Updated on 2025/06/09

Information

 

写真a

 
SAIGO HIROTO
 
Organization
Faculty of Information Science and Electrical Engineering Department of Informatics Associate Professor
Joint Graduate School of Mathematics for Innovation (Concurrent)
School of Sciences Department of Physics(Concurrent)
Graduate School of Information Science and Electrical Engineering Department of Information Science and Technology(Concurrent)
Title
Associate Professor
Contact information
メールアドレス
Tel
0928023783
Profile
His research interest is in developing methods for data mining and artificial intelligence, and applying them to problems in biology and chemistry. He also serves as a program committee member for international conferences in bioinformatics and machine learning.
External link

Research Areas

  • Informatics / Life, health and medical informatics

  • Informatics / Statistical science

  • Informatics / Intelligent informatics

Degree

  • Doctor of Informatics

Research History

  • 2010-2015 九州工業大学(准教授) 2008-2010 Max Planck Institute for Informatics, Germany (Research Scientist) 2006-2008 Max Planck Institute for Biological Cybernetics, Germany (Research Scientist)   

Education

  • Kyoto University   情報学研究科  

    2001.4 - 2006.3

Research Interests・Research Keywords

  • Research theme: Machine Learning for High-Level Radioactive Waste Management: An Approach Based on Control of High-Temperature Multiphase Melts

    Keyword: machine learning, high-level radioactive waste, high-temperature multiphase melts

    Research period: 2023.4

  • Research theme: A machine learning approach to automatic design of genes, proteins and chemical compounds

    Keyword: machine learning, protein squence, chemical compound, design

    Research period: 2022.9

  • Research theme: Development of machine learning methods towards manufacturing informatics

    Keyword: machine learning, data mining, statistics

    Research period: 2018.4

  • Research theme: Development of a GWAS method that considers interaction among genetic factors and environmental factors

    Keyword: GWAS, interaction

    Research period: 2013.3

  • Research theme: Development and application of statistical learning methods to the problems associated with Human Immunodeficiency Virus (HIV).

    Keyword: HIV, statistical learning, pattern mining

    Research period: 2008.6

  • Research theme: Integration of frequent pattern mining with machine learning algorithms

    Keyword: 頻出パターンマイニング、ブースティング、線形計画法、SVM

    Research period: 2006.6

  • Research theme: Development of kernel methods for detecting remote homology between protein sequences.

    Keyword: kernel methods, protein homology detection, alignment, SVM

    Research period: 2002.4 - 2006.3

Awards

  • 奨励賞

    2007.6   人工知能学会   奨励賞

  • Best Paper Award

    2006.6   Mining and Learning with Graphs Committee   論文賞

Papers

  • Einstein-Roscoe regression for the slag viscosity prediction problem in steelmaking Reviewed International journal

    @Saigo, H., Bahadur, K.C.D, @Saito, N.

    Scientific Reports   12   2022.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Other Link: https://www.nature.com/articles/s41598-022-10278-w

  • Automatically mining relevant variable interactions via sparse Bayesian learning Reviewed International journal

    #Yafune, R., #Sakuma, D., Tabei, Y., @Saito, N., @Saigo, H.

    International Conference on Pattern Recognition   2021.1

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • KDE: a Kernel-based approach to detecting high-order genetic Epistasis Reviewed International journal

    Kodama, K., Saigo, H.

    The 27th International Conference on Genome Informatics (GIW2016)   2016.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Protein Structure Comparison Based on 3D Molecular Visualization Images Reviewed International journal

    Suryanto, C. H., Saigo, H., Fukui, K.

    2016.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Extracting sets of chemical substructures and protein domains governing drug-target interactions Reviewed International journal

    Yamanishi, Y., Pauwels, E., Saigo, H., Stoven, V.

    51 ( 5 )   1183 - 1194   2011.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Learnig from past treatments and their outcome improves prediction of in vivo response t anti-HIV therapy Reviewed International journal

    Saigo, H., Altmann, A., Bogojeska, J., Mueller, F., Nowozin, S., and Lengauer, T.

    10 ( 1 )   2011.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Reaction graph kernels that predict EC numbers of unknown enzymatic reactions in the secondary metabolism of plant Reviewed International journal

    Saigo, H., Hattori, M., Kashima, H., and Tsuda, K.

    Asia Pacific Bioinformatics Conference (APBC2010)   2010.1

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • gBoost: A mathematical programming approach to graph classification and regression Reviewed International journal

    Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., and Tsuda, K.

    75 ( 1 )   69 - 89   2009.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Iterative Subgraph Mining for Principal Component Analysis Reviewed International journal

    Saigo, H. and Tsuda, K.

    IEEE International Conference on Data Mining (ICDM2008)   2008.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Partial Least Squares Regression for Graph Mining Reviewed International journal

    Saigo, H., Kraemer, N. and Tsuda, K.

    ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2008)   2008.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism Reviewed International journal

    Saigo, H., M. Hattori and K. Tsuda:

    NIPS Workshop on Machine Learning in Computational Biology,   2007.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Graph boosting for molecular QSAR analysis Reviewed International journal

    Saigo, H., Kadowaki, T., Kudo, T. and Tsuda, K.

    NIPS Workshop on Machine Learning in Computational Biology,   2006.12

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • A Linear Programming Approach for Molecular QSAR analysis Reviewed International journal

    Saigo, H., Kadowaki, T. and Tsuda, K.

    International Workshop on Mining and Learning with Graphs (MLG2006)   2006.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Optimizing amino acid substitution matrices with a local alignment kernel Reviewed International journal

    Saigo, H., Vert J.-P. and Akutsu, T.

    7 ( 246 )   1 - 12   2006.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants Reviewed International journal

    Danziger, S. A., Swamidass, S. J., Zeng, J., Dearth, L. R., Lu, Q., Cheng, J. H., Cheng, J. L., Hoang, V. P., Saigo, H., Luo, R., Baldi, P., Brachmann, R. K. and Lathrop, R. H.

    3 ( 2 )   114 - 125   2006.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • A novel representation of protein sequences for prediction of subcellular location using support vector machines Reviewed International journal

    Matsuda, S., Vert, J.-P., Saigo, H., Ueda, N., Toh, H. and Akutsu, T.

    14   2804 - 2813   2005.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Graph Kernels for Chemical Informatics Reviewed International journal

    Ralaivola, L., Swamidass, J. S., Saigo, H. and Baldi, P.

    18 ( 8 )   1093 - 1110   2005.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Multi-level PEnet: A Robust Three-Stage Model for Parameter Estimation in Non-Gaussian Noise-Driven Stochastic Differential Equations

    Li, SY; Cheng, YZ; Ruan, Y; Saigo, H

    NONLINEAR DYNAMICS   2025.5   ISSN:0924-090X eISSN:1573-269X

  • Benchmarking a Wide Range of Unsupervised Learning Methods for Detecting Anomaly in Blast Furnace

    Itakura K., Bahadur D., Saigo H.

    International Conference on Pattern Recognition Applications and Methods   1   641 - 650   2024   ISBN:9789897586842

     More details

    Publisher:International Conference on Pattern Recognition Applications and Methods  

    Steel plays important roles in our daily lives, as it surrounds us in the form of various products. Blast furnace, one of the main facility in steel production process, is traditionally monitored by skilled workers to prevent incidents. However, there is a growing demand to automate the monitoring process by leveraging machine learning. This paper focuses on investigating the suitability of unsupervised learning methods for detecting anomalies in blast furnaces. Extensive benchmarking is conducted using a dataset collected from blast furnaces, encompassing a wide range of unsupervised learning methods, including both traditional approaches and recent deep learning-based techniques. The computational experiments yield results that suggest the effectiveness of traditional methods over deep learning-based methods. To validate this observation, additional experiments are performed on publicly available non time series datasets and complex time series datasets. These experiments serve to confirm the superiority of traditional methods in handling non time series datasets, while deep learning methods exhibit better performance in dealing with complex time series datasets. We have also discovered that dimensionality reduction before anomaly detection is beneficial in eliminating outliers and effectively modeling the normal data points in the blast furnace dataset.

    DOI: 10.5220/0012310800003654

    Scopus

  • A Branch-and-Bound Approach to Efficient Classification and Retrieval of Documents

    Ii K., Saigo H., Tabei Y.

    International Conference on Pattern Recognition Applications and Methods   1   205 - 214   2024   ISBN:9789897586842

     More details

    Publisher:International Conference on Pattern Recognition Applications and Methods  

    Text classification and retrieval have been crucial tasks in natural language processing. In this paper, we present novel techniques for these tasks by leveraging the invariance of feature order to the evaluation results. Building on the assumption that text retrieval or classification models have already been constructed from the training documents, we propose efficient approaches that can restrict the search space spanned by the test documents. Our approach encompasses two key contributions. The first contribution introduces an efficient method for traversing a search tree, while the second contribution involves the development of novel pruning conditions. Through computational experiments using real-world datasets, we consistently demonstrate that the proposed approach outperforms the baseline method in various scenarios, showcasing its superior speed and efficiency.

    DOI: 10.5220/0012310600003654

    Scopus

  • pLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and embedding from pre-trained protein language model Invited Reviewed International journal

    Pratyush, P., Pokharel, S., @Saigo, H., KC.D.B.

    BMC Bioinformatics   24 ( 1 )   2023.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction (vol 21, 63, 2020)

    Thapa, N; Chaudhari, M; McManus, S; Roy, K; Newman, RH; Saigo, H; Kc, DB

    BMC BIOINFORMATICS   23 ( 1 )   349   2022.8   ISSN:1471-2105

     More details

    Language:English   Publisher:BMC Bioinformatics  

    After publication of this supplement article [1], it is requested to correct the below errors in the article: On page 1, the Result of Abstract should be changed to: Results: Using an independent test set of experimentally identified succinylation sites, our method achieved efficiency scores of 79%, 68.7% and 0.27 for sensitivity, specificity and MCC respectively, with an area under the receiver operator characteristic (ROC) curve of 0.8. In side-by-side comparisons with previously described succinylation site predictors, DeepSuccinylSite produces similar or better results compared to the other state-of-the-art predictors. On page 7, Last paragraph on right should be changed from Consequently, DeepSuccinylSite achieved a significantly higher performance as measured by MCC. Indeed, DeepSuccinylSite exhibited an ~ 62% increase in MCC when compared to the next highest method, GPSuc. to: Consequently, DeepSuccinylSite achieved an MCC score (at decision boundary of 0.5) on par with the top performingmethod, GPSuc. On page 2, in Table 1, the negative data of Independent Test should be 2977 rather than 254. On page 8, in Table 6, the MCC data of DeepSuccinylSite should be 0.27 rather than 0.48.

    DOI: 10.1186/s12859-022-04844-2

    Web of Science

    Scopus

    PubMed

  • Sparse nonnegative interaction models Reviewed International journal

    #Takayanagi, M., Tabei, Y., @Suzuki, E., @Saigo, H.

    IEEE Access   2021.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1109/ACCESS.2021.3099473

    Other Link: https://ieeexplore.ieee.org/document/9493878

  • Topic modeling for sequential documents based on hybrid inter-document topic dependency Reviewed International journal

    #Li, W. and @Saigo, H. and Tong, E. and @Suzuki, E.

    Journal of Intelligent Information Systems,   56 ( 3 )   453 - 458   2021.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • DeepRMethylSite: a deep learning based approach for prediction of arginine methylation sites in proteins Reviewed International journal

    Chaudhari, M., Thapa, N., S., Roy, K., Newman, R.H., @Saigo, H., KC, D.B.

    Molecular Omics   2020.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • Context-Aware Latent Dirichlet Allocation for Topic SegmentationWenbo Li,?Tetsu Matsukawa,?Hiroto Saigo,?Einoshin Suzuki: Reviewed International journal

    #Wenbo Li,?Tetsu Matsukawa,?Hiroto Saigo,?Einoshin Suzuki

    PAKDD   2020.5

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction, Reviewed International journal

    Thapa, N., Chaudhari, M., McManus, S., Roy, K., Newman, R.H., Saigo, H., KC, D.B.

    BMC Bioinformatics   2020.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites Reviewed International journal

    Al-barakati, H.J., Thapa, N., Saigo, H., Roy, K., Newman, R.H., Bahadur, K.C.D.

    Computational and Structural Biotechnology Journal   2020.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • SVM-GlutarySite: A support vector machine-based prediction of Glutarylation sites from protein sequences Reviewed International journal

    Albarakati, H., Saigo, H., Newman, R.H., KC, D.B.

    Joint GIW/ABACBS-2019 Bioinformatics Conference   2019.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • RF-GlutarySite: a random forest predictor for glutarylation sites Reviewed International journal

    Al-barakati, H.J., @Saigo, H., Newman, R.H., Bahadur, K.C.D.

    Molecular Omics   ( 15 )   189 - 204   2019.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction Reviewed International journal

    Thapa, N., Chaudhari, M., McManus, S., Roy, K., Newman, R.H., Saigo, H., KC, D.B.

    MCBIOS   2019.3

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Entire regularization path for sparse nonnegative interaction model Reviewed International journal

    #Takayanagi, M., Tabei, Y., Saigo, H.

    ICDM   2018.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Structural Class Classification of 3D Protein Structure Based on Multi-View 2D Images Reviewed

    Chendra Hadi Suryanto, Hiroto Saigo, Kazuhiro Fukui

    IEEE/ACM Transactions on Computational Biology and Bioinformatics   15 ( 1 )   286 - 299   2018.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Computing similarity or dissimilarity between protein structures is an important task in structural biology. A conventional method to compute protein structure dissimilarity requires structural alignment of the proteins. However, defining one best alignment is difficult, especially when the structures are very different. In this paper, we propose a new similarity measure for protein structure comparisons using a set of multi-view 2D images of 3D protein structures. In this approach, each protein structure is represented by a subspace from the image set. The similarity between two protein structures is then characterized by the canonical angles between the two subspaces. The primary advantage of our method is that precise alignment is not needed. We employed Grassmann Discriminant Analysis (GDA) as the subspace-based learning in the classification framework. We applied our method for the classification problem of seven SCOP structural classes of protein 3D structures. The proposed method outperformed the k-nearest neighbor method (k-NN) based on conventional alignment-based methods CE, FATCAT, and TM-align. Our method was also applied to the classification of SCOP folds of membrane proteins, where the proposed method could recognize the fold HEM-binding four-helical bundle (f.21) much better than TM-Align.

    DOI: 10.1109/TCBB.2016.2603987

  • CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes Reviewed International journal

    Clarence White, Hamid D. Ismail, Hiroto Saigo, K. C. Dukka B.

    BMC Bioinformatics 18(16): 221-232   2017.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  • RF-NR: Random forest based approach for improved classification of Nuclear Receptors Reviewed International journal

    Ismail, H.D., Saigo, H., Bahadur, K.C.D.

    IEEE Transactions on Computational Biology and Bioinformatics   2017.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The Nuclear Receptor (NR) superfamily plays an important role in key biological, developmental and physiological processes. Developing a method for the classification of NR proteins is an important step towards understanding the structure and functions of the newly discovered NR protein. The recent studies on NR classification are either unable to achieve optimum accuracy or are not designed for all the known NR subfamilies. In this study we developed RF-NR, which is a Random Forest based approach for improved classification of nuclear receptors. The RF-NR can predict whether a query protein sequence belongs to one of the eight NR subfamilies or it is a non-NR sequence. The RF-NR uses spectrum-like features namely: Amino Acid Composition, Di-peptide Composition and Tripeptide Composition. Benchmarking on two independent datasets with varying sequence redundancy reduction criteria, the RF-NR achieves better (or comparable) accuracy than other existing methods. The added advantage of our approach is that we can also obtain biological insights about the important features that are required to classify NR subfamilies.

  • CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes Reviewed International journal

    Clarence White, Hamid D. Ismail, Hiroto Saigo, K. C. Dukka B.

    INCOB2017   2017.9

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • KDSNP: A kernel-based approach to detecting high-order SNP interactions Reviewed

    Kento Kodama, Hiroto Saigo

    Journal of Bioinformatics and Computational Biology   14 ( 5 )   1 - 16   2016.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Despite the accumulation of quantitative trait loci (QTL) data in many complex human diseases, most of current approaches that have attempted to relate genotype to phenotype have achieved limited success, and genetic factors of many common diseases are yet remained to be elucidated. One of the reasons that makes this problem complex is the existence of single nucleotide polymorphism (SNP) interaction, or epistasis. Due to excessive amount of computation for searching the combinatorial space, existing approaches cannot fully incorporate high-order SNP interactions into their models, but limit themselves to detecting only lower-order SNP interactions. We present an empirical approach based on ridge regression with polynomial kernels and model selection technique for determining the true degree of epistasis among SNPs. Computer experiments in simulated data show the ability of the proposed method to correctly predict the number of interacting SNPs provided that the number of samples is large enough relative to the number of SNPs. For cases in which the number of the available samples is limited, we propose to perform sliding window approach to ensure suffciently large sample/SNP ratio in each window. In computational experiments using heterogeneous stock mice data, our approach has successfully detected subregions that harbor known causal SNPs. Our analysis further suggests the existence of additional candidate causal SNPs interacting to each other in the neighborhood of the known causal gene.

    DOI: 10.1142/S0219720016440030

  • Scalable Partial Least Squares Regression on Grammar- Compressed Data Matrices Reviewed International journal

    Tabei, Y., Saigo, H., Yamanishi, Y., Puglisi, S.

    The 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD2016)   2016.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Mining Discriminative Patterns from Graph Data with Multiple Labels and Its Application to Quantitative Structure-Activity Relationship (QSAR) Models Reviewed

    Zheng Shao, Yuya Hirayama, Yoshihiro Yamanishi, Hiroto Saigo

    JOURNAL OF CHEMICAL INFORMATION AND MODELING   55 ( 12 )   2519 - 2527   2015.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Graph data are becoming increasingly common in machine learning and data mining, and its application field pervades to bioinformatics and cheminformatics. Accordingly, as a method to extract patterns from graph data, graph mining recently has been studied and developed rapidly. Since the number of patterns in graph data is huge, a central issue is how to efficiently collect informative patterns suitable for subsequent tasks such as classification or regression. In this paper, we consider mining discriminative subgraphs from graph data with multiple labels. The resulting task has important applications in cheminformatics, such as finding common functional groups that trigger multiple drug side effects, or identifying ligand functional groups that hit multiple targets. In computational experiments, we first verify the effectiveness of the proposed approach in synthetic data, then we apply it to drug adverse effect prediction problem. In the latter dataset, we compared the proposed method with L1-norm logistic regression in combination with the PubChem/Open Babel fingerprint, in that the proposed method showed superior performance with a much smaller number of subgraph patterns. Software is available from https://github.com/axot/GLP.

    DOI: 10.1021/acs.jcim.5b00376

  • RF-NR: Random forest based approach for improved classification of Nuclear Receptors Reviewed

    Ismail, H.D, Saigo, H, Bahadur, K.C, D

    International Conference on Genome Informatics & International Conference on Bioinformatics (GIW/InCoB2015)   2015.9

     More details

    Language:English   Publishing type:Research paper (other academic)  

    RF-NR: Random forest based approach for improved classification of Nuclear Receptors

  • Fast Iterative Mining Using Sparsity-Inducing Loss Functions Reviewed

    Hiroto Saigo, Hisashi Kashima, Koji Tsuda

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS   E96D ( 8 )   1766 - 1773   2013.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Apriori-based mining algorithms enumerate frequent patterns efficiently, but the resulting large number of patterns makes it difficult to directly apply subsequent learning tasks. Recently, efficient iterative methods are proposed for mining discriminative patterns for classification and regression. These methods iteratively execute discriminative pattern mining algorithm and update example weights to emphasize on examples which received large errors in the previous iteration. In this paper, we study a family of loss functions that induces sparsity on example weights. Most of the resulting example weights become zeros, so we can eliminate those examples from discriminative pattern mining, leading to a significant decrease in search space and time. In computational experiments we compare and evaluate various loss functions in terms of the amount of sparsity induced and resulting speed-up obtained.

    DOI: 10.1587/transinf.E96.D.1766

  • Protein Clustering on Grassman Manifold, Pattern Recognition in Bioinformatics Reviewed International journal

    Suryanto, C.H., Saigo, H., Fukui, K.

    Pattern Recognition in Bioinformatics (PRIB2012)   2012.11

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • A Bayesian Approach to Graph Regression with Relevant Subgraph Selection Reviewed International journal

    Chiappa, S., Saigo, H. and Tsuda, K.

    Siam International Conference on Data Mining (SDM2009)   2009.4

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Regression with Interval Output Values Reviewed International journal

    Kashima, H., Yamasaki, K., Saigo, H. and Inokuchi, A.

    International Conference on Pattern Recognition (ICPR2008)   2008.1

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Regression with Intervals Reviewed International journal

    Kashima, H., Yamazaki, K., Saigo, H. and Inokuchi, A.

    International Workshop on Data-Mining and Statistical Science (DMSS2007)   2007.10

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

  • Mining complex genotypic features for predicting HIV-1 drug resistance Reviewed

    Hiroto Saigo, Takeaki Uno, Koji Tsuda

    BIOINFORMATICS   23 ( 18 )   2455 - 2462   2007.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Motivation: Human immunodeficiency virus type 1 (HIV-1) evolves in human body, and its exposure to a drug often causes mutations that enhance the resistance against the drug. To design an effective pharmacotherapy for an individual patient, it is important to accurately predict the drug resistance based on genotype data. Notably, the resistance is not just the simple sum of the effects of all mutations. Structural biological studies suggest that the association of mutations is crucial: even if mutations A or B alone do not affect the resistance, a significant change might happen when the two mutations occur together. Linear regression methods cannot take the associations into account, while decision tree methods can reveal only limited associations. Kernel methods and neural networks implicitly use all possible associations for prediction, but cannot select salient associations explicitly.
    Results: Our method, itemset boosting, performs linear regression in the complete space of power sets of mutations. It implements a forward feature selection procedure where, in each iteration, one mutation combination is found by an efficient branch- and- bound search. This method uses all possible combinations, and salient associations are explicitly shown. In experiments, our method worked particularly well for predicting the resistance of nucleotide reverse transcriptase inhibitors ( NRTIs). Furthermore, it successfully recovered many mutation associations known in biological literature.

    DOI: 10.1093/bioinformatics/btm353

  • Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants

    SA Danziger, SJ Swamidass, J Zeng, LR Dearth, Q Lu, JH Chen, JL Cheng, VP Hoang, H Saigo, R Luo, P Baldi, RK Brachmann, RH Lathrop

    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS   3 ( 2 )   114 - 125   2006.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Many biomedical problems relate to mutant functional properties across a sequence space of interest, e. g., flu, cancer, and HIV. Detailed knowledge of mutant properties and function improves medical treatment and prevention. A functional census of p53 cancer rescue mutants would aid the search for cancer treatments from p53 mutant rescue. We devised a general methodology for conducting a functional census of a mutation sequence space by choosing informative mutants early. The methodology was tested in a double-blind predictive test on the functional rescue property of 71 novel putative p53 cancer rescue mutants iteratively predicted in sets of three ( 24 iterations). The first double-blind 15-point moving accuracy was 47 percent and the last was 86 percent; r = 0.01 before an epiphanic 16th iteration and r = 0.92 afterward. Useful mutants were chosen early ( overall r = 0.80). Code and data are freely available (http://www.igb.uci.edu/research/research.html, corresponding authors: R. H. L. for computation and R. K. B. for biology).

    DOI: 10.1109/TCBB.2006.22

  • Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching

    JL Cheng, H Saigo, P Baldi

    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS   62 ( 3 )   617 - 629   2006.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The formation of disulphide bridges between cysteines plays an important role in protein folding, structure, function, and evolution. Here, we develop new methods for predicting disulphide bridges in proteins. We first build a large curated data set of proteins containing disulphide bridges to extract relevant statistics. We then use kernel methods to predict whether a given protein chain contains intrachain disulphide bridges or not, and recursive neural networks to predict the bonding probabilities of each pair of cysteines in the chain. These probabilities in turn lead to an accurate estimation of the total number of disulphide bridges and to a weighted graph matching problem that can be addressed efficiently to infer the global disulphide bridge connectivity pattern. This approach can be applied both in situations where the bonded state of each cysteine is known, or in ab initio mode where the state is unknown. Furthermore, it can easily cope with chains containing an arbitrary number of disulphide bridges, overcoming one of the major limitations of previous approaches. It can classify individual cysteine residues as bonded or nonbonded with 87% specificity and 89% sensitivity. The estimate for the total number of bridges in each chain is correct 71% of the times, and within one from the true value over 94% of the times. The prediction of the overall disulphide connectivity pattern is exact in about 51% of the chains. In addition to using profiles in the input to leverage evolutionary information, including true (but not predicted) secondary structure and solvent accessibility information yields small but noticeable improvements. Finally, once the system is trained, predictions can be computed rapidly on a proteomic or protein-engineering scale. The disulphide bridge prediction server (DIpro), software, and datasets are available through www.igb.uci.edu/servers/pass.html.

    DOI: 10.1002/prot.20787

  • Protein homology detection using string alignment kernels

    H Saigo, JP Vert, N Ueda, T Akutsu

    BIOINFORMATICS   20 ( 11 )   1682 - 1689   2004.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Motivation: Remote homology detection between protein sequences is a central problem in computational biology. Discriminative methods involving support vector machines (SVMs) are currently the most effective methods for the problem of superfamily recognition in the Structural Classification Of Proteins (SCOP) database. The performance of SVMs depends critically on the kernel function used to quantify the similarity between sequences.
    Results: We propose new kernels for strings adapted to biological sequences, which we call local alignment kernels. These kernels measure the similarity between two sequences by summing up scores obtained from local alignments with gaps of the sequences. When tested in combination with SVM on their ability to recognize SCOP superfamilies on a benchmark dataset, the new kernels outperform state-of-the-art methods for remote homology detection.

    DOI: 10.1093/bioinformatics/bth141

▼display all

Books

  • Matrix Decomposition-based Dimensionality Reduction on Graph Data In Sakr, S. and Pardede, E. editors Graph Data Management: Techniques and Applications

    Saigo, H., Tsuda, K.(Role:Joint author)

    IGI Global  2011.1 

     More details

    Responsible for pages:260-284   Language:English   Book type:Scholarly book

  • Graph Mining for Chemoinformatics In Lodhi, H and Yamanishi, Y. editors Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Method and Collaborative Technique

    Saigo, H., Tsuda, K.(Role:Joint author)

    2010.1 

     More details

    Responsible for pages:95-128   Language:English   Book type:Scholarly book

  • Graph Classification  In Sakr, C.C.C. and Wang, H. editors Managing and Mining Graph Data

    Saigo, H., Tsuda, K.(Role:Joint author)

    Springer  2010.1 

     More details

    Responsible for pages:337-364   Language:English   Book type:Scholarly book

  • Graph Kernels for Chemoinformatics In Lodhi, H and Yamanishi, Y. editors Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Method and Collaborative Techniques

    Kashima, H., Saigo, H., Hattori, M., Tsuda, K.(Role:Joint author)

    IGI Global  2010.1 

     More details

    Responsible for pages:1-15   Language:English   Book type:Scholarly book

  • Deep Learning-Based Advances In Protein Posttranslational Modification Site and Protein Cleavage Prediction in "Methods in Molecular Biology"

    Subash C Pakhrin, Suresh Pokharel, @Hiroto Saigo, Dukka B Kc(Role:Joint author)

    Springer  2022.6    ISSN:10643745

     More details

    Language:English   Book type:Scholarly book

    Posttranslational modification (PTM) is a ubiquitous phenomenon in both eukaryotes and prokaryotes which gives rise to enormous proteomic diversity. PTM mostly comes in two flavors: covalent modification to polypeptide chain and proteolytic cleavage. Understanding and characterization of PTM is a fundamental step toward understanding the underpinning of biology. Recent advances in experimental approaches, mainly mass-spectrometry-based approaches, have immensely helped in obtaining and characterizing PTMs. However, experimental approaches are not enough to understand and characterize more than 450 different types of PTMs and complementary computational approaches are becoming popular. Recently, due to the various advancements in the field of Deep Learning (DL), along with the explosion of applications of DL to various fields, the field of computational prediction of PTM has also witnessed the development of a plethora of deep learning (DL)-based approaches. In this book chapter, we first review some recent DL-based approaches in the field of PTM site prediction. In addition, we also review the recent advances in the not-so-studied PTM, that is, proteolytic cleavage predictions. We describe advances in PTM prediction by highlighting the Deep learning architecture, feature encoding, novelty of the approaches, and availability of the tools/approaches. Finally, we provide an outlook and possible future research directions for DL-based approaches for PTM prediction.

    DOI: 10.1007/978-1-0716-2317-6_15

    Scopus

    PubMed

  • Local Alignment Kernels for Biological Sequences,  In Bernhard Scheolkopf, Koji Tsuda and Jean-Philippe Vert editors, Kernel Methods in Computational Biology

    Vert, J.-P., Saigo, H., Akutsu, T.(Role:Joint author)

    MIT Press  2004.1 

     More details

    Responsible for pages:131-153   Language:English   Book type:Scholarly book

▼display all

Presentations

  • Automatically mining relevant variable interactions via sparse Bayesian learning International conference

    #Yafune, R., #Sakuma, D., Tabei, Y., @Saito, N., @Saigo, H.

    International Conference on Pattern Recognition  2021.1 

     More details

    Event date: 2021.1

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Online (originally Milan)   Country:Italy  

  • Entire regularization path for sparse nonnegative interaction model International conference

    #Takayanagi, M., Tabei, Y., Saigo, H.

    International Conference on Data Mining (ICDM)  2018.11 

     More details

    Event date: 2017.9

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Singapore   Country:Japan  

    本研究では相互作用を考慮した非負値最小二乗法に対する正則化パス追跡アルゴリズムを提案した。
    組み合わせ空間の効率的な探索のための枝刈りを実装した本手法は、LASSOよりも大幅に小さい解集合を得られることを計算機実験で示した。
    HIVデータを用いた実験では、重要な遺伝子要因の組み合わせを自動的に探索することにより、薬剤耐性モデルを正確に推定出来ることを示した。

  • Towards predicting the epistasis in genome wide association study International conference

    Saigo, H.

    BMIRC2015  2015.3 

     More details

    Language:English  

    Venue:Iizuka   Country:Japan  

  • Towards predicting the epistasis in genome wide association study International conference

    Saigo, H.

    BMIRC2015  2015.3 

     More details

    Language:English  

    Venue:Iizuka   Country:Japan  

  • Mining and learning with structured data International conference

    Saigo, H.

    BIT2016  2016.3 

     More details

    Language:English  

    Venue:Taipei   Country:Taiwan, Province of China  

  • Reaction graph kernels that predict EC numbers of unknown enzymatic reactions in the secondary metabolism of plant International conference

    Saigo, H., Hattori, M., Kashima, H., and Tsuda, K.

    Asia Pacific Bioinformatics Conference (APBC2010)  2010.1 

     More details

    Language:English  

    Venue:Bangalore   Country:India  

  • KDE: a Kernel-based approach to detecting high-order genetic Epistasis International conference

    Kodama, K., Saigo, H.

    The 27th International Conference on Genome Informatics (GIW2016)  2016.10 

     More details

    Language:English  

    Venue:Shanghai   Country:China  

  • 大規模データ学習に向けたスケーラブルなノイズ拡張カーネル法:タニモトカーネルとガウスカーネルの性能比較研究• Chen Minrui, 西郷浩人

    Chen Minrui, 西郷浩人

    第27回情報論的学習理論ワークショップ(IBIS2024)  2024.11 

     More details

    Event date: 2024.11

    Language:English   Presentation type:Poster presentation  

    Venue:さいたま   Country:Japan  

  • Protein Property Prediction with Sequence Alignment and Gradient-Based Optimization International conference

    Ogawa. N., Saigo. H.

    Asia Pacific Bioinformatics Joint Conference (APBJC)  2024.10 

     More details

    Event date: 2024.10

    Language:English   Presentation type:Poster presentation  

    Venue:Okinawa   Country:Japan  

  • Early detection of Auditory Brainstem Response waveforms using k-means International conference

    Imahashi, A., Saigo, H.

    Asia Pacific Bioinformatics Joint Conference (APBJC)  2024.10 

     More details

    Event date: 2024.10

    Language:English   Presentation type:Poster presentation  

    Venue:Okinawa   Country:Japan  

  • Optimization of amino acid substitution matrices by Gaussian process and sequence alignment

    #小川 直紀, 西郷浩人

    生命医薬情報学連合大会  2023.9 

     More details

    Event date: 2024.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:柏   Country:Japan  

  • Improving the Efficiency of Auditory Brainstem Response Testing Using k-means

    #今橋 輝, 西郷浩人

    生命医薬情報学連合大会  2023.9 

     More details

    Event date: 2024.5

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:柏   Country:Japan  

  • Benchmarking a wide range of unsupervised learning methods for detecting anomaly in blast furnace International conference

    # Kendai Itakura, Dukka Bahadur KC, Hiroto Saigo

    International Conference of Pattern Recognition Applications and Methods (ICPRAM2024)  2024.2 

     More details

    Event date: 2024.2

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Rome   Country:Italy  

  • A branch-and-bound approach to efficient classification and retrieval of documents International conference

    # Kotaro Ii, Yasuo Tabei, Hiroto Saigo

    International Conference of Pattern Recognition Applications and Methods (ICPRAM2024)  2024.4 

     More details

    Event date: 2024.2

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Rome   Country:Italy  

  • 機械学習・深層学習を用いた高炉の教師なし異常検知

    #板倉, @西郷

    情報学的学習理論ワークショップ(IBIS2022)  2022.11 

     More details

    Event date: 2023.11

    Language:Japanese  

    Venue:つくば国際会議場   Country:Japan  

  • 深層学習を利用した高炉内の異常検知 International conference

    #木崎亮介, @西郷浩人

    情報学的学習理論ワークショップ  2022.6 

     More details

    Event date: 2021.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Online   Country:Japan  

  • 深層学習を利用した高炉内の異常検知

    #木崎 亮介, @西郷 浩人

    人工知能基本問題研究会  2021.3 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Online   Country:Japan  

  • Context-Aware Latent Dirichlet Allocation for Topic SegmentationWenbo Li, Tetsu Matsukawa, Hiroto Saigo, Einoshin Suzuki: International conference

    #Wenbo Li, Tetsu Matsukawa, Hiroto Saigo, Einoshin Suzuki

    PAKDD  2020.5 

     More details

    Event date: 2020.5

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Online   Country:Japan  

  • Bayesian Optimization for Sequence Data International conference

    #Kohei Oyamada and Hiroto Saigo

    10th International Conference on Bioscience, Biochemistry and Bioinformatics  2020.1 

     More details

    Event date: 2020.1

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Kyoto University   Country:Japan  

  • A Sparse Bayesian Approach to Combinatorial Feature Selection and Its Applications to Biological Data International conference

    #Ryoichiro Yafune, #Daisuke Sakuma, Yasuo Tabei, Noritaka Saito, Einoshin Suzuki and Hiroto Saigo

    10th International Conference on Bioscience, Biochemistry and Bioinformatics  2020.1 

     More details

    Event date: 2020.1

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Kyoto University   Country:Japan  

  • SVM-GlutarySite: A support vector machine-based prediction of Glutarylation sites from protein sequences International conference

    Albarakati, H., Saigo, H., Newman, R.H., KC, D.B.

    Joint GIW/ABACBS-2019 Bioinformatics Conference  2019.9 

     More details

    Event date: 2019.12

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Sydney   Country:Australia  

  • 変数間作用を考慮した非負スパースモデルの正則化経路探索

    #高柳 未来1、田部井 靖生、@西郷 浩人

    人工知能学会全国大会(第33回)  2019.6 

     More details

    Event date: 2019.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:朱鷺メッセ新潟コンベンションセンター   Country:Japan  

  • アイテムセットを用いたスパースベイズ学習

    #矢船 僚一朗、@西郷 浩人

    人工知能学会全国大会(第33回)  2019.6 

     More details

    Event date: 2019.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:朱鷺メッセ新潟コンベンションセンター   Country:Japan  

  • DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction International conference

    Thapa, N., Chaudhari, M., McManus, S., Roy, K., Newman, R.H., Saigo, H., KC, D.B.

    MCBIOS  2019.3 

     More details

    Event date: 2019.3

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Birmingham   Country:United States  

  • Mining and Learning with Structured Data International conference

    Hiroto Saigo

    Japan America Germany Frontiers of Science Symposium  2017.9 

     More details

    Event date: 2017.9

    Language:English   Presentation type:Symposium, workshop panel (public)  

    Venue:Steigenberger Hotel Bad Neuenahr   Country:Germany  

  • CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes International conference

    Clarence White, Hamid D. Ismail, Hiroto Saigo, K. C. Dukka B.

    INCOB2017  2017.9 

     More details

    Event date: 2017.9

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Shenzhen   Country:Japan  

  • Learning from treatment history to predict response to anti-HIV therapy

    Saigo, H.

    BMIRC2013  2013.2 

     More details

    Language:English  

    Venue:Iizuka   Country:Japan  

  • Mining discriminative patterns from graph data with multiple labels

    Saigo, H.

    BMIRC2014  2014.1 

     More details

    Language:English  

    Venue:Iizuka   Country:Japan  

  • Mining and learning with structured data

    Saigo, H.

    久留米大学バイオ統計センター公 開セミナー  2016.1 

     More details

    Language:Japanese  

    Venue:Kurume   Country:Japan  

  • Multiple response regression for graph mining International conference

    Saigo, H.

    Department of Computing Seminar, Imperial College London  2013.10 

     More details

    Language:English  

    Venue:London   Country:United Kingdom  

  • Multiple response regression for graph mining International conference

    Saigo, H.

    Friedrich Miescher Lab. Seminar  2013.11 

     More details

    Language:English  

    Venue:Tuebingen   Country:Germany  

  • Protein Clustering on Grassman Manifold, Pattern Recognition in Bioinformatics International conference

    Suryanto, C.H., Saigo, H., Fukui, K.

    Pattern Recognition in Bioinformatics (PRIB2012)  2012.11 

     More details

    Language:English  

    Venue:Tokyo   Country:Japan  

  • A Bayesian Approach to Graph Regression with Relevant Subgraph Selection International conference

    Chiappa, S., Saigo, H. and Tsuda, K.

    Siam International Conference on Data Mining (SDM2009)  2009.4 

     More details

    Language:English  

    Venue:Nevada   Country:United States  

  • Iterative Subgraph Mining for Principal Component Analysis International conference

    Saigo, H. and Tsuda, K.

    IEEE International Conference on Data Mining (ICDM2008)  2008.12 

     More details

    Language:English  

    Venue:Pisa   Country:Italy  

  • Regression with Interval Output Values International conference

    Kashima, H., Yamasaki, K., Saigo, H. and Inokuchi, A.

    International Conference on Pattern Recognition (ICPR2008)  2008.1 

     More details

    Language:English  

    Venue:Florida   Country:United States  

  • Partial Least Squares Regression for Graph Mining International conference

    Saigo, H., Kraemer, N. and Tsuda, K.

    ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2008)  2008.8 

     More details

    Language:English  

    Venue:Las Vegas   Country:United States  

  • Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism International conference

    Saigo, H., M. Hattori and K. Tsuda:

    NIPS Workshop on Machine Learning in Computational Biology,  2007.12 

     More details

    Language:English  

    Venue:Whistler   Country:Canada  

  • Regression with Intervals International conference

    Kashima, H., Yamazaki, K., Saigo, H. and Inokuchi, A.

    International Workshop on Data-Mining and Statistical Science (DMSS2007)  2007.10 

     More details

    Language:English  

    Venue:Tokyo   Country:Japan  

  • Graph boosting for molecular QSAR analysis International conference

    Saigo, H., Kadowaki, T., Kudo, T. and Tsuda, K.

    NIPS Workshop on Machine Learning in Computational Biology,  2006.12 

     More details

    Language:English  

    Venue:Whistler   Country:Canada  

  • A Linear Programming Approach for Molecular QSAR analysis International conference

    Saigo, H., Kadowaki, T. and Tsuda, K.

    International Workshop on Mining and Learning with Graphs (MLG2006)  2006.9 

     More details

    Language:English  

    Venue:Berlin   Country:Germany  

  • Introduction to Chemoinformatics

    Saigo, H.

    鹿児島大学分子腫瘍学分野セミナー  2015.1 

     More details

    Language:Japanese  

    Venue:Kagoshima   Country:Japan  

  • Pteris Vittata analysis report

    Saigo, H.

    東北大学自然システム共生学分野セミナー  2013.2 

     More details

    Language:Japanese  

    Venue:Sendai   Country:Japan  

  • Clustering approach to drug discovery International conference

    Saigo, H.

    Novartis Animal Health Department Seminar  2012.12 

     More details

    Language:English  

    Venue:Basel   Country:Switzerland  

  • Learn- ing from past treatments and their outcome improved prediction of in vivo response to anti-HIV therapy International conference

    Saigo, H.

    Ecole des Mines de Paris and Paris Tech in Paris Seminar  2010.2 

     More details

    Language:English  

    Venue:Paris   Country:France  

  • Incorporating detailed information on treatment history improves prediction of response to anti-HIV therapy International conference

    Saigo, H.

    Eidgenoesische Technische Hochschule (ETH) Zuerich Seminar  2009.12 

     More details

    Language:English  

    Venue:Basel   Country:Switzerland  

  • Incorporating detailed information on treatment history improves prediction of response to anti-HIV therapy International conference

    Saigo, H.

    Universitet van Amsterdam Seminar  2009.12 

     More details

    Language:English  

    Venue:Amsterdam   Country:Netherlands  

  • Partial Least Squares Regression for Graph Mining International conference

    Saigo, H.

    Ecole des Mines de Paris and Paris Tech in Paris Seminar  2008.5 

     More details

    Language:English  

    Venue:Paris   Country:France  

  • A Linear Programming Approach for Molecular QSAR analysis International conference

    Saigo, H.

    Fraunhofer FIRST Seminar  2006.9 

     More details

    Language:English  

    Venue:Berlin   Country:Germany  

  • Classification of chemical compounds using graph kernels

    Saigo, H.

    Information-Based Induction Science (IBIS) 2005  2005.10 

     More details

    Language:Japanese  

    Venue:Toyo   Country:Japan  

  • SNP間相互作用探索アルゴリズム

    池田直人, 西郷浩人

    第30回情報処理学会バイオ情報学研究会  2012.8 

     More details

    Language:Japanese  

    Venue:九州工業大学   Country:Japan  

  • カイ二乗検定によるp値の下限値を利用した遺伝子相互作用の効率的な数え上げ

    山口拓郎, 西郷浩人

    第42回バイオ情報学研究会  2015.6 

     More details

    Language:Japanese  

    Venue:沖縄科学技術先端大学院大学   Country:Japan  

  • RF-NR: Random forest based approach for improved classification of Nuclear Receptors

    Ismail, H.D., Saigo, H., Bahadur, K.C.D.

    The 26th International Conference on Genome Informatics & International Conference on Bioinformatics (GIW/InCoB2015)  2015.9 

     More details

    Language:English  

    Venue:Tokyo   Country:Japan  

  • 応答変数が連続値の際の組み合わせ仮説に対する多重検定補正法

    井ノ口敬章, 永野竜輝, 西郷浩人

    第103回人工知能基本問題研究会  2017.3 

     More details

    Language:Japanese  

    Venue:湯布院公民館   Country:Japan  

  • Scalable Partial Least Squares Regression on Grammar- Compressed Data Matrices International conference

    Tabei, Y., Saigo, H., Yamanishi, Y., Puglisi, S.

    The 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD2016)  2016.8 

     More details

    Language:English  

    Venue:San Francisco   Country:United States  

    文法圧縮されたデータ行列上のスケーラブルなPLS回帰モデル学習を提案した。

  • Mining and Learning with Structured Data, Japan America Germany Frontiers of Science Symposium Invited International conference

    西郷 浩人

    Japan America Germany Frontiers of Science Symposium  2017.9 

     More details

    Language:English  

    Country:Other  

▼display all

MISC

  • QSARモデルの構築; 機械学習と部分構造マイニングによるアプローチ

    西郷 浩人

    日本化学会情報化学部会誌   2013.7

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  • 局所アラインメントカーネルを用いたアミノ酸置換行列の最適化

    西郷 浩人, ジャンフィリップ・ヴェール, 阿久津 達也

    情報処理学会研究報告数理モデル化と問題解決(MPS)   2006.3

     More details

    Language:English  

    Optimizing amino acid substitution matrices with local alignment kernels
    Detecting similarity between protein sequence is one of the core problems in bioinformatics, and detecting weak similarities is known as a hard problem. We have proposed a local alignmnet kernel for this purpose and showed good performance in the previous research. The local alignment kernel depdends on amino acid substitution matrices. We show that we can analytically calculate the derivatives of the local alignment kernels with respect to amino acid substitution matrix as well as their efficient calculation through dynamic programming. Then we plug them into the gradient based optimization procedure which is designed to discriminate true homologs from non-homologs. The local alignment kernel exhibits better performance when it uses the matrices and gap parameters optimized by this procedure than when it uses the matrices optimized for the Smith-Waterman algorithm. Furthermore, the matrices and gap parameters optimized for the local alignment kernel can also be used successfully by the Smith-Waterman algorithm.

Professional Memberships

  • Japanese Society of Bioinformatics (JSBi)

  • Japanese Society of Artificial Intelligence (JSAI)

  • Japanese Society of Statistics (JSS)

  • The Iron and Steel Institute of Japan (ISIJ)

  • THE JAPAN STATISTICAL SOCIETY

Academic Activities

  • 学術論文等の審査 International contribution

    Role(s): Peer review

    2024

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:10

  • Pattern Recognition International contribution

    2023.12 - Present

     More details

    Type:Academic society, research group, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2023

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:1

    Proceedings of International Conference Number of peer-reviewed papers:10

  • Screening of academic papers

    Role(s): Peer review

    2022

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:2

    Proceedings of International Conference Number of peer-reviewed papers:9

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • プログラム編集委員長

    電気・情報関係学会九州支部連合大会  ( Online Japan ) 2021.9

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2021

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:3

    Number of peer-reviewed articles in Japanese journals:1

    Proceedings of International Conference Number of peer-reviewed papers:4

    Proceedings of domestic conference Number of peer-reviewed papers:0

  • プログラム委員 International contribution

    Neural Information Processing Systems (Neurips2020)  ( Online ) 2020.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

    生命医薬情報学連合大会 (IIBMP2020)  ( Online ) 2020.9

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    International Conference on Machine Learning (ICML2020)  ( Virtual ) 2020.7

     More details

    Type:Competition, symposium, etc. 

  • Frontiers in Bioinformatics International contribution

    2020.5 - Present

     More details

    Type:Academic society, research group, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2020

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:5

    Proceedings of International Conference Number of peer-reviewed papers:14

    Proceedings of domestic conference Number of peer-reviewed papers:22

  • プログラム委員 International contribution

    International Conference on Genome Informatics (GIW2019)  ( Sydney Australia ) 2019.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    Neural Information Processing Systems (NIPS2019)  ( Vancouver Canada ) 2019.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

    Information Based Induction Systems (IBIS2019)  ( Nagoya Japan ) 2019.11

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    International Conference on Machine Learning (ICML2019)  ( Long Beach, California UnitedStatesofAmerica ) 2019.6

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    Artificial Intelligence and Statistics Conference (AISTATS2019)  ( Naha, Okinawa Japan ) 2019.4

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2019

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:4

    Number of peer-reviewed articles in Japanese journals:1

    Proceedings of International Conference Number of peer-reviewed papers:19

  • プログラム委員 International contribution

    Neural Information Processing Systems (NIPS2018)  ( Montreal Canada ) 2018.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    International Conference on Genome Informatics (GIW2018)  ( Yunnan China ) 2018.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    International Conference on Machine Learning (ICML2018)  ( Stockholm Sweden ) 2018.10

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    Artificial Intelligence and Statistics Conference (AISTATS2018)  ( Playa Blanca, Lanzarote, Canary Islands Spain ) 2018.4

     More details

    Type:Competition, symposium, etc. 

  • 担当幹事

    人工知能学会 人工知能基本問題研究会  ( Japan ) 2018.1

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    Asia Pacific Bioinformatics Conference (APBC2018)  ( Yokohama Japan ) 2018.1

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2018

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:2

    Number of peer-reviewed articles in Japanese journals:2

    Proceedings of International Conference Number of peer-reviewed papers:16

  • プログラム委員 International contribution

    Neural Information Processing Systems (NIPS2017)  ( Long Beach, California UnitedStatesofAmerica ) 2017.12

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    IEEE International Conference on Bioinformatics and Biomedicine (BIBM2017)  ( Kansas City, MO UnitedStatesofAmerica ) 2017.11

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    Artificial Intelligence and Statistics Conference (AISTATS2017)  ( Fort Lauderdale, Florida UnitedStatesofAmerica ) 2017.4

     More details

    Type:Competition, symposium, etc. 

  • Screening of academic papers

    Role(s): Peer review

    2017

     More details

    Type:Peer review 

    Number of peer-reviewed articles in foreign language journals:1

    Proceedings of International Conference Number of peer-reviewed papers:32

  • 担当幹事

    人工知能学会 人工知能基本問題研究会  ( Japan ) 2016.12

     More details

    Type:Competition, symposium, etc. 

  • 座長(Chairmanship)

    JSBi年会(2015)  ( Japan ) 2015.10

     More details

    Type:Competition, symposium, etc. 

  • 座長(Chairmanship)

    JSBi年会(2013)  ( Japan ) 2013.10

     More details

    Type:Competition, symposium, etc. 

  • 座長(Chairmanship)

    Information Based Induction Systems (IBIS2012)  ( Japan ) 2012.11

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

    JSBi年会(2015)  ( Japan )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    Asian Conference on Machine Learning (ACML2009)  ( China )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    IEEE International Conference on Bioinformatics and Biomedicine (BIBM2016)  ( China )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    IEEE International Conference on Bioinformatics and Biomedicine (BIBM2015)  ( UnitedStatesofAmerica )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    IEEE International Conference on Bioinformatics and Biomedicine (BIBM2014)  ( UnitedKingdom )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    IEEE International Conference on Bioinformatics and Biomedicine (BIBM2013)  ( UnitedStatesofAmerica )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    IEEE International Conference on Bioinformatics and Biomedicine (BIBM2012)  ( UnitedStatesofAmerica )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    IEEE International Conference on Bioinformatics and Biomedicine (BIBM2011)  ( UnitedStatesofAmerica )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    Genome Informatics Workshop (GIW2014)  ( Japan )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    Pattern Recognition in Bioinformatics (PRIB2013)  ( France )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員 International contribution

    Pattern Recognition in Bioinformatics (PRIB2012)  ( Japan )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

    Information Based Induction Systems (IBIS2012)  ( Japan )

     More details

    Type:Competition, symposium, etc. 

  • プログラム委員

    JSBi年会(2013)  ( Japan )

     More details

    Type:Competition, symposium, etc. 

▼display all

Research Projects

  • 高レベル放射性廃棄物処理のための機械学習:高温多相融体の制御によるアプローチ

    2023.4

      More details

    Authorship:Principal investigator 

  • 高レベル放射性廃棄物処理のための機械学習:高温多相融体の制御によるアプローチ研究

    Grant number:23H03356  2023 - 2027

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 高炉操業の診断・予測方法の開発

    2023

      More details

    Grant type:Donation

  • A machine learning approach to automatic design of genes, proteins and chemical compounds

    Grant number:22K19834  2022 - 2024

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Challenging Research(Exploratory)

    西郷 浩人

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    科学の基本的なプロセスは仮説を立てて実験を行い、それを検証することの繰り返してである。近年は実験装置の機械化や測定装置の高精度化と高速化などにより、実験の質や量が急激に増える傾向にある。しかしながら、次にどのような実験を行うかを決定する実験計画は人間の勘に頼ったままである。そこで本研究課題が目指すのは機械学習を用いた実験計画の自動化である。
    本提案課題では特に、タンパク質・化合物をターゲットとし、類似度の指標に滑らかな近似を導入することで局所解の効率的な探索を目指す。この結果として、次に実験を行うべきタンパク質や化合物を逐次的かつ効率的に行うことが可能となる。

    CiNii Research

  • スラグみえる化研究会

    2022

      More details

    Grant type:Donation

  • 高炉操業の診断・予測方法の開発

    2022

      More details

    Grant type:Donation

  • 高温酸化物サスペンションのレオロジー特性に及ぼす界面電気物性の影響

    Grant number:21H01684  2021

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • スラグみえる化研究会

    2021

      More details

    Grant type:Donation

  • 高炉操業の診断・予測方法の開発

    2021

      More details

    Grant type:Donation

  • スラグみえる化研究会

    2020

      More details

    Grant type:Donation

  • 高炉操業の診断・予測方法の開発

    2020

      More details

    Grant type:Donation

  • 製造インフォマティクスに向けた機械学習技術の開発と鉄鋼製造における評価

    2019.6 - 2022.6

      More details

    Authorship:Principal investigator 

  • Development of algorithms for manufacture informatics and its evaluation in steel industry

    Grant number:19H04176  2019 - 2022

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    saigo hiroto

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

    In the "Anomaly Detection in Blast Furnaces" problem, we have developed approaches using unsupervised learning based on the work of Itakura et al. (IBIS2022), and supervised learning based on the work of Kizaki (IBIS2021). In the supervised learning approach using CNN, we have confirmed that utilizing data from 5 to 15 minutes prior leads to improved accuracy.
    <BR>
    We have also developed a method for "Viscosity Prediction of High-Temperature States through Multi-Task Learning" as described in the study by Saigo et al. (Scientific Reports, 2022). In addition to robust extrapolation prediction, we have proposed a transfer learning method that leverages room temperature experimental data for high-temperature experiments.

    CiNii Research

  • スラグみえる化研究会

    2019

      More details

    Grant type:Donation

  • 高炉操業の診断・予測方法の開発

    2019

      More details

    Grant type:Donation

  • 転移学習を利用した高温二相流体のレオロジー特性予測システム構築

    2018.4 - 2020.3

      More details

    Authorship:Coinvestigator(s) 

  • 転移学習を利用した高温二相流体のレオロジー特性予測システム構築継続中

    2018 - 2020

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 転移学習を利用した高温二相流体のレオロジー特性予測システム構築

    Grant number:18H01762  2018 - 2020

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 構造データの学習とマイニング

    2018

    Japan Society for the Promotion of Science  JSPS外国人招へい研究者

      More details

    Authorship:Principal investigator  Grant type:Joint research

  • 高炉操業の診断・予測方法の開発

    2018

      More details

    Grant type:Donation

  • 複数の遺伝要因及び環境要因の組み合わせを考慮したゲノムワイド相関解析法の開発

    2017.3 - 2013.4

      More details

    Authorship:Principal investigator 

  • 深層学習によるタンパク質分類法の開発

    2017

    スタートアップ支援

      More details

    Authorship:Principal investigator  Grant type:On-campus funds, funds, etc.

  • マルチモーダル多視点画像を用いたタンパク質立体構造の解析 研究課題

    2013.4 - 2015.3

      More details

    Authorship:Coinvestigator(s) 

  • 複数の遺伝要因及び環境要因の組み合わせを考慮したゲノムワイド相関解析法の開発

    2013 - 2016

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 複数の遺伝要因及び環境要因の組み合わせを考慮したゲノムワイド相関解析法の開発

    Grant number:25700004  2013 - 2016

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (A)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • マルチモーダル多視点画像を用いたタンパク質立体構造の解析

    2013 - 2014

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • マルチモーダル多視点画像を用いたタンパク質立体構造の解析

    Grant number:25540062  2013 - 2014

    Grants-in-Aid for Scientific Research  Grant-in-Aid for challenging Exploratory Research

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

  • 全cDNA解析によるヒ素高蓄積植物土壌浄化システムの解析

    2011.4 - 2012.3

      More details

    Authorship:Coinvestigator(s) 

  • 大量のタンパク質リガンドデータより相互作用の構造的特徴をマイニングする方法の開発 研究課題

    2011.4 - 2012.3

      More details

    Authorship:Principal investigator 

  • 大量のタンパク質リガンドデータより相互作用の構造的特徴をマイニングする方法の開発

    Grant number:23700338  2011 - 2013

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 大量のタンパク質リガンドデータより相互作用の構造的特徴をマイニングする方法の開発

    2011 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator  Grant type:Scientific research funding

  • 全cDNA解析によるヒ素高蓄積植物土壌浄化システムの解析

    2011 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Grant type:Scientific research funding

  • 全cDNA解析によるヒ素高蓄積植物土壌浄化システムの解析

    Grant number:23710085  2011 - 2012

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Scientific research funding

▼display all

Class subject

  • 【通年】情報理工学研究Ⅰ

    2024.4 - 2025.3   Full year

  • 【通年】情報理工学講究

    2024.4 - 2025.3   Full year

  • 【通年】情報理工学演習

    2024.4 - 2025.3   Full year

  • データ科学

    2024.4 - 2024.9   First semester

  • 情報理工学論議Ⅰ

    2024.4 - 2024.9   First semester

  • 情報理工学論述Ⅰ

    2024.4 - 2024.9   First semester

  • 情報理工学読解

    2024.4 - 2024.9   First semester

  • サイバーセキュリティ基礎論

    2024.4 - 2024.6   Spring quarter

  • 機械学習特論Ⅱ

    2023.12 - 2024.2   Winter quarter

  • Machine Learning II

    2023.12 - 2024.2   Winter quarter

  • 機械学習特論

    2023.10 - 2024.3   Second semester

  • 情報理工学論議Ⅱ

    2023.10 - 2024.3   Second semester

  • 情報理工学論述Ⅱ

    2023.10 - 2024.3   Second semester

  • 情報理工学演示

    2023.10 - 2024.3   Second semester

  • 生物情報科学

    2023.10 - 2024.3   Second semester

  • 機械学習特論Ⅰ

    2023.10 - 2023.12   Fall quarter

  • Machine Learning I

    2023.10 - 2023.12   Fall quarter

  • 国際演示技法Ⅰ

    2023.4 - 2024.3   Full year

  • Advanced Project Management II

    2023.4 - 2024.3   Full year

  • Advanced Project Management I

    2023.4 - 2024.3   Full year

  • Exercise in Teaching II

    2023.4 - 2024.3   Full year

  • Exercise in Teaching I

    2023.4 - 2024.3   Full year

  • Intellectual Property Management II

    2023.4 - 2024.3   Full year

  • Intellectual Property Management I

    2023.4 - 2024.3   Full year

  • Scientific English Presentation II

    2023.4 - 2024.3   Full year

  • Scientific English Presentation I

    2023.4 - 2024.3   Full year

  • 先端プロジェクト管理技法Ⅱ

    2023.4 - 2024.3   Full year

  • 先端プロジェクト管理技法Ⅰ

    2023.4 - 2024.3   Full year

  • ティーチング演習Ⅱ

    2023.4 - 2024.3   Full year

  • ティーチング演習Ⅰ

    2023.4 - 2024.3   Full year

  • 知的財産技法Ⅱ

    2023.4 - 2024.3   Full year

  • 知的財産技法Ⅰ

    2023.4 - 2024.3   Full year

  • 国際演示技法Ⅱ

    2023.4 - 2024.3   Full year

  • 国際演示技法Ⅰ

    2023.4 - 2024.3   Full year

  • Advanced Seminar in Information Science and Technology

    2023.4 - 2024.3   Full year

  • Advanced Research in Information Science and Technology II

    2023.4 - 2024.3   Full year

  • Advanced Research in Information Science and Technology I

    2023.4 - 2024.3   Full year

  • 情報理工学特別演習

    2023.4 - 2024.3   Full year

  • 情報理工学特別研究Ⅱ

    2023.4 - 2024.3   Full year

  • 情報理工学特別研究Ⅰ

    2023.4 - 2024.3   Full year

  • Advanced Research in Data Science

    2023.4 - 2024.3   Full year

  • データサイエンス特别講究

    2023.4 - 2024.3   Full year

  • Advanced Project Management II

    2023.4 - 2024.3   Full year

  • Advanced Project Management I

    2023.4 - 2024.3   Full year

  • Exercise in Teaching II

    2023.4 - 2024.3   Full year

  • Exercise in Teaching I

    2023.4 - 2024.3   Full year

  • Intellectual Property Management II

    2023.4 - 2024.3   Full year

  • Intellectual Property Management I

    2023.4 - 2024.3   Full year

  • Scientific English Presentation II

    2023.4 - 2024.3   Full year

  • Scientific English Presentation I

    2023.4 - 2024.3   Full year

  • 先端プロジェクト管理技法Ⅱ

    2023.4 - 2024.3   Full year

  • 先端プロジェクト管理技法Ⅰ

    2023.4 - 2024.3   Full year

  • ティーチング演習Ⅱ

    2023.4 - 2024.3   Full year

  • ティーチング演習Ⅰ

    2023.4 - 2024.3   Full year

  • 知的財産技法Ⅱ

    2023.4 - 2024.3   Full year

  • 知的財産技法Ⅰ

    2023.4 - 2024.3   Full year

  • 国際演示技法Ⅱ

    2023.4 - 2024.3   Full year

  • 【通年】情報理工学研究Ⅰ

    2023.4 - 2024.3   Full year

  • 【通年】情報理工学講究

    2023.4 - 2024.3   Full year

  • 【通年】情報理工学演習

    2023.4 - 2024.3   Full year

  • データ科学

    2023.4 - 2023.9   First semester

  • 情報理工学論議Ⅰ

    2023.4 - 2023.9   First semester

  • 情報理工学論述Ⅰ

    2023.4 - 2023.9   First semester

  • 情報理工学読解

    2023.4 - 2023.9   First semester

  • 機械学習特論Ⅱ

    2022.12 - 2023.2   Winter quarter

  • Machine Learning II

    2022.12 - 2023.2   Winter quarter

  • 情報理工学論議Ⅱ

    2022.10 - 2023.3   Second semester

  • 情報理工学論述Ⅱ

    2022.10 - 2023.3   Second semester

  • 情報理工学演示

    2022.10 - 2023.3   Second semester

  • 機械学習特論

    2022.10 - 2023.3   Second semester

  • Machine Learning

    2022.10 - 2023.3   Second semester

  • 生物情報科学

    2022.10 - 2023.3   Second semester

  • 情報科学講究

    2022.10 - 2023.3   Second semester

  • 国際科学特論Ⅱ

    2022.10 - 2022.12   Fall quarter

  • 機械学習特論Ⅰ

    2022.10 - 2022.12   Fall quarter

  • Machine Learning I

    2022.10 - 2022.12   Fall quarter

  • 基幹教育セミナー

    2022.6 - 2022.8   Summer quarter

  • 国際演示技法

    2022.4 - 2023.3   Full year

  • 情報理工学講究

    2022.4 - 2023.3   Full year

  • 情報理工学演習

    2022.4 - 2023.3   Full year

  • 情報理工学研究Ⅰ

    2022.4 - 2023.3   Full year

  • Advanced Seminar in Informatics

    2022.4 - 2023.3   Full year

  • Advanced Research in Informatics II

    2022.4 - 2023.3   Full year

  • Advanced Research in Informatics I

    2022.4 - 2023.3   Full year

  • 情報学特別演習

    2022.4 - 2023.3   Full year

  • 情報学特別講究第二

    2022.4 - 2023.3   Full year

  • 情報学特別講究第一

    2022.4 - 2023.3   Full year

  • Advanced Research in Data Science

    2022.4 - 2023.3   Full year

  • データサイエンス特别講究

    2022.4 - 2023.3   Full year

  • Advanced Project Management Technique

    2022.4 - 2023.3   Full year

  • Exercise in Teaching

    2022.4 - 2023.3   Full year

  • Intellectual Property Management

    2022.4 - 2023.3   Full year

  • Scientific English Presentation

    2022.4 - 2023.3   Full year

  • 先端プロジェクト管理技法

    2022.4 - 2023.3   Full year

  • ティーチング演習

    2022.4 - 2023.3   Full year

  • 知的財産技法

    2022.4 - 2023.3   Full year

  • データ科学

    2022.4 - 2022.9   First semester

  • 情報理工学論議Ⅰ

    2022.4 - 2022.9   First semester

  • 情報理工学論述Ⅰ

    2022.4 - 2022.9   First semester

  • 情報理工学読解

    2022.4 - 2022.9   First semester

  • 電気情報工学入門

    2022.4 - 2022.6   Spring quarter

  • サイバーセキュリティ基礎論

    2022.4 - 2022.6   Spring quarter

  • (IUPE)Data Structure and Algorithms IB

    2021.12 - 2022.2   Winter quarter

  • Machine Learning II

    2021.12 - 2022.2   Winter quarter

  • 機械学習特論Ⅱ

    2021.12 - 2022.2   Winter quarter

  • 機械学習特論

    2021.10 - 2022.3   Second semester

  • 情報理工学演示

    2021.10 - 2022.3   Second semester

  • 生物情報科学

    2021.10 - 2022.3   Second semester

  • 情報科学講究

    2021.10 - 2022.3   Second semester

  • Machine Learning

    2021.10 - 2022.3   Second semester

  • 情報学論議Ⅱ

    2021.10 - 2022.3   Second semester

  • 情報学論述Ⅱ

    2021.10 - 2022.3   Second semester

  • (IUPE)Data Structure and Algorithms IA

    2021.10 - 2021.12   Fall quarter

  • Machine Learning I

    2021.10 - 2021.12   Fall quarter

  • 機械学習特論Ⅰ

    2021.10 - 2021.12   Fall quarter

  • 国際演示技法

    2021.4 - 2022.3   Full year

  • [M2]情報学講究

    2021.4 - 2022.3   Full year

  • 情報理工学演習

    2021.4 - 2022.3   Full year

  • 情報理工学研究Ⅰ

    2021.4 - 2022.3   Full year

  • 情報学演習

    2021.4 - 2022.3   Full year

  • Advanced Seminar in Informatics

    2021.4 - 2022.3   Full year

  • Advanced Research in Informatics II

    2021.4 - 2022.3   Full year

  • Advanced Research in Informatics I

    2021.4 - 2022.3   Full year

  • 情報学特別演習

    2021.4 - 2022.3   Full year

  • 情報学特別講究第二

    2021.4 - 2022.3   Full year

  • 情報学特別講究第一

    2021.4 - 2022.3   Full year

  • Advanced Research in Data Science

    2021.4 - 2022.3   Full year

  • データサイエンス特别講究

    2021.4 - 2022.3   Full year

  • Advanced Project Management Technique

    2021.4 - 2022.3   Full year

  • Exercise in Teaching

    2021.4 - 2022.3   Full year

  • Intellectual Property Management

    2021.4 - 2022.3   Full year

  • Scientific English Presentation

    2021.4 - 2022.3   Full year

  • 先端プロジェクト管理技法

    2021.4 - 2022.3   Full year

  • ティーチング演習

    2021.4 - 2022.3   Full year

  • 知的財産技法

    2021.4 - 2022.3   Full year

  • データ科学

    2021.4 - 2021.9   First semester

  • [M2]情報学論議Ⅰ

    2021.4 - 2021.9   First semester

  • [M2]情報学論述Ⅰ

    2021.4 - 2021.9   First semester

  • 情報理工学読解

    2021.4 - 2021.9   First semester

  • (IUPE)Data Structure and Algorithms IB

    2020.12 - 2021.2   Winter quarter

  • 【修士】機械学習特論

    2020.10 - 2021.3   Second semester

  • Machine Learning

    2020.10 - 2021.3   Second semester

  • 【博士】機械学習特論

    2020.10 - 2021.3   Second semester

  • 情報学論議Ⅱ

    2020.10 - 2021.3   Second semester

  • 情報学論述Ⅱ

    2020.10 - 2021.3   Second semester

  • 情報学演示

    2020.10 - 2021.3   Second semester

  • (IUPE)Data Structure and Algorithms IA

    2020.10 - 2020.12   Fall quarter

  • 国際演示技法

    2020.4 - 2021.3   Full year

  • Advanced Seminar in Informatics

    2020.4 - 2021.3   Full year

  • Advanced Research in Informatics II

    2020.4 - 2021.3   Full year

  • Advanced Research in Informatics I

    2020.4 - 2021.3   Full year

  • 情報学特別演習

    2020.4 - 2021.3   Full year

  • 情報学特別講究第二

    2020.4 - 2021.3   Full year

  • 情報学特別講究第一

    2020.4 - 2021.3   Full year

  • Advanced Research in Data Science

    2020.4 - 2021.3   Full year

  • データサイエンス特别講究

    2020.4 - 2021.3   Full year

  • Advanced Project Management Technique

    2020.4 - 2021.3   Full year

  • Exercise in Teaching

    2020.4 - 2021.3   Full year

  • Intellectual Property Management

    2020.4 - 2021.3   Full year

  • Scientific English Presentation

    2020.4 - 2021.3   Full year

  • 先端プロジェクト管理技法

    2020.4 - 2021.3   Full year

  • ティーチング演習

    2020.4 - 2021.3   Full year

  • 知的財産技法

    2020.4 - 2021.3   Full year

  • データ科学

    2020.4 - 2020.9   First semester

  • 【修士】機械学習特論

    2019.10 - 2020.3   Second semester

  • 生物情報科学

    2019.10 - 2020.3   Second semester

  • 【博士】機械学習特論

    2019.10 - 2020.3   Second semester

  • 情報学論議Ⅱ

    2019.10 - 2020.3   Second semester

  • 情報学論述Ⅱ

    2019.10 - 2020.3   Second semester

  • 情報学演示

    2019.10 - 2020.3   Second semester

  • (IUPE)Data Structure and Algorithms I

    2019.10 - 2019.12   Fall quarter

  • 情報学演習

    2019.4 - 2020.3   Full year

  • 情報学講究

    2019.4 - 2020.3   Full year

  • データ科学

    2019.4 - 2019.9   First semester

  • 情報学論議Ⅰ

    2019.4 - 2019.9   First semester

  • 情報学論述Ⅰ

    2019.4 - 2019.9   First semester

  • 情報学読解

    2019.4 - 2019.9   First semester

  • 機械学習特論

    2018.10 - 2019.3   Second semester

  • 生物情報科学

    2018.10 - 2019.3   Second semester

  • 情報学読解

    2018.4 - 2018.9   First semester

  • 情報学論議Ⅰ

    2018.4 - 2018.9   First semester

  • 情報学論述Ⅰ

    2018.4 - 2018.9   First semester

  • サイバーセキュリティ基礎論

    2018.4 - 2018.6   Spring quarter

  • 情報学演示

    2017.10 - 2018.3   Second semester

  • 情報学論議Ⅱ

    2017.10 - 2018.3   Second semester

  • 情報学論述Ⅱ

    2017.10 - 2018.3   Second semester

  • 情報学読解

    2017.4 - 2017.9   First semester

  • 高度プログラミング

    2017.4 - 2017.9   First semester

  • 情報学論議Ⅰ

    2017.4 - 2017.9   First semester

  • 情報学論述Ⅰ

    2017.4 - 2017.9   First semester

  • 生物情報科学

    2016.10 - 2017.3   Second semester

  • データ科学

    2016.4 - 2016.9   First semester

▼display all

FD Participation

  • 2023.5   Role:Participation   Title:【シス情FD】農学研究院で進めているDX教育について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2023.3   Role:Participation   Title:【シス情FD】独・蘭・台湾での産学連携を垣間見る-Industy 4.0・量子コンピューティング・先端半導体-

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.6   Role:Participation   Title:【シス情FD】電子ジャーナル等の今後について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.5   Role:Participation   Title:【シス情FD】若手教員による研究紹介④「量子コンピュータ・システム・アーキテクチャの研究~道具になることを目指して~」

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2022.3   Role:Participation   Title:全学FD:メンタルヘルス講演会

    Organizer:University-wide

  • 2022.1   Role:Participation   Title:【シス情FD】シス情関連の科学技術に対する国の政策動向(に関する私見)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.10   Role:Participation   Title:【シス情FD】熊本高専と九大システム情報との交流・連携に向けて ー 3年半で感じた高専の実像 ー

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.9   Role:Participation   Title:博士後期課程の充足率向上に向けて

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2021.5   Role:Participation   Title:先導的人材育成フェローシップ事業(情報・AI分野)について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.12   Role:Participation   Title:令和2年度 第2回工学部FD(1日目) 総合型選抜の実施に向けて―面接の全般的な内容(注意事項、採点方法など)

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.11   Role:Participation   Title:マス・フォア・イノベーション卓越大学院について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2020.9   Role:Participation   Title:電気情報工学科総合型選抜(AO入試)について

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.10   Role:Participation   Title:電子ジャーナルの現状と今後の動向に関する説明会

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2019.6   Role:Participation   Title:8大学情報系研究科長会議の報告

    Organizer:[Undergraduate school/graduate school/graduate faculty]

  • 2016.6   Role:Participation   Title:【全学FD(第2回)】教育の質向上支援プログラム(EEP)成果発表会

    Organizer:University-wide

▼display all

Visiting, concurrent, or part-time lecturers at other universities, institutions, etc.

  • 2024  理化学研究所革新的人工知能研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2024  九州工業大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2023  九州工業大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2023  理化学研究所革新的人工知能研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2022  理化学研究所革新的人工知能研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2022  九州工業大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2021  理化学研究所革新的人工知能研究センター  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2020  理化学研究所  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2019  京都大学  Classification:Affiliate faculty  Domestic/International Classification:Japan 

  • 2019  東京大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2016  九州工業大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

  • 2016  鹿児島大学  Classification:Part-time lecturer  Domestic/International Classification:Japan 

▼display all

Participation in international educational events, etc.

  • 2018.9

    工学系国際教育支援センター

    豪州クイーンズランド大学(UQ)におけるSTEM科目英語教育研修

Other educational activity and Special note

  • 2024  Class Teacher  学部

  • 2023  Class Teacher  学部

  • 2022  Class Teacher  学部

  • 2021  Class Teacher  学部

  • 2020  Class Teacher  学部

  • Class Teacher  学部

▼display all

Acceptance of Foreign Researchers, etc.

  • North Carolina A&T State Univeristy

    Acceptance period: 2018.6 - 2018.7   (Period):1 month or more

    Nationality:United States

    Business entity:Japan Society for the Promotion of Science

Travel Abroad

  • 2008.7 - 2010.3

    Staying countory name 1:Germany   Staying institution name 1:Max Planck Institute for Informatics

  • 2006.6 - 2008.6

    Staying countory name 1:Germany   Staying institution name 1:Max Planck Institute for Biological Cybernetics

  • 2003.8 - 2004.8

    Staying countory name 1:United States   Staying institution name 1:University of California, Irvine