo, H. and Tsuda, K.

    IEEE International Conference on Data Mining (ICDM2008)   2008.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Partial Least Squares Regression for Graph Mining Reviewed International journal

    Saigo, H., Kraemer, N. and Tsuda, K.

    ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2008)   2008.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism Reviewed International journal

    Saigo, H., M. Hattori and K. Tsuda:

    NIPS Workshop on Machine Learning in Computational Biology,   2007.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Graph boosting for molecular QSAR analysis Reviewed International journal

    Saigo, H., Kadowaki, T., Kudo, T. and Tsuda, K.

    NIPS Workshop on Machine Learning in Computational Biology,   2006.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • A Linear Programming Approach for Molecular QSAR analysis Reviewed International journal

    Saigo, H., Kadowaki, T. and Tsuda, K.

    International Workshop on Mining and Learning with Graphs (MLG2006)   2006.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Optimizing amino acid substitution matrices with a local alignment kernel Reviewed International journal

    Saigo, H., Vert J.-P. and Akutsu, T.

    7 ( 246 )   1 - 12   2006.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants Reviewed International journal

    Danziger, S. A., Swamidass, S. J., Zeng, J., Dearth, L. R., Lu, Q., Cheng, J. H., Cheng, J. L., Hoang, V. P., Saigo, H., Luo, R., Baldi, P., Brachmann, R. K. and Lathrop, R. H.

    3 ( 2 )   114 - 125   2006.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • A novel representation of protein sequences for prediction of subcellular location using support vector machines Reviewed International journal

    Matsuda, S., Vert, J.-P., Saigo, H., Ueda, N., Toh, H. and Akutsu, T.

    14   2804 - 2813   2005.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Graph Kernels for Chemical Informatics Reviewed International journal

    Ralaivola, L., Swamidass, J. S., Saigo, H. and Baldi, P.

    18 ( 8 )   1093 - 1110   2005.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Benchmarking a Wide Range of Unsupervised Learning Methods for Detecting Anomaly in Blast Furnace

    Itakura K., Bahadur D., Saigo H.

    International Conference on Pattern Recognition Applications and Methods   1   641 - 650   2024   ISBN:9789897586842

     More details

    Publisher:International Conference on Pattern Recognition Applications and Methods  

    Steel plays important roles in our daily lives, as it surrounds us in the form of various products. Blast furnace, one of the main facility in steel production process, is traditionally monitored by skilled workers to prevent incidents. However, there is a growing demand to automate the monitoring process by leveraging machine learning. This paper focuses on investigating the suitability of unsupervised learning methods for detecting anomalies in blast furnaces. Extensive benchmarking is conducted using a dataset collected from blast furnaces, encompassing a wide range of unsupervised learning methods, including both traditional approaches and recent deep learning-based techniques. The computational experiments yield results that suggest the effectiveness of traditional methods over deep learning-based methods. To validate this observation, additional experiments are performed on publicly available non time series datasets and complex time series datasets. These experiments serve to confirm the superiority of traditional methods in handling non time series datasets, while deep learning methods exhibit better performance in dealing with complex time series datasets. We have also discovered that dimensionality reduction before anomaly detection is beneficial in eliminating outliers and effectively modeling the normal data points in the blast furnace dataset.

    DOI: 10.5220/0012310800003654

    Scopus

  • A Branch-and-Bound Approach to Efficient Classification and Retrieval of Documents

    Ii K., Saigo H., Tabei Y.

    International Conference on Pattern Recognition Applications and Methods   1   205 - 214   2024   ISBN:9789897586842

     More details

    Publisher:International Conference on Pattern Recognition Applications and Methods  

    Text classification and retrieval have been crucial tasks in natural language processing. In this paper, we present novel techniques for these tasks by leveraging the invariance of feature order to the evaluation results. Building on the assumption that text retrieval or classification models have already been constructed from the training documents, we propose efficient approaches that can restrict the search space spanned by the test documents. Our approach encompasses two key contributions. The first contribution introduces an efficient method for traversing a search tree, while the second contribution involves the development of novel pruning conditions. Through computational experiments using real-world datasets, we consistently demonstrate that the proposed approach outperforms the baseline method in various scenarios, showcasing its superior speed and efficiency.

    DOI: 10.5220/0012310600003654

    Scopus

  • pLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and embedding from pre-trained protein language model Invited Reviewed International journal

    Pratyush, P., Pokharel, S., @Saigo, H., KC.D.B.

    BMC Bioinformatics   24 ( 1 )   2023.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Sparse nonnegative interaction models Reviewed International journal

    #Takayanagi, M., Tabei, Y., @Suzuki, E., @Saigo, H.

    IEEE Access   2021.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/ACCESS.2021.3099473

    Other Link: https://ieeexplore.ieee.org/document/9493878

  • Topic modeling for sequential documents based on hybrid inter-document topic dependency Reviewed International journal

    #Li, W. and @Saigo, H. and Tong, E. and @Suzuki, E.

    Journal of Intelligent Information Systems,   56 ( 3 )   453 - 458   2021.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • DeepRMethylSite: a deep learning based approach for prediction of arginine methylation sites in proteins Reviewed International journal

    Chaudhari, M., Thapa, N., S., Roy, K., Newman, R.H., @Saigo, H., KC, D.B.

    Molecular Omics   2020.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Context-Aware Latent Dirichlet Allocation for Topic SegmentationWenbo Li,?Tetsu Matsukawa,?Hiroto Saigo,?Einoshin Suzuki: Reviewed International journal

    #Wenbo Li,?Tetsu Matsukawa,?Hiroto Saigo,?Einoshin Suzuki

    PAKDD   2020.5

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction, Reviewed International journal

    Thapa, N., Chaudhari, M., McManus, S., Roy, K., Newman, R.H., Saigo, H., KC, D.B.

    BMC Bioinformatics   2020.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites Reviewed International journal

    Al-barakati, H.J., Thapa, N., Saigo, H., Roy, K., Newman, R.H., Bahadur, K.C.D.

    Computational and Structural Biotechnology Journal   2020.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • SVM-GlutarySite: A support vector machine-based prediction of Glutarylation sites from protein sequences Reviewed International journal

    Albarakati, H., Saigo, H., Newman, R.H., KC, D.B.

    Joint GIW/ABACBS-2019 Bioinformatics Conference   2019.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • RF-GlutarySite: a random forest predictor for glutarylation sites Reviewed International journal

    Al-barakati, H.J., @Saigo, H., Newman, R.H., Bahadur, K.C.D.

    Molecular Omics   ( 15 )   189 - 204   2019.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction Reviewed International journal

    Thapa, N., Chaudhari, M., McManus, S., Roy, K., Newman, R.H., Saigo, H., KC, D.B.

    MCBIOS   2019.3

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Entire regularization path for sparse nonnegative interaction model Reviewed International journal

    #Takayanagi, M., Tabei, Y., Saigo, H.

    ICDM   2018.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Structural Class Classification of 3D Protein Structure Based on Multi-View 2D Images Reviewed

    Chendra Hadi Suryanto, Hiroto Saigo, Kazuhiro Fukui

    IEEE/ACM Transactions on Computational Biology and Bioinformatics   15 ( 1 )   286 - 299   2018.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/TCBB.2016.2603987

  • CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes Reviewed International journal

    2017.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • RF-NR: Random forest based approach for improved classification of Nuclear Receptors Reviewed International journal

    Ismail, H.D., Saigo, H., Bahadur, K.C.D.

    IEEE Transactions on Computational Biology and Bioinformatics   2017.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes Reviewed International journal

    2017.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • KDSNP: A kernel-based approach to detecting high-order SNP interactions Reviewed

    Kento Kodama, Hiroto Saigo

    Journal of Bioinformatics and Computational Biology   14 ( 5 )   1 - 16   2016.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1142/S0219720016440030

  • Scalable Partial Least Squares Regression on Grammar- Compressed Data Matrices Reviewed International journal

    Tabei, Y., Saigo, H., Yamanishi, Y., Puglisi, S.

    The 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD2016)   2016.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Mining Discriminative Patterns from Graph Data with Multiple Labels and Its Application to Quantitative Structure-Activity Relationship (QSAR) Models Reviewed

    Zheng Shao, Yuya Hirayama, Yoshihiro Yamanishi, Hiroto Saigo

    JOURNAL OF CHEMICAL INFORMATION AND MODELING   55 ( 12 )   2519 - 2527   2015.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1021/acs.jcim.5b00376

  • RF-NR: Random forest based approach for improved classification of Nuclear Receptors Reviewed

    Ismail, H.D, Saigo, H, Bahadur, K.C, D

    International Conference on Genome Informatics & International Conference on Bioinformatics (GIW/InCoB2015)   2015.9

     More details

    Language:English   Publishing type:Research paper (other academic)  

    RF-NR: Random forest based approach for improved classification of Nuclear Receptors

  • Fast Iterative Mining Using Sparsity-Inducing Loss Functions Reviewed

    Hiroto Saigo, Hisashi Kashima, Koji Tsuda

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS   E96D ( 8 )   1766 - 1773   2013.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1587/transinf.E96.D.1766

  • Protein Clustering on Grassman Manifold, Pattern Recognition in Bioinformatics Reviewed International journal

    Suryanto, C.H., Saigo, H., Fukui, K.

    Pattern Recognition in Bioinformatics (PRIB2012)   2012.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • A Bayesian Approach to Graph Regression with Relevant Subgraph Selection Reviewed International journal

    Chiappa, S., Saigo, H. and Tsuda, K.

    Siam International Conference on Data Mining (SDM2009)   2009.4

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Regression with Interval Output Values Reviewed International journal

    Kashima, H., Yamasaki, K., Saigo, H. and Inokuchi, A.

    International Conference on Pattern Recognition (ICPR2008)   2008.1

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Regression with Intervals Reviewed International journal

    Kashima, H., Yamazaki, K., Saigo, H. and Inokuchi, A.

    International Workshop on Data-Mining and Statistical Science (DMSS2007)   2007.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Mining complex genotypic features for predicting HIV-1 drug resistance Reviewed

    Hiroto Saigo, Takeaki Uno, Koji Tsuda

    BIOINFORMATICS   23 ( 18 )   2455 - 2462   2007.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/bioinformatics/btm353

  • Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants

    SA Danziger, SJ Swamidass, J Zeng, LR Dearth, Q Lu, JH Chen, JL Cheng, VP Hoang, H Saigo, R Luo, P Baldi, RK Brachmann, RH Lathrop

    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS   3 ( 2 )   114 - 125   2006.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/TCBB.2006.22

  • Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching

    JL Cheng, H Saigo, P Baldi

    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS   62 ( 3 )   617 - 629   2006.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/prot.20787

  • Protein homology detection using string alignment kernels

    H Saigo, JP Vert, N Ueda, T Akutsu

    BIOINFORMATICS   20 ( 11 )   1682 - 1689   2004.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/bioinformatics/bth141

▼display all

Books

  • Matrix Decomposition-based Dimensionality Reduction on Graph Data In Sakr, S. and Pardede, E. editors Graph Data Management: Techniques and Applications

    ( Role: Joint author)

    2011.1 

     More details

    Responsible for pages:260-284   Language:English   Book type:Scholarly book

  • Graph Mining for Chemoinformatics In Lodhi, H and Yamanishi, Y. editors Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Method and Collaborative Technique

    ( Role: Joint author)

    2010.1 

     More details

    Responsible for pages:95-128   Language:English   Book type:Scholarly book

  • Graph Classification  In Sakr, C.C.C. and Wang, H. editors Managing and Mining Graph Data

    ( Role: Joint author)

    2010.1 

     More details

    Responsible for pages:337-364   Language:English   Book type:Scholarly book

  • Graph Kernels for Chemoinformatics In Lodhi, H and Yamanishi, Y. editors Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Method and Collaborative Techniques

    ( Role: Joint author)

    2010.1 

     More details

    Responsible for pages:1-15   Language:English   Book type:Scholarly book

  • Deep Learning-Based Advances In Protein Posttranslational Modification Site and Protein Cleavage Prediction in "Methods in Molecular Biology"

    Subash C Pakhrin, Suresh Pokharel, @Hiroto Saigo, Dukka B Kc( Role: Joint author)

    Springer  2022.6    ISSN:10643745

     More details

    Language:English   Book type:Scholarly book

    DOI: 10.1007/978-1-0716-2317-6_15

    Scopus

    PubMed

  • Local Alignment Kernels for Biological Sequences,  In Bernhard Scheolkopf, Koji Tsuda and Jean-Philippe Vert editors, Kernel Methods in Computational Biology

    ( Role: Joint author)

    2004.1 

     More details

    Responsible for pages:131-153   Language:English   Book type:Scholarly book

▼display all

Presentations

  • Automatically mining relevant variable interactions via sparse Bayesian learning International conference

    #Yafune, R., #Sakuma, D., Tabei, Y., @Saito, N., @Saigo, H.

    International Conference on Pattern Recognition  2021.1 

     More details

    Event date: 2021.1

    Language:English   Presentation type:Oral presentation (general)  

    Country:Italy  

  • Entire regularization path for sparse nonnegative interaction model International conference

    #Takayanagi, M., Tabei, Y., Saigo, H.

    International Conference on Data Mining (ICDM)  2018.11 

     More details

    Event date: 2017.9

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • Towards predicting the epistasis in genome wide association study International conference

    Saigo, H.

    BMIRC2015  2015.3 

     More details

    Language:English  

    Country:Japan  

  • Towards predicting the epistasis in genome wide association study International conference

    Saigo, H.

    BMIRC2015  2015.3 

     More details

    Language:English  

    Country:Japan  

  • Mining and learning with structured data International conference

    Saigo, H.

    BIT2016  2016.3 

     More details

    Language:English  

    Country:Taiwan, Province of China  

  • Reaction graph kernels that predict EC numbers of unknown enzymatic reactions in the secondary metabolism of plant International conference

    Saigo, H., Hattori, M., Kashima, H., and Tsuda, K.

    Asia Pacific Bioinformatics Conference (APBC2010)  2010.1 

     More details

    Language:English  

    Country:India  

  • KDE: a Kernel-based approach to detecting high-order genetic Epistasis International conference

    Kodama, K., Saigo, H.

    The 27th International Conference on Genome Informatics (GIW2016)  2016.10 

     More details

    Language:English  

    Country:China  

  • Optimization of amino acid substitution matrices by Gaussian process and sequence alignment

    2023.9 

     More details

    Event date: 2024.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • Improving the Efficiency of Auditory Brainstem Response Testing Using k-means

    2023.9 

     More details

    Event date: 2024.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Country:Japan  

  • Benchmarking a wide range of unsupervised learning methods for detecting anomaly in blast furnace International conference

    # Kendai Itakura, Dukka Bahadur KC, Hiroto Saigo

    International Conference of Pattern Recognition Applications and Methods (ICPRAM2024)  2024.2 

     More details

    Event date: 2024.2

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Country:Italy  

  • A branch-and-bound approach to efficient classification and retrieval of documents International conference

    # Kotaro Ii, Yasuo Tabei, Hiroto Saigo

    International Conference of Pattern Recognition Applications and Methods (ICPRAM2024)  2024.4 

     More details

    Event date: 2024.2

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Country:Italy  

  • 機械学習・深層学習を用いた高炉の教師なし異常検知

    #板倉, @西郷

    情報学的学習理論ワークショップ(IBIS2022)  2022.11 

     More details

    Event date: 2023.11

    Language:Japanese  

    Venue:つくば国際会議場   Country:Japan  

  • 深層学習を利用した高炉内の異常検知 International conference

    #木崎亮介, @西郷浩人

    情報学的学習理論ワークショップ  2022.6 

     More details

    Event date: 2021.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Online   Country:Japan  

  • 深層学習を利用した高炉内の異常検知

    #木崎 亮介, @西郷 浩人

    人工知能基本問題研究会  2021.3 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Online   Country:Japan  

  • Context-Aware Latent Dirichlet Allocation for Topic SegmentationWenbo Li, Tetsu Matsukawa, Hiroto Saigo, Einoshin Suzuki: International conference

    #Wenbo Li, Tetsu Matsukawa, Hiroto Saigo, Einoshin Suzuki

    2020.5 

     More details

    Event date: 2020.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Online   Country:Japan  

  • Bayesian Optimization for Sequence Data International conference

    #Kohei Oyamada and Hiroto Saigo

    10th International Conference on Bioscience, Biochemistry and Bioinformatics  2020.1 

     More details

    Event date: 2020.1

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • A Sparse Bayesian Approach to Combinatorial Feature Selection and Its Applications to Biological Data International conference

    #Ryoichiro Yafune, #Daisuke Sakuma, Yasuo Tabei, Noritaka Saito, Einoshin Suzuki and Hiroto Saigo

    10th International Conference on Bioscience, Biochemistry and Bioinformatics  2020.1 

     More details

    Event date: 2020.1

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  • SVM-GlutarySite: A support vector machine-based prediction of Glutarylation sites from protein sequences International conference

    Albarakati, H., Saigo, H., Newman, R.H., KC, D.B.

    Joint GIW/ABACBS-2019 Bioinformatics Conference  2019.9 

     More details

    Event date: 2019.12

    Language:English   Presentation type:Oral presentation (general)  

    Country:Australia  

  • 変数間作用を考慮した非負スパースモデルの正則化経路探索

    #高柳 未来1、田部井 靖生、@西郷 浩人

    人工知能学会全国大会(第33回)  2019.6 

     More details

    Event date: 2019.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:朱鷺メッセ新潟コンベンションセンター   Country:Japan  

  • アイテムセットを用いたスパースベイズ学習

    #矢船 僚一朗、@西郷 浩人

    人工知能学会全国大会(第33回)  2019.6 

     More details

    Event date: 2019.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:朱鷺メッセ新潟コンベンションセンター   Country:Japan  

  • DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction International conference

    Thapa, N., Chaudhari, M., McManus, S., Roy, K., Newman, R.H., Saigo, H., KC, D.B.

    MCBIOS  2019.3 

     More details

    Event date: 2019.3

    Language:English   Presentation type:Oral presentation (general)  

    Country:United States  

  • Mining and Learning with Structured Data International conference

    Hiroto Saigo

    Japan America Germany Frontiers of Science Symposium  2017.9 

     More details

    Event date: 2017.9

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Country:Germany  

  • CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes International conference

    2017.9 

     More details

    Event date: 2017.9

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Shenzhen   Country:Japan  

  • Learning from treatment history to predict response to anti-HIV therapy

    Saigo, H.

    BMIRC2013  2013.2 

     More details

    Language:English  

    Country:Japan  

  • Mining discriminative patterns from graph data with multiple labels

    Saigo, H.

    BMIRC2014  2014.1 

     More details

    Language:English  

    Country:Japan  

  • Mining and learning with structured data

    Saigo, H.

    2016.1 

     More details

    Language:Japanese  

    Country:Japan  

  • Multiple response regression for graph mining International conference

    Saigo, H.

    Department of Computing Seminar, Imperial College London  2013.10 

     More details

    Language:English  

    Country:United Kingdom  

  • Multiple response regression for graph mining International conference

    Saigo, H.

    Friedrich Miescher Lab. Seminar  2013.11 

     More details

    Language:English  

    Country:Germany  

  • Protein Clustering on Grassman Manifold, Pattern Recognition in Bioinformatics International conference

    Suryanto, C.H., Saigo, H., Fukui, K.

    Pattern Recognition in Bioinformatics (PRIB2012)  2012.11 

     More details

    Language:English  

    Country:Japan  

  • A Bayesian Approach to Graph Regression with Relevant Subgraph Selection International conference

    Chiappa, S., Saigo, H. and Tsuda, K.

    Siam International Conference on Data Mining (SDM2009)  2009.4 

     More details

    Language:English  

    Country:United States  

  • Iterative Subgraph Mining for Principal Component Analysis International conference

    Saigo, H. and Tsuda, K.

    IEEE International Conference on Data Mining (ICDM2008)  2008.12 

     More details

    Language:English  

    Country:Italy  

  • Regression with Interval Output Values International conference

    Kashima, H., Yamasaki, K., Saigo, H. and Inokuchi, A.

    International Conference on Pattern Recognition (ICPR2008)  2008.1 

     More details

    Language:English  

    Country:United States  

  • Partial Least Squares Regression for Graph Mining International conference

    Saigo, H., Kraemer, N. and Tsuda, K.

    ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2008)  2008.8 

     More details

    Language:English  

    Country:United States  

  • Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism International conference

    Saigo, H., M. Hattori and K. Tsuda:

    NIPS Workshop on Machine Learning in Computational Biology,  2007.12 

     More details

    Language:English  

    Country:Canada  

  • Regression with Intervals International conference

    Kashima, H., Yamazaki, K., Saigo, H. and Inokuchi, A.

    International Workshop on Data-Mining and Statistical Science (DMSS2007)  2007.10 

     More details

    Language:English  

    Country:Japan  

  • Graph boosting for molecular QSAR analysis International conference

    Saigo, H., Kadowaki, T., Kudo, T. and Tsuda, K.

    NIPS Workshop on Machine Learning in Computational Biology,  2006.12 

     More details

    Language:English  

    Country:Canada  

  • A Linear Programming Approach for Molecular QSAR analysis International conference

    Saigo, H., Kadowaki, T. and Tsuda, K.

    International Workshop on Mining and Learning with Graphs (MLG2006)  2006.9 

     More details

    Language:English  

    Country:Germany  

  • Introduction to Chemoinformatics

    Saigo, H.

    2015.1 

     More details

    Language:Japanese  

    Country:Japan  

  • Pteris Vittata analysis report

    Saigo, H.

    2013.2 

     More details

    Language:Japanese  

    Country:Japan  

  • Clustering approach to drug discovery International conference

    Saigo, H.

    Novartis Animal Health Department Seminar  2012.12 

     More details

    Language:English  

    Country:Switzerland  

  • Learn- ing from past treatments and their outcome improved prediction of in vivo response to anti-HIV therapy International conference

    Saigo, H.

    Ecole des Mines de Paris and Paris Tech in Paris Seminar  2010.2 

     More details

    Language:English  

    Country:France  

  • Incorporating detailed information on treatment history improves prediction of response to anti-HIV therapy International conference

    Saigo, H.

    Eidgenoesische Technische Hochschule (ETH) Zuerich Seminar  2009.12 

     More details

    Language:English  

    Country:Switzerland  

  • Incorporating detailed information on treatment history improves prediction of response to anti-HIV therapy International conference

    Saigo, H.

    Universitet van Amsterdam Seminar  2009.12 

     More details

    Language:English  

    Country:Netherlands  

  • Partial Least Squares Regression for Graph Mining International conference

    Saigo, H.

    Ecole des Mines de Paris and Paris Tech in Paris Seminar  2008.5 

     More details

    Language:English  

    Country:France  

  • A Linear Programming Approach for Molecular QSAR analysis International conference

    Saigo, H.

    Fraunhofer FIRST Seminar  2006.9 

     More details

    Language:English  

    Country:Germany  

  • Classification of chemical compounds using graph kernels

    Saigo, H.

    Information-Based Induction Science (IBIS) 2005  2005.10 

     More details

    Language:Japanese  

    Country:Japan  

  • SNP間相互作用探索アルゴリズム

    池田直人, 西郷浩人

    第30回情報処理学会バイオ情報学研究会  2012.8 

     More details

    Language:Japanese  

    Venue:九州工業大学   Country:Japan  

  • カイ二乗検定によるp値の下限値を利用した遺伝子相互作用の効率的な数え上げ

    山口拓郎, 西郷浩人

    第42回バイオ情報学研究会  2015.6 

     More details

    Language:Japanese  

    Venue:沖縄科学技術先端大学院大学   Country:Japan  

  • RF-NR: Random forest based approach for improved classification of Nuclear Receptors

    Ismail, H.D., Saigo, H., Bahadur, K.C.D.

    The 26th International Conference on Genome Informatics & International Conference on Bioinformatics (GIW/InCoB2015)  2015.9 

     More details

    Language:English  

    Country:Japan  

  • 応答変数が連続値の際の組み合わせ仮説に対する多重検定補正法

    井ノ口敬章, 永野竜輝, 西郷浩人

    第103回人工知能基本問題研究会  2017.3 

     More details

    Language:Japanese  

    Venue:湯布院公民館   Country:Japan  

  • Scalable Partial Least Squares Regression on Grammar- Compressed Data Matrices International conference

    Tabei, Y., Saigo, H., Yamanishi, Y., Puglisi, S.

    The 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD2016)  2016.8 

     More details

    Language:English  

    Country:United States  

  • Mining and Learning with Structured Data, Japan America Germany Frontiers of Science Symposium Invited International conference

    Japan America Germany Frontiers of Science Symposium  2017.9 

     More details

    Language:English  

    Country:Other  

▼display all

MISC

  • QSARモデルの構築; 機械学習と部分構造マイニングによるアプローチ

    西郷 浩人

    日本化学会情報化学部会誌   2013.7

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 局所アラインメントカーネルを用いたアミノ酸置換行列の最適化

    西郷 浩人, ジャンフィリップ・ヴェール, 阿久津 達也

    情報処理学会研究報告数理モデル化と問題解決(MPS)   2006.3

     More details

    Language:English  

    生物学的配列間の類似性検出はバイオインフォマティクスにおける重要な問題で、特に微弱な類似性を検出するのは難しいことが知られている。我々は先の研究において局所アラインメントカーネルを提案して、良い結果を示した。局所アラインメントカーネルの性能はアミノ酸置換行列に依存するが、本稿では局所アラインメントカーネルのアミノ酸置換行列に対する導関数が解析的に求めることができ、かつ動的計画法で効率良く計算できることを示す。さらに導関数を利用する最適化法と組み合わせることにより真の類似配列を僞の類似配列から区別するようにアミノ酸置換行列を最適化する。局所アラインメントカーネルは、Smith-Watermanアルゴリズムによって最適化されたアミノ酸置換行列よりも局所アラインメントカーネルによって最適化されたアミノ酸置換行列において良い性能を示した。更にこの行列はSmith-Watermanアルゴリズムと組み合わせてもうまく利用することが出来る。Detecting similarity between protein sequence is one of the core problems in bioinformatics, and detecting weak similarities is known as a hard problem. We have proposed a local alignmnet kernel for this purpose and showed good performance in the previous research. The local alignment kernel depdends on amino acid substitution matrices. In this paper, we show that we can analytically calculate the derivatives of the local alignment kernels with respect to amino acid substitution matrix as well as their efficient calculation through dynamic programming. Then we plug them into the gradient based optimization procedure which is designed to discriminate true homologs from non-homologs. The local alignment kernel exhibits better performance when it uses the matrices and gap parameters optimized by this procedure than when it uses the matrices optimized for the Smith-Waterman algorithm. Furthermore, the matrices and gap parameters optimized for the local alignment kernel can also be used successfully by the Smith-Waterman algorithm.

Professional Memberships

  • Japanese Society of Bioinformatics (JSBi)

  • Japanese Society of Artificial Intelligence (JSAI)

  • Japanese Society of Statistics (JSS)

  • The Iron and Steel Institute of Japan (ISIJ)

  • JAPANESE SOCIETY FOR BIOINFORMATICS

  • THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE

  • THE JAPAN STATISTICAL SOCIETY

▼display all

Academic Activities

  • Pattern Recognition International contribution

    2023.12 - Present

     More details

    Type:Academic society, research group, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2023

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:1

    Proceedings of International Conference Number of peer-reviewed papers:10

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:2

    Proceedings of International Conference Number of peer-reviewed papers:9

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • プログラム編集委員長

    電気・情報関係学会九州支部連合大会  2021.9

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2021

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Number of peer-reviewed articles in Japanese journals:1

    Proceedings of International Conference Number of peer-reviewed papers:4

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • プログラム委員 International contribution

    ( その他 ) 2020.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

    生命医薬情報学連合大会 (IIBMP2020)  ( その他 ) 2020.9

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    ( その他 ) 2020.7

     More details

    Type:Competition, symposium, etc. 

  • Frontiers in Bioinformatics International contribution

    2020.5 - Present

     More details

    Type:Academic society, research group, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2020

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:5

    Proceedings of International Conference Number of peer-reviewed papers:14

    Proceedings of domestic conference Number of peer-reviewed papers:22

  • プログラム委員 International contribution

    2019.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    2019.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

    2019.11

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    2019.6

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    2019.4

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Number of peer-reviewed articles in Japanese journals:1

    Proceedings of International Conference Number of peer-reviewed papers:19

  • プログラム委員 International contribution

    2018.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    2018.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    2018.10

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    2018.4

     More details

    Type:Competition, symposium, etc. 

  • 担当幹事

    人工知能学会 人工知能基本問題研究会  ( 石垣島 ) 2018.1

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    2018.1

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:2

    Proceedings of International Conference Number of peer-reviewed papers:16

  • プログラム委員 International contribution

    2017.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    2017.11

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    2017.4

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2017

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

    Proceedings of International Conference Number of peer-reviewed papers:32

  • 担当幹事

    人工知能学会 人工知能基本問題研究会  ( 九州大学博多駅オフィス ) 2016.12

     More details

    Type:Competition, symposium, etc. 

  • 座長(Chairmanship)

    JSBi年会(2015)  2015.10

     More details

    Type:Competition, symposium, etc. 

  • 座長(Chairmanship)

    JSBi年会(2013)  2013.10

     More details

    Type:Competition, symposium, etc. 

  • 座長(Chairmanship)

    2012.11

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

    JSBi年会(2015) 

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

    JSBi年会(2013) 

     More details

    Type:Competition, symposium, etc. 

▼display all

Research Projects

  • 機械学習による遺伝子、タンパク質、化合物の自動設計

    2023.6

      More details

    Authorship:Principal investigator 

  • 高レベル放射性廃棄物処理のための機械学習:高温多相融体の制御によるアプローチ

    2023.4

      More details

    Authorship:Principal investigator 

  • 高レベル放射性廃棄物処理のための機械学習:高温多相融体の制御によるアプローチ研究

    Grant number:23H03356  2023 - 2027

    日本学術振興会  科学研究費助成事業  基盤研究(B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 高炉操業の診断・予測方法の開発

    2023

      More details

    Grant type:Donation

  • A machine learning approach to automatic design of genes, proteins and chemical compounds

    Grant number:22K19834  2022 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Exploratory)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    CiNii Research

  • スラグみえる化研究会

    2022

      More details

    Grant type:Donation

  • 高炉操業の診断・予測方法の開発

    2022

      More details

    Grant type:Donation

  • 高温酸化物サスペンションのレオロジー特性に及ぼす界面電気物性の影響

    Grant number:21H01684  2021

    日本学術振興会  科学研究費助成事業  基盤研究(B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • スラグみえる化研究会

    2021

      More details

    Grant type:Donation

  • 高炉操業の診断・予測方法の開発

    2021

      More details

    Grant type:Donation

  • スラグみえる化研究会

    2020

      More details

    Grant type:Donation

  • 高炉操業の診断・予測方法の開発

    2020

      More details

    Grant type:Donation

  • 製造インフォマティクスに向けた機械学習技術の開発と鉄鋼製造における評価

    2019.6 - 2022.6

      More details

    Authorship:Principal investigator 

  • Development of algorithms for manufacture informatics and its evaluation in steel industry

    Grant number:19H04176  2019 - 2022

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    saigo hiroto

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    In the "Anomaly Detection in Blast Furnaces" problem, we have developed approaches using unsupervised learning based on the work of Itakura et al. (IBIS2022), and supervised learning based on the work of Kizaki (IBIS2021). In the supervised learning approach using CNN, we have confirmed that utilizing data from 5 to 15 minutes prior leads to improved accuracy.
    <BR>
    We have also developed a method for "Viscosity Prediction of High-Temperature States through Multi-Task Learning" as described in the study by Saigo et al. (Scientific Reports, 2022). In addition to robust extrapolation prediction, we have proposed a transfer learning method that leverages room temperature experimental data for high-temperature experiments.

    CiNii Research

  • スラグみえる化研究会

    2019

      More details

    Grant type:Donation

  • 高炉操業の診断・予測方法の開発

    2019

      More details

    Grant type:Donation

  • 転移学習を利用した高温二相流体のレオロジー特性予測システム構築

    2018.4 - 2020.3

      More details

    Authorship:Coinvestigator(s) 

  • 転移学習を利用した高温二相流体のレオロジー特性予測システム構築

    Grant number:18H01762  2018 - 2020

    日本学術振興会  科学研究費助成事業  基盤研究(B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 転移学習を利用した高温二相流体のレオロジー特性予測システム構築継続中

    2018 - 2020

    日本学術振興会  科学研究費助成事業  基盤研究(C)

      More details

    Grant type:Scientific research funding

  • 構造データの学習とマイニング

    2018

    日本学術振興会  JSPS外国人招へい研究者

      More details

    Authorship:Principal investigator  Grant type:Joint research

  • 高炉操業の診断・予測方法の開発

    2018

      More details

    Grant type:Donation

  • 複数の遺伝要因及び環境要因の組み合わせを考慮したゲノムワイド相関解析法の開発

    2017.3 - 2013.4

      More details

    Authorship:Principal investigator 

  • 深層学習によるタンパク質分類法の開発

    2017

    スタートアップ支援

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

  • マルチモーダル多視点画像を用いたタンパク質立体構造の解析 研究課題

    2013.4 - 2015.3

      More details

    Authorship:Coinvestigator(s) 

  • 複数の遺伝要因及び環境要因の組み合わせを考慮したゲノムワイド相関解析法の開発

    2013 - 2016

    日本学術振興会  科学研究費助成事業  基盤研究(C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 複数の遺伝要因及び環境要因の組み合わせを考慮したゲノムワイド相関解析法の開発

    Grant number:25700004  2013 - 2016

    科学研究費助成事業  若手研究(A)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • マルチモーダル多視点画像を用いたタンパク質立体構造の解析

    Grant number:25540062  2013 - 2014

    科学研究費助成事業  挑戦的萌芽研究

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • マルチモーダル多視点画像を用いたタンパク質立体構造の解析

    2013 - 2014

    日本学術振興会  科学研究費助成事業  基盤研究(C)

      More details

    Grant type:Scientific research funding

  • 全cDNA解析によるヒ素高蓄積植物土壌浄化システムの解析

    2011.4 - 2012.3

      More details

    Authorship:Coinvestigator(s) 

  • 大量のタンパク質リガンドデータより相互作用の構造的特徴をマイニングする方法の開発 研究課題

    2011.4 - 2012.3

      More details

    Authorship:Principal investigator 

  • 大量のタンパク質リガンドデータより相互作用の構造的特徴をマイニングする方法の開発

    Grant number:23700338  2011 - 2013

    科学研究費助成事業  若手研究(B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 大量のタンパク質リガンドデータより相互作用の構造的特徴をマイニングする方法の開発

    2011 - 2012

    日本学術振興会  科学研究費助成事業  基盤研究(C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 全cDNA解析によるヒ素高蓄積植物土壌浄化システムの解析

    Grant number:23710085  2011 - 2012

    科学研究費助成事業  若手研究(B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 全cDNA解析によるヒ素高蓄積植物土壌浄化システムの解析

    2011 - 2012

    日本学術振興会  科学研究費助成事業  基盤研究(C)

      More details

    Grant type:Scientific research funding

▼display all

Class subject

  • 【通年】情報理工学研究Ⅰ

    2024.4 - 2025.3   Full year

  • 【通年】情報理工学講究

    2024.4 - 2025.3   Full year

  • 【通年】情報理工学演習

    2024.4 - 2025.3   Full year

  • データ科学

    2024.4 - 2024.9   First semester

  • 情報理工学論議Ⅰ

    2024.4 - 2024.9   First semester

  • 情報理工学論述Ⅰ

    2024.4 - 2024.9   First semester

  • 情報理工学読解

    2024.4 - 2024.9   First semester

  • サイバーセキュリティ基礎論

    2024.4 - 2024.6   Spring quarter

  • 機械学習特論Ⅱ

    2023.12 - 2024.2   Winter quarter

  • Machine Learning II

    2023.12 - 2024.2   Winter quarter

  • 機械学習特論

    2023.10 - 2024.3   Second semester

  • 生物情報科学

    2023.10 - 2024.3   Second semester

  • 情報理工学論議Ⅱ

    2023.10 - 2024.3   Second semester

  • 情報理工学論述Ⅱ

    2023.10 - 2024.3   Second semester

  • 情報理工学演示

    2023.10 - 2024.3   Second semester

  • 機械学習特論Ⅰ

    2023.10 - 2023.12   Fall quarter

  • Machine Learning I

    2023.10 - 2023.12   Fall quarter

  • 国際演示技法Ⅰ

    2023.4 - 2024.3   Full year

  • 【通年】情報理工学講究

    2023.4 - 2024.3   Full year

  • 【通年】情報理工学演習

    2023.4 - 2024.3   Full year

  • 【通年】情報理工学研究Ⅰ

    2023.4 - 2024.3   Full year

  • Advanced Project Management II

    2023.4 - 2024.3   Full year

  • Advanced Project Management I

    2023.4 - 2024.3   Full year

  • Exercise in Teaching II

    2023.4 - 2024.3   Full year

  • Exercise in Teaching I

    2023.4 - 2024.3   Full year

  • Intellectual Property Management II

    2023.4 - 2024.3   Full year

  • Intellectual Property Management I

    2023.4 - 2024.3   Full year

  • Scientific English Presentation II

    2023.4 - 2024.3   Full year

  • Scientific English Presentation I

    2023.4 - 2024.3   Full year

  • 先端プロジェクト管理技法Ⅱ

    2023.4 - 2024.3   Full year

  • 先端プロジェクト管理技法Ⅰ

    2023.4 - 2024.3   Full year

  • ティーチング演習Ⅱ

    2023.4 - 2024.3   Full year

  • ティーチング演習Ⅰ

    2023.4 - 2024.3   Full year

  • 知的財産技法Ⅱ

    2023.4 - 2024.3   Full year

  • 知的財産技法Ⅰ

    2023.4 - 2024.3   Full year

  • 国際演示技法Ⅱ

    2023.4 - 2024.3   Full year

  • 国際演示技法Ⅰ

    2023.4 - 2024.3   Full year

  • Advanced Seminar in Information Science and Technology

    2023.4 - 2024.3   Full year

  • Advanced Research in Information Science and Technology II

    2023.4 - 2024.3   Full year

  • Advanced Research in Information Science and Technology I

    2023.4 - 2024.3   Full year

  • 情報理工学特別演習

    2023.4 - 2024.3   Full year

  • 情報理工学特別研究Ⅱ

    2023.4 - 2024.3   Full year

  • 情報理工学特別研究Ⅰ

    2023.4 - 2024.3   Full year

  • Advanced Research in Data Science

    2023.4 - 2024.3   Full year

  • データサイエンス特别講究

    2023.4 - 2024.3   Full year

  • Advanced Project Management II

    2023.4 - 2024.3   Full year

  • Advanced Project Management I

    2023.4 - 2024.3   Full year

  • Exercise in Teaching II

    2023.4 - 2024.3   Full year

  • Exercise in Teaching I

    2023.4 - 2024.3   Full year

  • Intellectual Property Management II

    2023.4 - 2024.3   Full year

  • Intellectual Property Management I

    2023.4 - 2024.3   Full year

  • Scientific English Presentation II

    2023.4 - 2024.3   Full year

  • Scientific English Presentation I

    2023.4 - 2024.3   Full year

  • 先端プロジェクト管理技法Ⅱ

    2023.4 - 2024.3   Full year

  • 先端プロジェクト管理技法Ⅰ

    2023.4 - 2024.3   Full year

  • ティーチング演習Ⅱ

    2023.4 - 2024.3   Full year

  • ティーチング演習Ⅰ

    2023.4 - 2024.3   Full year

  • 知的財産技法Ⅱ

    2023.4 - 2024.3   Full year

  • 知的財産技法Ⅰ

    2023.4 - 2024.3   Full year

  • 国際演示技法Ⅱ

    2023.4 - 2024.3   Full year

  • データ科学

    2023.4 - 2023.9   First semester

  • 情報理工学論議Ⅰ

    2023.4 - 2023.9   First semester

  • 情報理工学論述Ⅰ

    2023.4 - 2023.9   First semester

  • 情報理工学読解

    2023.4 - 2023.9   First semester

  • 機械学習特論Ⅱ

    2022.12 - 2023.2   Winter quarter

  • Machine Learning II

    2022.12 - 2023.2   Winter quarter

  • 機械学習特論

    2022.10 - 2023.3   Second semester

  • Machine Learning

    2022.10 - 2023.3   Second semester

  • 情報理工学論議Ⅱ

    2022.10 - 2023.3   Second semester

  • 情報理工学論述Ⅱ

    2022.10 - 2023.3   Second semester

  • 情報理工学演示

    2022.10 - 2023.3   Second semester

  • 情報科学講究

    2022.10 - 2023.3   Second semester

  • 生物情報科学

    2022.10 - 2023.3   Second semester

  • 国際科学特論Ⅱ

    2022.10 - 2022.12   Fall quarter

  • Machine Learning I

    2022.10 - 2022.12   Fall quarter

  • 機械学習特論Ⅰ

    2022.10 - 2022.12   Fall quarter

  • 基幹教育セミナー

    2022.6 - 2022.8   Summer quarter

  • 国際演示技法

    2022.4 - 2023.3   Full year

  • Advanced Seminar in Informatics

    2022.4 - 2023.3   Full year

  • Advanced Research in Informatics II

    2022.4 - 2023.3   Full year

  • Advanced Research in Informatics I

    2022.4 - 2023.3   Full year

  • 情報学特別演習

    2022.4 - 2023.3   Full year

  • 情報学特別講究第二

    2022.4 - 2023.3   Full year

  • 情報学特別講究第一

    2022.4 - 2023.3   Full year

  • Advanced Research in Data Science

    2022.4 - 2023.3   Full year

  • データサイエンス特别講究

    2022.4 - 2023.3   Full year

  • Advanced Project Management Technique

    2022.4 - 2023.3   Full year

  • Exercise in Teaching

    2022.4 - 2023.3   Full year

  • Intellectual Property Management

    2022.4 - 2023.3   Full year

  • Scientific English Presentation

    2022.4 - 2023.3   Full year

  • 先端プロジェクト管理技法

    2022.4 - 2023.3   Full year

  • ティーチング演習

    2022.4 - 2023.3   Full year

  • 知的財産技法

    2022.4 - 2023.3   Full year

  • 情報理工学研究Ⅰ

    2022.4 - 2023.3   Full year

  • 情報理工学講究

    2022.4 - 2023.3   Full year

  • 情報理工学演習

    2022.4 - 2023.3   Full year

  • データ科学

    2022.4 - 2022.9   First semester

  • 情報理工学論議Ⅰ

    2022.4 - 2022.9   First semester

  • 情報理工学論述Ⅰ

    2022.4 - 2022.9   First semester

  • 情報理工学読解

    2022.4 - 2022.9   First semester

  • 電気情報工学入門

    2022.4 - 2022.6   Spring quarter

  • サイバーセキュリティ基礎論

    2022.4 - 2022.6   Spring quarter

  • (IUPE)Data Structure and Algorithms IB

    2021.12 - 2022.2   Winter quarter

  • Machine Learning II

    2021.12 - 2022.2   Winter quarter

  • 機械学習特論Ⅱ

    2021.12 - 2022.2   Winter quarter

  • 機械学習特論

    2021.10 - 2022.3   Second semester

  • 情報理工学演示

    2021.10 - 2022.3   Second semester

  • 生物情報科学

    2021.10 - 2022.3   Second semester

  • 情報科学講究

    2021.10 - 2022.3   Second semester

  • Machine Learning

    2021.10 - 2022.3   Second semester

  • 情報学論議Ⅱ

    2021.10 - 2022.3   Second semester

  • 情報学論述Ⅱ

    2021.10 - 2022.3   Second semester

  • (IUPE)Data Structure and Algorithms IA

    2021.10 - 2021.12   Fall quarter

  • Machine Learning I

    2021.10 - 2021.12   Fall quarter

  • 機械学習特論Ⅰ

    2021.10 - 2021.12   Fall quarter

  • 国際演示技法

    2021.4 - 2022.3   Full year

  • 情報学特別講究第二

    2021.4 - 2022.3   Full year

  • 情報学特別講究第一

    2021.4 - 2022.3   Full year

  • Advanced Research in Data Science

    2021.4 - 2022.3   Full year

  • データサイエンス特别講究

    2021.4 - 2022.3   Full year

  • Advanced Project Management Technique

    2021.4 - 2022.3   Full year

  • Exercise in Teaching

    2021.4 - 2022.3   Full year

  • Intellectual Property Management

    2021.4 - 2022.3   Full year

  • Scientific English Presentation

    2021.4 - 2022.3   Full year

  • 先端プロジェクト管理技法

    2021.4 - 2022.3   Full year

  • ティーチング演習

    2021.4 - 2022.3   Full year

  • 知的財産技法

    2021.4 - 2022.3   Full year

  • 情報学特別演習

    2021.4 - 2022.3   Full year

  • [M2]情報学講究

    2021.4 - 2022.3   Full year

  • 情報理工学演習

    2021.4 - 2022.3   Full year

  • 情報理工学研究Ⅰ

    2021.4 - 2022.3   Full year

  • 情報学演習

    2021.4 - 2022.3   Full year

  • Advanced Seminar in Informatics

    2021.4 - 2022.3   Full year

  • Advanced Research in Informatics II

    2021.4 - 2022.3   Full year

  • Advanced Research in Informatics I

    2021.4 - 2022.3   Full year

  • データ科学

    2021.4 - 2021.9   First semester

  • [M2]情報学論議Ⅰ

    2021.4 - 2021.9   First semester

  • [M2]情報学論述Ⅰ

    2021.4 - 2021.9   First semester

  • 情報理工学読解

    2021.4 - 2021.9   First semester

  • (IUPE)Data Structure and Algorithms IB

    2020.12 - 2021.2   Winter quarter

  • 【修士】機械学習特論

    2020.10 - 2021.3   Second semester

  • Machine Learning

    2020.10 - 2021.3   Second semester

  • 【博士】機械学習特論

    2020.10 - 2021.3   Second semester

  • 情報学論議Ⅱ

    2020.10 - 2021.3   Second semester

  • 情報学論述Ⅱ

    2020.10 - 2021.3   Second semester

  • 情報学演示

    2020.10 - 2021.3   Second semester

  • (IUPE)Data Structure and Algorithms IA

    2020.10 - 2020.12   Fall quarter

  • 国際演示技法

    2020.4 - 2021.3   Full year

  • Advanced Project Management Technique

    2020.4 - 2021.3   Full year

  • Exercise in Teaching

    2020.4 - 2021.3   Full year

  • Intellectual Property Management

    2020.4 - 2021.3   Full year

  • Scientific English Presentation

    2020.4 - 2021.3   Full year

  • 先端プロジェクト管理技法

    2020.4 - 2021.3   Full year

  • ティーチング演習

    2020.4 - 2021.3   Full year

  • 知的財産技法

    2020.4 - 2021.3   Full year

  • データサイエンス特别講究

    2020.4 - 2021.3   Full year

  • Advanced Seminar in Informatics

    2020.4 - 2021.3   Full year

  • Advanced Research in Informatics II

    2020.4 - 2021.3   Full year

  • Advanced Research in Informatics I

    2020.4 - 2021.3   Full year

  • 情報学特別演習

    2020.4 - 2021.3   Full year

  • 情報学特別講究第二

    2020.4 - 2021.3   Full year

  • 情報学特別講究第一

    2020.4 - 2021.3   Full year

  • Advanced Research in Data Science

    2020.4 - 2021.3   Full year

  • データ科学

    2020.4 - 2020.9   First semester

  • 【修士】機械学習特論

    2019.10 - 2020.3   Second semester

  • 生物情報科学

    2019.10 - 2020.3   Second semester

  • 【博士】機械学習特論

    2019.10 - 2020.3   Second semester

  • 情報学論議Ⅱ

    2019.10 - 2020.3   Second semester

  • 情報学論述Ⅱ

    2019.10 - 2020.3   Second semester

  • 情報学演示

    2019.10 - 2020.3   Second semester

  • (IUPE)Data Structure and Algorithms I

    2019.10 - 2019.12   Fall quarter

  • 情報学演習

    2019.4 - 2020.3   Full year

  • 情報学講究

    2019.4 - 2020.3   Full year

  • データ科学

    2019.4 - 2019.9   First semester

  • 情報学論議Ⅰ

    2019.4 - 2019.9   First semester

  • 情報学論述Ⅰ

    2019.4 - 2019.9   First semester

  • 情報学読解

    2019.4 - 2019.9   First semester

  • 機械学習特論

    2018.10 - 2019.3   Second semester

  • 生物情報科学

    2018.10 - 2019.3   Second semester

  • 情報学読解

    2018.4 - 2018.9   First semester

  • 情報学論議Ⅰ

    2018.4 - 2018.9   First semester

  • 情報学論述Ⅰ

    2018.4 - 2018.9   First semester

  • サイバーセキュリティ基礎論

    2018.4 - 2018.6   Spring quarter

  • 情報学演示

    2017.10 - 2018.3   Second semester

  • 情報学論議Ⅱ

    2017.10 - 2018.3   Second semester

  • 情報学論述Ⅱ

    2017.10 - 2018.3   Second semester

  • 情報学読解

    2017.4 - 2017.9   First semester

  • 高度プログラミング

    2017.4 - 2017.9   First semester

  • 情報学論議Ⅰ

    2017.4 - 2017.9   First semester

  • 情報学論述Ⅰ

    2017.4 - 2017.9   First semester

  • 生物情報科学

    2016.10 - 2017.3   Second semester

  • データ科学

    2016.4 - 2016.9   First semester

▼display all

FD Participation

  • 2023.5   Role:Participation   Title:【シス情FD】農学研究院で進めているDX教育について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2023.3   Role:Participation   Title:【シス情FD】独・蘭・台湾での産学連携を垣間見る-Industy 4.0・量子コンピューティング・先端半導体-

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.6   Role:Participation   Title:【シス情FD】電子ジャーナル等の今後について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.5   Role:Participation   Title:【シス情FD】若手教員による研究紹介④「量子コンピュータ・システム・アーキテクチャの研究~道具になることを目指して~」

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.3   Role:Participation   Title:全学FD:メンタルヘルス講演会

    Organizer:University-wide

  • 2022.1   Role:Participation   Title:【シス情FD】シス情関連の科学技術に対する国の政策動向(に関する私見)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.10   Role:Participation   Title:【シス情FD】熊本高専と九大システム情報との交流・連携に向けて ー 3年半で感じた高専の実像 ー

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.9   Role:Participation   Title:博士後期課程の充足率向上に向けて

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.5   Role:Participation   Title:先導的人材育成フェローシップ事業(情報・AI分野)について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.12   Role:Participation   Title:令和2年度 第2回工学部FD(1日目) 総合型選抜の実施に向けて―面接の全般的な内容(注意事項、採点方法など)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.11   Role:Participation   Title:マス・フォア・イノベーション卓越大学院について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.9   Role:Participation   Title:電気情報工学科総合型選抜(AO入試)について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.10   Role:Participation   Title:電子ジャーナルの現状と今後の動向に関する説明会

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.6   Role:Participation   Title:8大学情報系研究科長会議の報告

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2016.6   Role:Participation   Title:【全学FD(第2回)】教育の質向上支援プログラム(EEP)成果発表会

    Organizer:University-wide

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2022  理化学研究所革新的人工知能研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2021  理化学研究所革新的人工知能研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2020  理化学研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2019  京都大学  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2019  東京大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2016  鹿児島大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2016  九州工業大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

▼display all

Other educational activity and Special note

  • 2023  Class Teacher 

  • 2022  Class Teacher 

  • 2020  Class Teacher 

Acceptance of Foreign Researchers, etc.

  • North Carolina A&T State Univeristy

    Acceptance period: 2018.6 - 2018.7   (Period):1 month or more

    Nationality:United States

    Business entity:Japan Society for the Promotion of Science

Travel Abroad

  • 2008.7 - 2010.3

    Staying countory name 1:Germany   Staying institution name 1:Max Planck Institute for Informatics

  • 2006.6 - 2008.6

    Staying countory name 1:Germany   Staying institution name 1:Max Planck Institute for Biological Cybernetics

  • 2003.8 - 2004.8

    Staying countory name 1:United States   Staying institution name 1:University of California, Irvine